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2 Materials and methods 

2.1 Resources	
  

The data presented and analysed in this thesis has been derived from samples 

belonging to three major resources, briefly outlined below: the HapMap, MuTHER and 

GenCord projects. Table 2.1 summarizes the number of available samples, SNPs and 

transcripts per resource and the respective thesis chapters where they have been 

analyzed. 

 

Chapter Resource 
Samples by 

Tissue SNPs 
Mapped 
Probes 

Mapped 
Genes 

3 
HapMap 3 

(CEU) 109 LCL 1,186,075 21,800 18,226 

4 MuTHER 
156 LCL, 160 SKIN, 

166 FAT 865,544 27,499 18,170 

5 GenCord 

75 LCL, 75 
fibroblasts, 75 T-

cells 1,428,314 26,651 17,945 
 

Table 2.1. Summary of resources (samples, SNPs and transcripts) used throughout the thesis. 

 

2.1.1 HapMap	
  

The International HapMap project is a large-scale collaboration launched in 2002 to 

identify and catalogue common human genetic variation (Consortium 2003). DNA from 

LCLs derived from individuals of different population ancestry has been genotyped in an 

attempt to discover the vast majority of common human SNPs (MAF ≥ 5%). HapMap 3, 

the current and largest phase of the project (http://hapmap.ncbi.nlm.nih.gov/) is 

comprised of over 4 million SNPs genotyped from individuals of the Phase 1 and 2 

populations (180 CEU, 90 CHB, 91 JPT, 180 YRI) and approximately 1.5 million SNPs 

genotyped in 760 individuals of seven new populations (90 ASW, 100 CHD, 100 GIH, 

100 LWK, 90 MEX, 180 MKK, 100 TSI).  

 

In this thesis, I analysed data from the subset of unrelated HapMap 3 CEU individuals 

(N=109) in the study described in Chapter 3. 
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2.1.2 MuTHER	
  

The MuTHER (Multiple Tissue Human Expression Resource) project was funded by the 

Wellcome Trust in 2007 as a coordinated program of analysis aiming to enhance our 

knowledge about common trait susceptibility. By generating detailed genetic (genotyping 

and resequencing) and genomic (mRNA expression, methylation status) information from 

a range of tissues collected from ~1000 twins, the MuTHER project will constitute a 

major resource for understanding the relationships between sequence variation and 

disease phenotypes (http://www.muther.ac.uk/).  

LCLs, fresh lymphocytes, fat, muscle and skin biopsies have been obtained from a 

maximum of 855 twins (318 monozygotic, 537 dizygotic) from the well-characterised 

Twins UK Resource (Spector and Williams 2006). This sample of volunteers was 

recruited by media campaigns without selecting for particular diseases or traits. All twins 

received a series of detailed disease and environmental questionnaires and the majority 

of individuals have been clinically assessed at several time points for hundreds of 

phenotypes related to common diseases or intermediate traits. All individuals recruited in 

this study were Caucasian female twins aged between 39 and 70 years old.  

 

At the time of writing, whole-genome genotyping and expression profiling of the full set of 

855 twins was underway.  A sample subset representing the pilot phase of the MuTHER 

project had been profiled in advance in three tissues: LCL, skin and fat. Skin punch 

biopsies (N=196) were taken from a relatively photo-protected area adjacent and inferior 

to the umbilicus. The fat sample was then carefully dissected from the same skin biopsy 

incision. A peripheral blood sample to generate lymphoblastoid cell lines (LCL) was taken 

contemporaneously. The biopsies were performed by Daniel Glass at KCL following the 

technique steps described in Appendix 1.  

 

Chapter 4 describes the analysis I performed on the MuTHER pilot project data. 
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2.1.3 GenCord	
  

The GenCord project was initiated at the University of Geneva Hospital and consists of a 

collection of cell lines derived from the umbilical cords of 85 individuals of Western 

European origin. The primary goal of the project was to serve as a resource facilitating 

discovery and comparison of eQTLs across multiple tissues while controlling for 

confounding factors such as different population samples or differences in technological 

and statistical methods employed. Umbilical cord was chosen due to its accessibility and 

the potential of harvesting multiple tissues from the same sample. Following appropriate 

consent and ethical approval (Dimas, Deutsch et al. 2009), cord blood and cord tissue 

was obtained per each sample in order to derive three cell-types: primary fibroblasts, 

EBV-immortalized lymphoblastoid cell lines (LCL) and primary T-cells. All pregnancies 

were full or near full term (38-41 week) ensuring age homogeneity of the samples. 

 

GenCord LCL data was used in the control experiment I describe in Chapter 3. GenCord 

data from LCLs, fibroblasts and T-cells was used in the analysis I present in Chapter 5.  

2.2 SNP	
  genotyping	
  

Genetic variation data (SNP genotypes) from HapMap 3, MuTHER and GenCord has 

been analysed throughout the course of my PhD, primarily to identify associations with 

gene expression variation (eQTL discovery, section 2.4). 

SNP detection has been performed mostly on Illumina’s whole-genome genotyping 

platforms using the Infinium HD technology. This enables dense, uniform genome 

coverage by typing a representative set of tag SNPs.  The Infinium II assay workflow is 

described in Figure 2.1. 
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Figure 2.1. Illumina II assay protocol. The Infinium II whole-genome genotyping assay uses a single 
bead type and dual colour channel approach. During Step 1 and Step 2, a DNA sample of relatively low 
required quantity (750 ng suffice for assaying 500,000 SNPs) is amplified and incubated overnight. The 
amplification has no appreciable allelic partiality. Following the amplification, the product is fragmented in 
an enzymatic process (Step 3). After precipitating and resuspending the DNA (Step 4), the BeadChip is 
prepared for hybridization (Step 5). The DNA samples are applied onto the BeadChips and incubated 
overnight, thus allowing the fragmented DNA to hybridize to locus-specific 50-mers on the chips which are 
covalently linked to one of the > 500,000 chip bead types (Step 6). One bead corresponds to each allele 
per SNP locus. After hybridization, an enzymatic base extension process ensures allelic specificity and the 
products are subsequently fluorescently stained (Step 7). Finally, the BeadArray Reader (Step 8) detects 
the fluorescence bead intensities, which are in turn analyzed by calling algorithms and translated into 
genotypic information (Step 9). Figure and assay protocol description from www.illumina.com 

 
HapMap 
HapMap genotypes have been generated by the International HapMap Consortium and 

are publicly available on the HapMap website (http://hapmap.ncbi.nlm.nih.gov/). The 

release used in this thesis (HapMap version 27, NCBI Build 36) contains SNP genotype 

data generated from 1,301 HapMap 3 samples collected using two platforms: the Illumina 

Human1M (by the WTSI) and the Affymetrix SNP 6.0 (Broad Institute). Data from the two 

platforms have been merged and the subset of SNPs passing the following QC criteria 

kept: 1) Hardy-Weinberg p-value > 10-6  per population; 2) genotype missingness < 0.05 

per population; 3) <3 Mendel errors per population; 4) SNP must have an rsID and map 
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to a unique genomic location. For the analysis presented in Chapter 3 I have used all 

common (MAF ≥ 5%) autosomal SNPs from the unrelated CEU HapMap 3 individuals 

(N=109). This dataset amounts to 1,186,075 SNPs.  

 

MuTHER 
The pilot MuTHER samples have been genotyped at WTSI using in parallel Illumina’s 

1M-Duo and 1.2M-Duo custom chips on different subsets of individuals. Before further 

filtering, there were 106 samples with call rate (CR) ≥ 0.90 on the 1.2M and 88 samples 

with CR ≥ 0.90 on the 1M chip. Combined intensity files were created for Illuminus (Teo, 

Inouye et al. 2007) by retaining on a per-chromosome basis only SNPs common to both 

chips. Additionally, any SNPs that moved position between the two chips were removed. 

Following further quality checks (Hardy- Weinberg p > 10-4, MAF > 1%), 865,544 SNPs 

were kept for analysis. The QC analysis was performed by Simon Potter at WTSI. 

 

The set of successfully genotyped samples was overlapped with individuals having 

corresponding expression data available. This amounted to the following sample set per 

tissue: 156 LCL, 160 skin and 166 fat individuals (Chapter 4).  

 

GenCord 
The 85 GenCord individuals were genotyped for approximately half a million SNPs each 

using Illumina’s 550K SNP array. DNA samples were extracted from cord tissue LCLs 

with the Puregene cell kit (Gentra-Qiagen, Venlo, The Netherlands). This work was 

carried out by Samuel Deutsch and colleagues in Stylianos Antonarakis’ lab at UGMS. 

Principal component analysis (PCA) was performed on the genotype data to detect 

potential outliers. Following this analysis performed by Stephen Montgomery at the 

WTSI, ten individuals were removed. After further QC analysis (removing SNPs with 

missing data), 394,651 SNPs with MAF ≥ 5% were kept for analysis (Chapter 3). 

To increase the power to detect associations with expression, GenCord genotypes were 

imputed onto the reference HapMap 2 data using the BEAGLE software (Browning and 

Browning 2007). Following imputation, QC was performed whereby SNPs with imputation 

quality scores < 0.9 (24,7078 SNPs) and those failing MAF (<5%) or Hardy-Weinberg 

equilibrium checks (total of 67,718 SNPs) were removed.  This work was performed at 

UGMS by Eugenia Migliavacca (imputation) and Tuuli Lappalainen (QC). A final set of 

1,428,314 SNPs in 75 individuals was used for the analysis In Chapter 5. 



 34 

2.3 Gene	
  expression	
  quantification	
  

Transcript levels in HapMap (LCL), GenCord (LCLs, fibroblasts, T cells) and MuTHER 

(LCL, skin, fat) samples were quantified at WTSI using Illumina’s whole-genome gene 

expression arrays. HapMap and GenCord data are also publicly available at 

http://www.sanger.ac.uk/resources/software/genevar/. 

Whole-genome expression profiling is based on the direct hybridization technology 

developed by Illumina (Figure 2.2).  

    

 
Figure 2.2. Direct hybridization assay overview and workflow. Figure from www.illumina.com 

 

The protocol features first the amplification of the starting RNA material via first- and 

second-strand reverse transcription, followed by a single in vitro transcription (IVT) 

amplification that incorporates biotin-labelled nucleotides. The resulting cRNA is purified, 

hybridized to the array and labelled with Cy3-streptavidin (Amersham Biosciences, Little 

Chalfont, UK). The fluorescence emission by Cy3 is scanned and quantified with Bead 

Station (Illumina). 

More than 48,000 unique bead types (one for each of the 47,294 transcripts plus 

controls) are represented on the array. Each bead contains several hundred thousand 
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copies of gene-specific 50mer probes covalently attached. The probes are derived from 

the National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) 

and UniGene databases. The beads are assembled into 3 µm diameter wells, generating 

an average 30-fold redundant information for each probe. These background-corrected 

values for a single bead type are summarized by Bead Studio (Illumina software) and 

outputted to the user as a set of 47,294 intensity values for each individual hybridization. 

 
HapMap 
Total RNA was extracted from LCLs derived from the HapMap 3 individuals (Coriell). 

Gene expression was quantified using Illumina’s commercial array Sentrix Human-6 

Expression BeadChip version 2. For each RNA extraction, two one-quarter scale 

Message Amp II reactions (IVTs) (Ambion, Austin, Texas, USA) were performed using 

200 ng of total RNA, to produce cRNA. To assay transcript levels, 1.5 µg of the cRNA 

were hybridized to the whole-genome expression array. Six arrays were run in parallel on 

each individual BeadChip. The experimental work was carried out by Catherine Ingle, 

James Nisbet and Magdalena Sekowska at the WTSI. 

 

To combine information from the two replicate hybridizations, raw data was normalized 

on a log2 scale by quantile normalization (Bolstad, Irizarry et al. 2003) across replicates 

of a single individual followed by median normalization across all individuals from a 

single population. Normalization was performed by Stephen Montgomery at WTSI. 

 

Of the >48,000 probes represented on the array, only a trustable subset was chosen for 

further analysis. The Sentrix Human-6 Expression BeadChip version 2 array covers over 

24,000 unique, curated RefSeq genes, as well as genes with less well-established 

annotation. Only probes corresponding to well-annotated RefSeq genes were kept at this 

point. Additionally, probes were matched to corresponding Ensembl genes (Ensembl 49 

NCBI Build 36) using SSAHA (Sequence Search and Alignment by Hashing Algorithm) 

(Ning, Cox et al. 2001). Following the SSAHA run 22,512 probes were mapped to 19,862 

Ensembl genes. Probes mapping to multiple Ensembl genes were removed, as well as 

ones mapping to sex chromosomes. After filtering, a non-redundant set of 21,800 probes 

(corresponding to 18,226 Ensembl genes) was used for association analysis. Mapping 

and selection of probes for final analysis was carried out by Antigone Dimas at WTSI. 
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MuTHER 
RNA was extracted from LCLs, skin and fat samples derived from the pilot MuTHER 

individuals. Gene expression was measured using Illumina’s HumanHT-12 version 3 

whole-genome array, as explained previously (in this case, each sample had three 

technical replicates). The experimental work was carried out by James Nisbet and 

Magdalena Sekowska at WTSI and by Amy Barrett and Mary Travers at WTCHG. 

 

Log 2 -transformed expression signals were normalized separately per tissue as follows: 

quantile normalization was performed across the 3 replicates of each individual followed 

by quantile normalization across all individuals.  

 

The  >48,000 probes targeting more than 25,000 genes are derived from RefSeq (Build 

36.2, Rel 22) and UniGene (Build 199). To select probes corresponding to well-annotated 

genes, Illumina’s v3 probes were mapped to unique Ensembl gene IDs by combining and 

cross-checking two methods. The first approach used probe annotations to RefSeq IDs 

provided by Illumina, which were further queried with BioMart (Ensembl 54) for 

corresponding Ensembl genes IDs. RefSeq IDs mapping to multiple Ensembl Genes 

were excluded, and only autosomal genes retained. This step was performed with the 

help of Tsun-Po Yang at WTSI. The second approach used BLAT (Kent 2002) to map 

the 50-mer probe sequences to Ensembl transcripts and to extract genomic locations 

matching all 50 bases of the probe sequence. Probes with unique perfect match to the 

genome and corresponding transcripts matching to the same genes were kept. This 

approach was performed by Josine Min at WTCHG. The union of the two mapping 

approaches after excluding 196 conflictingly matching probes resulted in 27,499 probes 

corresponding to 18,170 autosomal genes available for association analysis.  

 

GenCord 
Total RNA was extracted from LCLs, fibroblasts and T-cells of the 85 GenCord 

individuals. Two one-quarter scale Message Amp II reactions (Ambion) were performed 

for each RNA extraction with 200 ng of total RNA. 1.5 µg of cRNA was hybridized to 

Illumina’s WG-6 v3 Expression BeadChip array to quantify transcript abundance as 

described previously. Each RNA sample had two technical replicates. This work was 

carried out by Catherine Ingle, James Nisbet, and Magdalena Sekowska at the WTSI. 
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The expression raw data was normalized independently for each cell type as follows: the 

intensity values were log2 transformed, quantile normalized per sample replicates and 

median normalized across all individuals. Each cell type was renormalized using the 

mean of the medians of each cell type expression values. Normalization was carried out 

by Stephen Montgomery at the WTSI. 

 

The WG-6 v3 Expression BeadChip array covers over 27,000 unique coding transcripts. 

For some of them, well-established annotation exists (7,000 transcripts have provisional 

annotation). In addition, the array covers non-coding transcripts, as well as 

experimentally confirmed mRNA sequences aligning to EST clusters. Again, only probes 

with good or provisional annotation (mapping to RefSeq genes) were selected of the total 

48,000 probe set 36,156 probes with Refseq IDs were queried for their corresponding 

Ensembl gene IDs in Biomart (Ensembl 50, NCBI Build 36). Of these, 22,651 probes had 

a uniquely assigned Ensembl gene ID and did not map to either chromosomes X or Y. 

These probes corresponding to 17,945 RefSeq genes and 15,596 Ensembl genes 

respectively were used for subsequent analysis. Selection of the final probe list was done 

by Antigone Dimas at WTSI. 

2.4 eQTL	
  discovery	
  

Associations between SNP genotypes and normalized expression values were run using 

Spearman Rank Correlation (SRC) and additive linear regression (LR). SRC was 

exclusively used to detect eQTLs (Chapter 4) while LR was used to quantify the 

proportion of expression variance unexplained by the SNP genotypic classes (Chapter 3, 

Chapter 5).  I considered SNPs within a 1Mb window on either side of a gene’s 

transcription start site (TSS) as cis-acting while SNPs located further than 5 Mb away 

either side of a gene’s TSS or SNP-gene pairs on different chromosomes as trans-acting. 

2.4.1 Association	
  analysis	
  

Before association, the SNP genotypes were numerically encoded (0, 1 or 2) to 

represent the counts of alphabetically sorted alleles at each locus (e.g. counting the 

number of G alleles for an A/G SNP: AA = 0, AG = 1, GG = 2) (Figure 2.3).  
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Figure 2.3. SNP-gene association example. The A/G SNP in this schematic example is plotted against a 
gene’s corresponding normalized log2 expression values. In this case, the A allele at the SNP locus 
predisposes individuals to have higher expression values of the respective gene. 

 

2.4.1.1 Spearman	
  Rank	
  Correlation	
  (SRC)	
  

SRC is a non-parametric test assessing the degree of statistical dependence between 

two variables (X and Y). A monotonic function is fitted to describe the correlation 

between X and Y (e.g. X = genotype, Y  = expression). No other assumption is made 

about the relationship between the two variables, which are rank-ordered. In our case for 

example, expression values are ordered low to high and ranked accordingly (1..n), 

irrespective of their actual numerical value. This makes sure that outliers do not have a 

high impact on estimating the correlation between X and Y. The degree and direction of 

this correlation is reflected in the ρ (rho) coefficient, calculated as below, where n is the 

number of observations and di is the difference between the ranks of each observation 

on the two variables (di = xi - yi):  

 

€ 

ρ =1−
6 di∑

2

n(n2 −1)  

 



 39 

When two observations for the same variable are equal (tied), they are each assigned 

the average corresponding rank. A perfect Spearman correlation (ρ = 1 or ρ = -1) occurs 

when each of the variables is a perfect monotone function of the other. The sign marks 

the direction of the correlation: ρ > 0 (positive correlation) if Y tends to increase when X 

increases and ρ < 0 (negative correlation) if Y tends to decrease when X increased. A 

nominal p-value for the association test is also reported.  

2.4.1.2 Additive	
  linear	
  regression	
  (LR)	
  

In a LR model, the relationship between two variables is explored by fitting a linear 

equation to the observed values. For the work presented in this thesis, the following main 

effects additive model was used to test for SNP-gene expression associations: 

 

Yi = b0 + bi Xi +εi 
 

Here, the dependent variable Yi is a probe’s normalized log2 expression value quantified 

in individual i (i = 1..n) and the explanatory variable Xi is the corresponding numerically 

encoded genotype. εi are independent normally distributed random variables with mean 0 

and constant variance (Stranger, Forrest et al. 2005). bi is the slope of the fitted 

regression line (bi = 0 if there is no association between the genotype and the expression 

values). How well the regression model fits the data can be estimated from the inspection 

of the residuals i.e. the vertical distances of each point from the regression line. The 

residuals quantify the proportion of the variance in the dependent variable (Y - 

expression) that cannot be accounted for by the explanatory variable (X - genotype). As 

such, the most common regression technique employs minimizing the sum of squared 

residuals.   

2.4.2 Multiple	
  testing	
  correction	
  

The statistical significance of associations between SNP genotypes and gene expression 

levels was assessed using permutations (Churchill and Doerge 1994; Doerge and 

Churchill 1996). The log2 normalized expression values of each probe were permuted 

10,000 times relative to the genotypes of the SNPs in the tested window (2MB in cis). 

The minimal p-value association of each run was retained generating thus a distribution 

of 10,000 values corresponding to the best random SNP-probe associations. 

Significance was assessed for different threshold levels (0.5, 0.01, 0.001 and 0.0001) by 
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comparing the tail of the distribution of the 10,000 minimal p-values for each gene to the 

observed association p-value (e.g. an association was considered significant at the 

0.0001 threshold if the nominal observed p-value was lower than the 0.0001 tail of the 

distribution of minimal permuted p-values) (Stranger, Forrest et al. 2005; Stranger, Nica 

et al. 2007). 

2.5 Recombination	
  hotspot	
  mapping	
  and	
  LD	
  filtering	
  

To restrict the search space for causal regulatory effects and refine eQTL signals, I have 

made use of the genome’s correlation structure (LD). Specifically, I used recombination 

hotspot coordinates derived from the statistical analysis of the variation data generated 

by the HapMap 2 project (Release 22, Build 36) (McVean, Myers et al. 2004) (Myers, 

Bottolo et al. 2005). The recombination hotspots inferred are typically 1-2 kb long and are 

surrounded by much larger regions (defined here as recombination hotspot intervals) 

essentially devoid of recombination (Paigen and Petkov 2010).  All autosomal SNPs in 

HapMap 3 CEU, MuTHER and GenCord have been mapped to recombination hotspots 

and hotspot intervals. The mapping serves both to restrict the search for functional 

regulatory variants explaining GWAS signals (Chapter 3, Chapter 5) and also for refining 

eQTL signals by identifying independent regulatory effects and comparing them across 

multiple tissues (Chapter 4).  

 

In Chapters 3 and 5, GWAS results are tested for explanatory regulatory effects. For this 

purpose, given any GWAS SNP, I focus on the recombination hotspot interval where it 

resides and where also at least one eQTL co-localizes. Limiting the search space for 

causal effects to these intervals with independent recombination history is a reasonable 

approach, as few or no recombination events are expected between the reported 

associated SNPs and the functional variants they are tagging.  

 

In Chapter 4, I aim to characterize in detail the landscape of regulatory variation across 

LCLs, skin and fat. For this reason, I refine the discovered eQTL signals to likely 

independent effects per gene. The strategy employed is the following: after mapping 

significant eQTLs to recombination hotspot intervals, the most significant SNP per gene 

per interval is kept. Furthermore, to avoid long-range correlations which can extend over 

recombination hotspots, an additional LD filtering step is performed so that for each pair 

of significant eQTLs with D’ > 0.5, the least significant SNP is ignored. The choice of D’ 
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over r2 as LD filtering metric is based on their distinctive properties. Both metrics relate to 

D, the basic unit of LD measuring the deviation of haplotype frequencies from equilibrium 

state (Lewontin and Dunn 1960). For two SNPs with alleles (A,a) and (B,b) respectively: 

  

€ 

D = f (AB) − f (A) f (B)
  

 

where f(X) is the frequency of the X allele. If D is significantly different from 0, LD occurs. 

D’, calculated as below, ranges from 0 to 1, with D’ =1 denoting complete LD while 

values towards 0 indicating linkage equilibrium, i.e. historical genetic independence. 

 

€ 

if D ≥ 0, D'= D
Dmax

if D < 0, D'= D
Dmin

 

 

r2 is the statistical coefficient of determination, or the measure of correlation between a 

pair of variables (SNP genotypic classes in this case). Also in the range of 0 to 1, r2 = 1 

indicates that one SNP is directly predictive of the other (perfect correlation) and lower 

values denote the decay of their correlation (r2 approaches 0) (Wang, Barratt et al. 2005). 

€ 

r2 =
D2

f (A) f (a) f (B) f (b)  

 

While r2 quantifies the statistical correlation between two variants, D’ is a measure of their 

historical relationship which is biologically more meaningful. For example, two correlated 

SNPs in between which no recombination event occurred (D’ =1) but which have 

different MAFs (low r2) can be tagging the same functional effect (e.g. a single 

independent regulatory variant residing in the respective hotspot interval). The stringent 

D’ threshold (which corresponds to an even lower r2) provides thus a more suitable 

method to filter for historically independent effects. When comparing across tissues, this 

filtering ensures that true shared effects (interval-gene combinations) are contrasted and 
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not just genes, which would be inaccurate in cases when the same gene is regulated by 

different functional variants in different tissues.  

 

2.6 RTC	
  scoring	
  scheme	
  (Chapter	
  3,	
  Chapter	
  5)	
  

The Regulatory Trait Concordance (RTC) method was developed in order to detect the 

subset of GWAS signals which could be explained by significant regulatory effects and 

identify the genes whose expression levels they mediate. For this purpose, I used 

expression data from two resources: HapMap 3 and GenCord. The whole-genome 

expression quantification experiments on the MuTHER pilot samples were performed 

towards the end of my PhD and were not available for analysis at that time. eQTLs 

discovered in LCLs derived from HapMap 3 CEU and GenCord individuals were tested in 

Chapter 3, while eQTLs detected in the three GenCord tissues (LCLs, fibroblasts, T-

cells) were overlaid with GWAS results in Chapter 5. I next describe the RTC method 

and the main experiments it has been used for. 

2.6.1 Method	
  overview	
  

I assess the likelihood of a shared functional effect between a GWAS SNP and an eQTL 

by quantifying the change in the statistical significance of the eQTL after correcting for 

the genetic effect of the GWAS SNP. The correction is performed using a LR model. The 

GWAS SNP is first regressed against normalized expression values of the gene for 

which an eQTL exists. The residuals capture the remaining unexplained expression 

variance after the removal (correction) of the GWAS SNP effect. This resulting pseudo 

phenotype is used to redo the SRC association with the eQTL genotype. It is expected 

that if the GWAS SNP mediates the disease effect through a change in gene expression 

due to a regulatory variant (eQTL) then correcting out the GWAS SNP effect will have a 

marked consequence on the eQTL i.e. the eQTL SNP – gene association p-value after 

correction will be much less significant than the association p-value before correction. 

The p-value estimates however, are affected also by the LD structure of the investigated 

region: the correlation between the eQTL and the GWAS SNP but also between each of 

the two and the actual functional variants (most often unknown) influence the correction 

outcome. Given that part of the change in the p-values will be attributed to LD, it is 

necessary to account for this correlation in each interval of interest.    
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I account for the LD structure in each hotspot interval separately by ranking (Rank GWAS 

SNP) the impact on the eQTL (quantified by the adjusted association P-value after 

correction) of the GWAS SNP correction to that of correcting for all other SNPs in the 

same interval. The rank denotes the number of SNPs which when used to correct the 

expression data, have a higher impact on the eQTL (less significant adjusted P-value) 

than the GWAS SNP (i.e. RankGWAS SNP = 0 if the GWAS SNP is the same as the eQTL 

SNP, RankGWAS SNP = 1 if of all the SNPs in the interval, the GWAS SNP has the largest 

impact on the eQTL etc). By taking into account the total number of SNPs in the interval 

(NSNPs), this ranking can be compared across different genes and intervals. For this 

purpose, the RTC score is defined as follows: 

  

€ 

RTC=
NSNPs − RankGWAS SNP

NSNPs
 

 

The RTC score ranges from 0 to 1, with values closer to 1 indicating causal regulatory 

effects. The highest RTC statistic (RTC = 1) is obtained for the lowest correction ranking 

(RankGWAS SNP = 0) corresponding to cases when the GWAS SNP is identical to the 

eQTL. As expected in these instances, correcting the eQTL SNP with itself removes the 

largest possible amount of variance, more so than with any other SNP in the region. 

Cases when the eQTL and GWAS SNP are identical are impossible to resolve with the 

RTC or any other method. They are however still informative, indicating that the pattern 

of association between the SNPs in that region and the disease phenotype and gene 

expression respectively are identical. 

2.6.2 RTC	
  properties	
  under	
  simulations	
  

Before applying it to large-scale expression datasets, I investigated the properties and 

robustness of the RTC score with respect to D’ and r2, the two most common LD metrics.  

Both possible scenarios were tested: the null hypothesis (H0) when a GWAS disease 

SNP (dSNP) and a co-localizing eQTL would tag two different causal variants and the 

alternative hypothesis (H1) when the eQTL and dSNP tag the same functional variant. 

For this purpose, I have simulated causal SNPs (cSNP), eQTLs and dSNPs under 

different scenarios varying the LD levels between them as well as the LD pattern of the 

hotspot interval where they reside. The dSNP emulates the most significant trait-
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associated SNP typically reported by GWAS studies, while the cSNP represents the 

actual functional variant, unknown most of the times. For each simulated case, the cSNP 

was first masked, then the RTC was calculated and its performance evaluated. I used the 

HapMap 3 CEU cis eQTLs (315 genes at 10-3 permutation threshold) to create the list of 

cSNPs.  

 

For the H0 test, the cSNPs were called causal eQTL SNPs (c-eQTLs). For each c-eQTL, I 

sampled a different causal disease SNP (c-dSNP) from the same recombination hotspot 

interval, with the requirement that its MAF comes from a distribution identical to that of 

the GWAS SNPs downloaded from NHGRI (976 GWAS variants) (website accessed 

02.03.09). Subsequently, I sampled up to five eQTL-dSNP pairs per interval where the 

eQTLs and dSNPs are the topmost correlated (r2) SNPs with the c-eQTL and the c-dSNP 

respectively. These imitate the typical tagging SNPs reported as having a significant 

association with gene expression and disease phenotypes respectively. After sampling, I 

excluded cases where the eQTL and dSNP are identical, as these contradict the H0. c-

eQTL-c-dSNP-eQTL-dSNP quartets mapping to 287 unique hotspot intervals were 

sampled and tested under H0. The RTC score was calculated for all simulated eQTL-

dSNP pairs in each of the 287 hotspot intervals. The predictive value of the RTC score 

was compared against standard measures of LD (r2, D’) between the eQTL and the 

dSNP. 

 

Under the H1, the cSNP represents the untyped causal variant mediating the disease 

association via significant changes in gene expression levels. In this case, both the eQTL 

and the dSNP tag the same effect. Therefore, up to five eQTL-dSNP pairs were sampled 

for each hotspot interval harbouring a cSNP under H1 as follows: the eQTLs were chosen 

as the top most significant SNPs per eQTL gene - excluding the cSNP; the dSNPs were 

randomly sampled from the same hotspot interval such that the r2 between each of them 

and the cSNP was in the range  [0.5,0.9]. Perfectly correlated SNPs (r2 = 1) were 

excluded, as such cases cannot be resolved. In addition, at any stage of the 5-step 

iteration process per cSNP, the dSNP was selected to be different from the cSNP and 

the eQTLs sampled up to that point. cSNP-eQTL-dSNP trios mapping to 290 unique 

hotspot intervals throughout the genome were sampled and tested under the H1. For all 

simulated eQTL-dSNP pairs per each hotspot interval (N = 290), the RTC score was 
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calculated and its predictive value compared against the correlation level (r2, D’) between 

the eQTL and the dSNP. 

 

Finally, the effect of a region’s overall LD pattern on estimating the RTC score was 

explored. For this purpose, the extent of LD per hotspot interval was calculated as the 

median r2 of all pairwise SNP combinations available per interval. Under both H0 and H1, 

the relationship between the median r2 of a hotspot interval and the RTC was 

investigated.  

 

The RTC properties as revealed by these analyses are described in Chapter 3. 

2.7 MuTHER	
  eQTL	
  analysis	
  (Chapter	
  4)	
  

2.7.1 Factor	
  analysis	
  

eQTL analysis on the MuTHER pilot data was performed using the discovery framework 

presented in Section 2.4 of this chapter (Methods). Additionally, eQTL analysis was 

conducted after accounting for experimental noise and global environmental conditions, 

which are also known to impact gene expression in a global manner. For this purpose, a 

Bayesian factor analysis (FA) model (Stegle, Parts et al. 2010) was applied to the 

expression data in each tissue. This approach uses an unsupervised linear model to 

account for global variance components in the data, and yields a residual expression 

dataset that can be used in further analysis. 

A wide range of parameter settings was tested for the model, controlling the amount of 

variance explained by it. This was achieved by setting the parameters of the prior 

distributions for gene expression precision (inverse variance) and factor weight precision. 

These random variables are modelled using Gamma distributions, thus their natural 

exponential family parameters (the prior mean and number of prior observations) were 

varied. The prior mean was varied from 10-6 to 10-2 and the number of prior observations 

from N*10-3 to N, where N is the number of observations from data. 120 latent factors 

were thus learned. For each tissue, the residual dataset that gave the best eQTL overlap 

between co-twin samples was used in the subsequent eQTL analyses. The prior values 

used for each dataset are given in Table 2.2. The FA was developed and carried out by 

Leopold Parts at WTSI.  
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 Weight prior Noise prior 
 Mean Observations Mean Observations 

LCL 10-6 23 10-3 10 
SKIN 10-6 23 10-1 100 
FAT 10-6 23 10-3 10 

 
Table 2.2. Factor analysis weight and noise prior values applied to each tissue. Analysis performed 
on MuTHER pilot samples. 

 

Following FA, the eQTL analysis on the corrected expression data was performed 

identically to the original detection strategy: SRC followed by multiple-testing correction 

using permutations. 

2.7.2 	
  Estimation	
  of	
  proportion	
  of	
  true	
  positives	
  (π1)	
  

Overlapping eQTL discoveries at the same threshold is very sensitive to power, as 

thresholds are driven by statistical significance. Given this, eQTL replication and tissue 

sharing was quantified also in a continuous way with Storey’s qvalue statistic (Storey and 

Tibshirani 2003). The QVALUE software implemented in the R package qvalue 1.20.0 

was used under the default recommended settings. The program takes a list of p-values 

and computes their estimated π0 - the proportion of features that are truly null - based on 

their distribution (the assumption used is that alternative cases tend to be close to zero, 

while p-values of null features will be uniformly distributed among [0,1]). The quantity π1  

= 1- π0 estimates the lower bound of the proportion of truly alternative features, i.e. the 

proportion of true positives (TP). Replication and sharing between two samples is 

reported as the proportion of TP (π1) estimated from the p-value distribution in the 

second sample of independent eQTLs initially discovered in the first sample (exact snp-

probe combinations are used). 

 


