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Abstract

Recently we have been blessed with a simultaneous rise in the volume of biological
data and the power of computers. This has necessarily led to the emergence of the
field of Bioinformatics, where the study of entire genomes rather than individual

genes is the norm.

This dissertation describes the development and application of the software
framework BioJava, designed from the outset to provide a strong foundation for the
implementation of different machine learning algorithms. BioJava allows genomic

size datasets to be efficiently manipulated in a range of hardware environments.

A variety of supervised and unsupervised learning techniques were applied to data

sets on the scale of whole genomes taking advantage of the BioJava framework.

Firstly, unsupervised learning was used to look for underlying structure in the
genome sequence of whole Malaria chromosomes. Time-reversible 1* order Hidden
Markov Models (HMMs) learned signals based on sequence composition that appear
to correlate closely with biological units, such as exons, introns, repeats and non-
coding genomic regions. This demonstrates the ability of unsupervised methods to

discover biologically meaningful information within genomic sequence.

Secondly, supervised learning was used to develop a regression method able to
predict recombination rate within human chromosomes. Support Vector Machines
(SVMs) using suffix tree kernels were trained on human chromosome 22 sequence
and were able to learn a signal reproducibly, although it was not clear how well this

models recombination rate.
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Finally, supervised learning was used to develop a classification method able to
detect subtle signals in noisy and small sets of micro-array expression data. A
Bayesian technique for training linear models was applied to learn sparse models.
These were able to distinguish between tumour samples that had been treated with a
drug and those that had not. The models produced by this method can be readily

interpreted in terms of individual genes, and in this case made good biological sense.

This dissertation illustrates how a framework of modular and reusable software
components can be used together with advances in artificial intelligence to help us

interpret the data flowing from high throughput projects in the post genomic era.
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