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4 Tissue-specificity of cis regulatory variants 
 

Most of the knowledge on the genetic basis of regulatory variation has been gained so 

far by examining whole-genome expression patterns in blood-derived cells or cell lines 

(lymphocytes, LCLs) (Cheung, Spielman et al. 2005; Stranger, Forrest et al. 2005; 

Goring, Curran et al. 2007). Blood-derived cell-types continue to be the easiest 

accessible source for large-scale transcript level profiling, however incorporating 

information from a variety of other tissues is essential. Both during development as well 

as throughout the process of cellular differentiation, some genes are expressed 

ubiquitously while others display tissue-specific characteristics (Myers, Gibbs et al. 2007; 

Schadt, Molony et al. 2008). Additionally, many phenotypes manifest themselves only in 

certain tissues (Nowak and Davies 2004; Oksenberg and Baranzini 2010). Given the key 

role of regulatory variation in shaping complex phenotypes of medical importance, it is of 

special interest to assess the extent of expression differences between tissues that can 

be attributed to differential regulatory control.  

 

Promising advancement towards this goal has been made recently by several studies 

identifying and comparing eQTLs in multiple human tissues. Myers etal. were the first to 

explore genetic variation influencing normal human cortical expression (Myers, Gibbs et 

al. 2007). The authors estimate using expression and genotypic data from 193 samples 

that 58% of the transcriptome is cortically expressed and of the expressed transcripts, 

21% have significant eQTLs. Little overlap can be found between this eQTL set and 

results from previous analyses on blood-derived cells. While differences between the 

compared studies with respect to the samples and genotyping platforms used explain 

some of the modest overlap, it is very likely that variants discovered in the cortical 

samples underlie brain specific control of gene expression. In conjunction with results 

from GWAS, brain specific eQTLs could help uncover the genetic basis of some 

neurologic disorders. 

 

In a study on 400 human liver samples, Schadt etal. identified more than 6000 SNP – 

gene associations (Schadt, Molony et al. 2008). Many of the genes detected in this 

experiment had already been linked to a variety of complex diseases, expectedly given 
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the liver’s essential role in many human metabolic processes. The same expression 

platform employed for the human liver cohort has also been used on a set of human 

blood and adipose tissue samples in another study (Emilsson, Thorleifsson et al. 2008). 

The authors evaluated the cis eQTL overlap in the three tissues, estimating ~30% 

sharing (Schadt, Molony et al. 2008). Efforts from our group have also contributed to the 

understanding of regulatory variation in a cell-type specific context. In a systematic study 

controlling for confounding associations due to different population samples or discrepant 

technological and statistical methods used, eQTLs were detected and compared across 

LCLs, fibroblasts and T-cells derived from the same 75 GenCord individuals (Dimas, 

Deutsch et al. 2009). The authors report that 69-80% of all discoveries (cis eQTLs) are 

cell-type specific, highlighting the need of sampling multiple tissue expression datasets in 

order to describe the full repertoire of regulatory variants. 

 

Documenting cell-type specific regulatory variation is very important from the disease 

perspective. Integrating expression data with GWAS results can be informative for 

discovering genes and pathways whose disruption likely causes disease (Chen, Zhu et 

al. 2008; Nica and Dermitzakis 2008; Nica, Montgomery et al. 2010).  However, this is 

only possible when the tissue of expression is relevant to the interrogated complex trait 

(Nica and Dermitzakis 2008). eQTLs discovered in LCLs have helped explain GWAS 

associations with childhood asthma (Moffatt, Kabesch et al. 2007) and Crohn’s disease 

(Libioulle, Louis et al. 2007), two autoimmune inflammatory disorders. The adipose and 

blood cohorts analyzed by Emilsson etal. had been assessed for various phenotypes too, 

including obesity relevant traits. Notably, 50% of the cis signals were estimated as 

overlapping between the two cohorts, but a marked correlation with obesity-related traits 

was only observed for gene expression measured in adipose tissue (Emilsson, 

Thorleifsson et al. 2008). These observations certify the importance of integrating data 

from a relevant tissue when trying to interpret GWAS results using gene expression as 

an intermediate phenotype. Nevertheless, it is still unclear what the pattern of diminishing 

returns is across human tissues and what tissues could serve as highly informative in 

large cohorts. For example, LCLs have been useful in less expected cases enabling 

candidate gene discovery for associations with autism (Nishimura, Martin et al. 2007) or 

bipolar disorder (Iwamoto, Bundo et al. 2004).  
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In this chapter, I further explore the complexity of the human regulatory variation 

landscape in LCLs and two primary tissues (skin and fat) derived from the same subset 

of female twins from the UK Adult Twin registry (Spector and Williams 2006). In line with 

previous studies, I report extensive tissue-specificity of eQTLs using both a standard 

association method as well as a Bayesian factor analysis model. I describe the properties 

of eQTLs in each tissue and I propose that continuous estimates of statistical 

significance as well as the direct comparison of the magnitude of effect on the fold 

change in expression are essential properties that jointly provide a biologically realistic 

view of tissue-specificity. 

 

4.1 Abundant	
  eQTL	
  discoveries	
  per	
  tissue	
  

The pilot MuTHER samples were genotyped and profiled for gene expression in three 

tissues: LCLs, skin and fat. Normalization was performed separately in each tissue 

(Methods). The overlapping set of successfully genotyped samples with available 

expression data amounted to 156 individuals for LCL (30 MZ pairs, 37 DZ pairs, 22 

singletons), 160 for skin (31 MZ pairs, 37 DZ pairs, 24 singletons) and 166 for fat (31 MZ 

pairs, 40 DZ pairs, 24 singletons). This final dataset was used for eQTL analysis (MZ and 

DZ pairs per tissue - Table 4.1).  

The probes on the array were mapped to Ensembl gene IDs and only a confident subset 

was kept for analysis (27,499 probes mapping uniquely to 18,170 Ensembl genes). 

865,544 SNPs passing quality check (Methods) were tested for associations with these 

probes. 

    MZ pairs DZ pairs 
3 tissues LCL-SKIN-FAT 28 30 
        
2 tissues only LCL-SKIN 1 2 
  LCL-FAT 1 5 
  SKIN-FAT 2 5 
        
1 tissue only LCL 0 0 
  SKIN 0 0 
  FAT 0 0 
Total   32 42 

 

Table 4.1. Successfully genotyped twin pairs (MZ and DZ) with available gene expression data. 
Number of twin pairs per tissue sharing both genotypic and expression information. 
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The eQTL analysis was performed separately in each tissue. I considered only unrelated 

individuals at a time by separating twins from the same pair and thus performing two 

independent eQTL analyses per tissue. This study design, hereafter named Matched Co-

Twin Analysis (MCTA), permits immediate replication and validation of eQTL discoveries.  

This is important and unique with respect to previous eQTL studies which do not go 

beyond reporting the most significant findings (Morley, Molony et al. 2004; Cheung, 

Spielman et al. 2005). Given the known inter-individual variability in gene expression 

levels and the multiple sources of variation that can contribute to this, replicating the 

genetic determinants of expression differences (eQTLs) is essential, much like in any 

GWAS exercise. Furthermore, in a multiple-tissue expression design like here, where 

one of the main goals is to assess the extent of eQTL tissue-specificity, it is very useful to 

contrast between-tissue to within-tissue variability of expression changes for properly 

assessing the tissue-dependent level of regulatory control (section 4.4).  

 

Spearman Rank Correlation (SRC) was used to detect associations and I restricted the 

search to cis effects located within 1Mb on either side of a gene’s transcription start site 

(TSS). Statistical significance was assessed at different thresholds using permutations 

(10,000 per gene) (Methods). An abundance of cis eQTLs was detected in each tissue, 

at a comparable rate to other studies of similar sample size (Stranger, Nica et al. 2007; 

Dimas, Deutsch et al. 2009). At a permutation significance level of 10-3, roughly 18 genes 

are expected to have at least one significant association by chance. At this threshold 

level, I detect significant associations with 509, 238 and 462 genes in LCL, skin and fat 

respectively for the first subset of the twin cohort (Twin 1) (Table 4.2).  Unless otherwise 

stated, the 10-3 permutation cut-off corresponding to an FDR rate of 3.5% in LCL and fat 

and 7.5 % in skin was henceforth chosen when exploring eQTL properties.  
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  LCL SKIN FAT 
Permutation 
Threshold Twin 1 Twin 2 Twin 1 Twin 2 Twin 1 Twin 2 

10-4 296 360 123 125 303 304 
10-3 509 556 238 231 462 488 
10-2 1014 1059 605 676 982 1068 

 
Table 4.2. Cis eQTL associations detected with SRC analysis. Significant discoveries (number of 
genes with eQTLs) are shown at different permutation thresholds for each tissue. Within each tissue, two 
independent eQTL analyses were performed after separating related individuals in two subsets (Twin1, 
Twin2). 

 

Compared to LCL and fat, proportionally less eQTLs were detected in skin, at all levels of 

significance. This is likely due to lower power in skin, which is a more heterogeneous 

tissue and consists of a variety of cell-types (Sorrell and Caplan 2004; Leek and Storey 

2007).  

 

The MCTA study design allows replication of eQTL discoveries in each tissue. 

Replication was assessed using the mean value of the proportion of true positives (π1) 

(see Methods and (Storey and Tibshirani 2003)) estimated from the exploration of 

significant eQTLs in the reciprocal co-twin. Specifically, significant SNP - gene 

combinations discovered in the first co-twin are tested in the second co-twin and the 

nominal SRC p-value distribution of the same initial associations is analyzed. The 

reciprocal test (SNP - gene associations discovered in co-twin 2 tested in co-twin 1) is 

also performed. The enrichment of low p-values from the distribution described above is 

used to estimate π1. For each tissue, the mean π1 of the two reciprocal tests is reported 

(Table 4.3). The discovered eQTLs appear robust as they replicate well between 

individuals of the two co-twin groups per tissue, with a mean proportion of true positives 

from 0.93 for skin to 0.98 for LCL and fat. I also checked the proportion of true positives 

specifically among the subset of genes that do not replicate in the co-twin at the same 

threshold. This too is high (π1 =  0.84 for skin and 0.94 for LCL and fat), suggesting that 

exact overlap of genes at a given permutation threshold (PT) is an underestimate of 

eQTL replication due to winner’s curse i.e. I see eQTLs in the co-twin that clearly 

replicate the initial findings, but at higher p-value and thus marginally not meeting the 

initial discovery threshold. 
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 SRC analysis SRC-FA analysis 

 Twin 1 Twin 2 
Replication 
(Mean π1) Twin 1 Twin 2 

Replication 
(Mean π1) 

LCL 509 556 0.98 1068 1226 0.97 
SKIN 238 231 0.93 534 544 0.95 
FAT 462 488 0.98 1054 1072 0.97 

 
Table 4.3.  Replication of cis eQTL discoveries (number of significant genes per tissue at 10-3 
permutation threshold). Results from both the Spearman Rank Correlation (SRC) and Factor Analysis 
(SRC-FA) are presented. Proportion of replicating signals calculated as the mean co-twin π1 estimates from 
the p-value distribution of same SNP-gene associations in the reciprocal twin set 

 

4.2 Substantial	
  increase	
  in	
  number	
  of	
  eQTLs	
  per	
  tissue	
  by	
  Factor	
  analysis	
  

The observed variation in gene expression is not entirely due to genetic effects. 

Experimental noise and environmental conditions also affect transcript levels in a global 

manner. Therefore, it is desirable to remove the effects of such random variables and 

thus increase the power to detect eQTLs. For this purpose, factor analysis (FA) was 

employed on each tissue separately (Stegle, Parts et al. 2010).  We corrected for global 

latent effects on all individuals in each tissue and fitted various parameters such as 

number of learned factors and proportion of variance explained, in order to maximize for 

replication of eQTLs per tissue between twin sets (Methods).  

 

After performing standard SRC eQTL analysis on the factor-corrected expression data 

(SRC-FA), a substantial improvement in eQTL discovery at each of the standard 

permutation thresholds used was obtained (Table 4.4). The MCTA design is useful as it 

permits the validation of the new eQTL discoveries in the replication co-twin for each 

tissue separately. This is essential in order to verify that FA performs as expected by 

modelling environmental factors and not correcting out a vast proportion of genetic 

effects. The improvement in eQTL discovery with SRC-FA is considerable (twice as 

many eQTLs at 10-3 PT) and consistent in all three tissues. The high eQTL replication 

between twin sets persists after FA, with an additional improvement of true positives 

detection in skin: π1 = 0.95 (Table 4.3).  

 

 



 73 

 

  LCL SKIN FAT 
Permutation 
Threshold Twin 1 Twin 2 Twin 1 Twin 2 Twin 1 Twin 2 

10-4 721 828 329 344 690 720 
10-3 1064 1220 532 542 1052 1070 
10-2 1839 1967 1103 1080 1732 1812 

 

Table 4.4. Cis eQTL associations detected with SRC-FA analysis. Number of genes with a significant 
eQTL is shown for each co-twin analysis per tissue at different permutation thresholds.  

 

I validated the results of the FA correction by investigating the eQTLs resulting from the 

SRC-FA analysis. As expected, FA recovers the majority of eQTLs discovered with the 

initial analysis (roughly 90% of LCL and fat and 80% of skin results) and allows the 

discovery of additional signals (Table 4.5).  

 

 Twin 1 Twin 2 

 Total Std FA recovered (%) Total FA Total Std FA recovered (%) Total FA 

LCL 509 460 (90.37%) 1064 556 494 (88.85%) 1220 

SKIN 238 189 (79.41%) 532 231 188 (81.39%) 542 

FAT 462 421 (91.13%) 1052 488 436 (89.34%) 1070 

 
Table 4.5. Recovery of SRC eQTLs (10-3 PT gene associations) with factor analysis correction. In 
each tissue and for both co-twins, 80-90% of eQTLs detected before correction (standard analysis - Std) 
are recovered with SRC-FA. 

 

The additional eQTLs likely represent real effects that could not be detected initially due 

to low power. To test this hypothesis, the eQTLs revealed only after FA correction were 

tested in the uncorrected expression dataset The p-value distribution of the exact same 

SNP – gene combinations showed a highly significant enrichment of low values (Figure 

4.1). In each tissue and for each co-twin subset, the estimated enrichment corresponded 

to a π1 value of 0.99. This confirms that the vast majority of new eQTLs are real and 

would be picked up using the standard SRC pipeline if a larger sample size would be 

available.  
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Figure 4.1. P-value distribution of cis eQTLs (10-3 PT) gained with FA correction in the uncorrected 
data. The significant overrepresentation of low p-values for the new eQTLs (π1 = 0.99) shows that the 
signal existed in the uncorrected data but wasn’t called significant due to low power. Result consistent in all 
tissues for both sets of co-twins (Twin 1 – left panel, Twin 2 – right panel). 

 

4.3 eQTL	
  properties	
  across	
  tissues	
  

The eQTLs (10-3 permutation threshold) resulting from both SRC and SRC-FA analyses 

were compared across all three tissues. Initial direct tissue overlap of significant eQTLs 

supports an extensive level of tissue-specificity with very similar proportion in both 

detection methods employed.  

 

A visual representation of the percentages of eQTLs found in only one tissue, shared in 

only two tissues and common in all three tissues for SRC and SRC-FA respectively can 

be seen in Figure 4.2. 
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Figure 4.2. Percentage of eQTLs (10-3 PT) found only in one tissue, only in two tissues and in all 
three tissues with the SRC and SRC-FA analysis respectively. Both methods reveal similarly high 
extents of tissue-specificity. Skin specific eQTLs of smaller effects are harder to detect due to low power.  

 

 

In the first co-twin set we discover 858 non-redundant eQTL genes at 10-3 PT in all three 

tissues (Table 4.6). Of these, 106 genes (12.35%) are shared across all tissues, 139 

(16.2%) are shared in at least two tissues and 613 genes (71.44%) are detected in only 

one tissue. In skin, where we are least powered likely due to tissue heterogeneity and 

variety of cell-types, we detect proportionally fewer tissue-specific effects (10.02% of skin 

eQTLs are only present in skin at 10-3 PT).  
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Twin 1  Twin 2 

  10-3 PT 
% 

total Overlap 10-3 PT 
% 

total 
       

3 tissues LCL-SKIN-FAT 106 12.35 78 102 11.02 
       

2 tissues only LCL-SKIN 19 2.21 4 12 1.29 
 LCL-FAT 93 10.84 52 107 11.56 
  SKIN-FAT 27 3.15 11 26 2.81 
       

1 tissue only LCL 291 33.92 150 335 36.18 
 SKIN 86 10.02 17 91 9.82 
  FAT 236 27.5 103 253 27.32 

Total 
significant LCL 509  363 556  

 SKIN 238  132 231  
  FAT 462   304 488   

Union of total 
significant   858 100 563 926 100 

 
Table 4.6.  Tissue-shared and tissue-specific gene associations (10-3 PT), SRC analysis 
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SRC-FA results confirm the estimated ~30% of eQTLs to be shared in at least two 

tissues based on threshold eQTL discovery (Table 4.7).  

 

 

Twin 1  Twin 2 

  10-3 PT 
% 

total Overlap 10-3 PT 
% 

total 
       

3 tissues LCL-SKIN-FAT 242 13.28 192 270 13.86 
       

2 tissues only LCL-SKIN 38 2.09 8 42 2.16 
 LCL-FAT 210 11.53 84 232 11.91 
  SKIN-FAT 94 5.16 28 70 3.59 
       

1 tissue only LCL 574 31.5 302 676 34.7 
 SKIN 158 8.67 51 160 8.21 
  FAT 506 27.77 221 498 25.56 

Total 
significant LCL 1064  781 1220  

 SKIN 532  338 542  
  FAT 1052   735 1070   

Union of total 
significant   1822 100 1312 1948 100 

 
Table 4.7. Tissue-shared and tissue-specific gene associations (10-3 PT), SRC-FA analysis. 
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In the currently examined three tissues, shared eQTLs show the same allelic direction of 

effect (Figure 4.3), i.e. if one SNP allele predisposes to increased levels of expression of 

a gene, it will also tend to elevate the expression level of that gene in the other tissue. 

This is true for both eQTLs significant at 10-3 and 10-2 PT.  

 

 
Figure 4.3. Shared eQTLs (10-2 PT, SRC) have the same direction of effect (SRC rho) across tissues 

 

As reflected by the SRC correlation coefficient rho (Figure 4.4), eQTLs significant in one 

tissue explain a substantially higher fraction of gene expression variation in the tissue of 

discovery than in other tissues (same SNP-gene association), whereas shared effects at 

the same significance threshold (10-3 PT) have comparable variance explained by the 

SNP across tissues. 
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Figure 4.4. Cumulative SRC rho distribution across tissues for tissue-specific and shared eQTLs 
(10-3 PT, Twin 1). eQTLs discovered in one tissue only have distinctively higher variance in the tissue of 
discovery compared to shared effects.  

 

In order to refine the expression association signals and describe independently acting 

eQTLs, I mapped them to recombination hotspot intervals and filtered subsequently by 

LD (Methods). I observe in all tissues that the majority of genes (90-95%) are controlled 

by single independent cis eQTLs with similar estimates from the standard and factor 

eQTL analysis. The finer comparison of eQTL effects requiring the sharing of both the 

gene and the genomic interval harboring the eQTL SNP yields similar counts of shared 

and specific effects (Table 4.8). The results are similar for SRC-FA. This suggests that 

the vast majority of shared genes also share regulatory variants across tissues. 
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Twin 1  Twin 2 

  10-3 PT 
% 

total Overlap 10-3 PT 
% 

total 
       

3 tissues LCL-SKIN-FAT 104 10.86 70 96 9.44 
       

2 tissues only LCL-SKIN 17 1.77 5 14 1.37 
 LCL-FAT 90 9.39 49 103 10.13 
  SKIN-FAT 30 3.13 12 26 2.56 
       

1 tissue only LCL 339 35.39 151 374 36.77 
 SKIN 101 10.54 18 106 10.42 
  FAT 277 28.91 100 298 29.3 

Total 
significant LCL 550  348 587  

 SKIN 252  128 242  
  FAT 501   302 523   

Union of total 
significant   958 100 565 1017 100 

 
Table 4.8. Tissue-shared and tissue-specific interval-gene associations (10-3 PT), SRC analysis. 

 

Furthermore, the genomic location of the independent eQTLs with respect to basic gene 

structure landmarks was investigated. Similar results to previous studies are observed 

(Dimas, Deutsch et al. 2009). As such, eQTLs cluster symmetrically around the TSS, 

with shared effects distributed more tightly compared to specific ones (Figure 4.5). The 

broader distribution of cell-type specific effects around the TSS suggests their role on 

tissue-specific enhancer elements. Independent eQTLs gained with FA correction were 

also investigated. It was found that they have the same pattern as the SRC eQTLs, 

supporting furthermore their likely biological role.  
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Figure 4.5. Distribution of independent cis eQTLs (10-3 PT, SRC) around the transcription start site 
(TSS). Data from co-twin 1 shown here; left panel displays all eQTLs, the middle panel includes only 
tissue-specific eQTLs while the right panel shows only eQTLs shared across all three tissues. Similar 
results are obtained for co-twin 2 and the independent eQTLs revealed by the SRC-FA analysis. 
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4.4 Alternative	
  estimates	
  of	
  eQTL	
  tissue-­‐specificity	
  

Thresholds are driven by statistical significance and overlaps at these levels are heavily 

dependent on power. In addition, eQTLs sharing statistical significance may still have 

notable effect differences on gene expression levels across tissues, with potentially 

different biological consequences. Given these caveats, I examined tissue-specificity in a 

continuous way using the estimate of significant low p-value enrichment (π1). More 

specifically, I investigated the p-value distribution of significant SNP-gene pairs (10-3 PT) 

from a reference tissue in the other two tissues. The p-value distribution in the other two 

tissues suggests a high degree of tissue sharing (53 to 80%) both with the SRC and 

SRC-FA, varying slightly depending on the reference tissue in the comparison (Table 

4.9). This indicates that we are still underpowered to detect eQTLs of smaller effects that 

would increase also the previous threshold-based estimates of tissue sharing. In any 

case, 29% of eQTLs (1-mean π1) are expected to be exclusively tissue-specific. 

 

#Twin 1  

Reference Secondary 
SRC 

analysis π1 
SRC-FA 

analysis π1 
SKIN 0.67 0.71 

LCL FAT 0.73 0.77 
LCL 0.77 0.67 

SKIN FAT 0.72 0.84 
LCL 0.63 0.72 

FAT SKIN 0.73 0.78 
    
#Twin 2  

Reference Secondary 
SRC 

analysis π1 
SRC-FA 

analysis π1 
SKIN 0.53 0.66 

LCL FAT 0.73 0.75 
LCL 0.72 0.71 

SKIN FAT 0.8 0.84 
LCL 0.69 0.58 

FAT SKIN 0.81 0.76 
 

Table 4.9. Continuous estimates of tissue sharing by enrichment of low p-values (π1) of reference 
eQTLs (SNP-genes 10-3 PT) in the secondary tissues. 
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Tissue sharing should not just be the common presence of a statistically significant 

regulatory effect, but also the similar effect size (fold change in expression) of that variant 

across tissues.  In this respect, I report the fold change as the difference between the 

gene expression means of the two homozygous genotypic classes. Within the same 

tissue, the two co-twin sets are only slightly different in their fold change estimates (0.94 

Pearson’s correlation of fold change between Twin 1 and Twin 2 in LCL, 0.80 in skin and 

0.90 in fat – Figure 4.6). This difference in estimated effect size is much more apparent 

however between tissues (LCL eQTLs have a 0.65 and 0.72 fold change correlation with 

skin and fat eQTLs respectively). To a large extent, this is due to the tissue-specificity of 

eQTLs. However, shared eQTLs at the same threshold of significance don’t always share 

the same effect size across tissues, suggesting additional possible hidden tissue-specific 

effects (LCL fold change correlation of 0.72 in skin and 0.77 in fat for shared eQTLs i.e. 

20% difference in fold change magnitude between tissues compared to within tissue 

difference). This suggests that even statistically tissue shared eQTLs have additional 

dimensions of tissue-specificity and their mere discovery in multiple tissues does not 

guarantee similar magnitude of consequences. 

 

The extent of these observations remains to be tested in trans in the better-powered full 

MuTHER dataset (N ~ 800 individuals). Here, an extension of the MCTA design will be 

most valuable. Building co-expression networks for each tissue will allow the discovery of 

tissue-specific modules, which combined with genotypic information could uncover 

further aspects of tissue-specific regulatory control. The topologies of the networks 

resulting from such approaches are however highly dependent on the methods and 

parameters used.  Therefore, cross-validating the network predictions with the reciprocal 

co-twin will ensure that only genetically-relevant gene expression modules are 

compared. 
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Figure 4.6. Fold change within twins and across tissues for LCL eQTLs (10-3 PT, SRC) discovered in 
Twin 1. The plotted fold change on the X and Y-axes was calculated as the difference in mean expression 
of homozygous genotypic classes. For each pairwise tissue comparison, the Pearson’s correlation 
coefficient between fold changes is shown. 
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4.5 Conclusions	
  

While there have been studies exploring regulatory variation in one or more tissues, the 

complexity of tissue-specificity in multiple primary tissues is not yet well understood. In 

this chapter, I explored in depth the role of regulatory variation in three human tissues: 

LCL, skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived 

simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER 

resource. An abundance of eQTLs in each tissue was discovered, similar to previous 

estimates (858 or 4.7% of genes). In addition, factor analysis (FA) was applied by 

removing effects of latent variables, increasing the power by at least 2-fold (1822 eQTL 

genes). The unique study design (Matched Co-Twin Analysis – MCTA) permits 

immediate replication of eQTLs with co-twins (93-98%) and validation of the considerable 

gain in eQTL discovery after FA correction. It was observed that the majority (>90%) of 

genes are regulated by single independent eQTLs with shared direction of effect across 

different tissues and their spatial distribution around basic gene structure landmarks was 

described. I highlight the challenges of comparing eQTLs between tissues and after 

verifying previous significance threshold-based estimates of extensive tissue-specificity, I 

show their limitations given their dependency on statistical power. Instead, I propose that 

continuous estimates of statistical significance and direct comparison of the magnitude of 

effect on the fold change in expression are essential properties that jointly provide a 

biologically realistic view of tissue-specificity. Under this framework, this study shows that 

30% of eQTLs are shared among tissues, while another 29% are likely exclusively 

tissue-specific. However, even among the shared eQTLs a substantial proportion (10-

20%) have significant differences in the magnitude of fold change between homozygote 

classes across tissues. These results underline the need to account for the complexity of 

eQTL tissue-specificity in an effort to assess consequences of such variants for complex 

traits. 

 


