
Introduction

 1

Chapter 1 Introduction

The emerging field of Bioinformatics bridges the previously distinct worlds of

computer science and biology. Recently, the volumes of information that can be

collected with relative ease and moderately low cost per measurement have become

vast. With the ever increased the volumes of data, it is no longer possible to analyse

all of the data by hand. Computational methods are being developed to generate and

test hypothesises and to collate and present these to users. Often, these users are not

themselves programmers but biologists. Programs like BLAST (Altschul, Gish et al.

1990) have changed from being of interest to a small group of dedicated programmers

to being a tool used daily by researchers in experimental “wet” labs throughout the

world.

Established approaches for analysing biological data overlap with methods used in

other subject areas. Neural networks have been applied to a variety of problems such

as predicting the sub-cellular location of proteins (Reinhardt and Hubbard 1998),

splice-site prediction (Rampone 1998) and secondary-structure assignments for

proteins (Rost and Sander 1994). Hidden-Markov-Models (used extensively in

speech-recognition) have been used as the theoretical basis for a plethora of tasks

involving the labelling of DNA or protein sequences. These include gene finding

(Burge and Karlin 1997; Birney and Durbin 2000), elucidating evolutionary

relationships (Smith and Waterman 1981) and discovering conserved motifs in

proteins (Grundy, Bailey et al. 1997). Expression data has been extensively analysed

using a wide range of methods. These range from very simple techniques like ranking

genes by the difference in absolute level between two conditions (for example, see

(Butte, Ye et al. 2001) and references therein) through to more complex methods like

Introduction

 2

cluster analysis (Eisen, Spellman et al. 1998) and grouping by mutual information

(Butte and Kohane 2000). Above all, simple statistical models have been used

pervasively for almost all tasks.

With the rapidly increasing size and variety of biological datasets that must been

considered in any analysis, there has been a corresponding need for software

frameworks to enable the manipulation of these large datasets and aid in their

analysis.

1.1 Existing Software Development Frameworks for Bioinformatics

There are a variety of standard activities in bioinformatics that have the potential to

be addressed through the use of integrated software packages. These include data

visualization and mining, database management, naming and directory services and

machine learning. The major advantages of using integrated software packages are

that they enable a user to carry out complex tasks without having to re-implement

functionality such as file parsing, algorithms and the resource management associated

with large datasets. This enables their use by those without the necessary computer

skills required to efficiently implement complex or efficient algorithms. The effort

involved in developing and maintaining production quality code to address these

issues is considerable and usually outweighs the effort required to become

familiarised with a package, its interfaces, design and peculiarities. When the package

is a community project every user benefits from any user’s contribution to and

debugging of the code base.

When we started BioJava, there were many bioinformatics-related applications

written in almost every conceivable language. Some of these (e.g. HMMER (Eddy

2001) and BLAST (Altschul, Gish et al. 1990)) distribute source code under an open

Introduction

 3

license. However, usually these applications were coded in isolation from others, so

that each time a developer needed a parser for a given file format, or a data structure

for some biological entity, they would need to develop their own. There were a

handful of toolkits or APIs available under licensing agreements that were compatible

with free use by third parties. There were also a few toolkits available commercially,

which generally made them difficult to use in an academic setting.

1.1.1 The NCBI Toolkit

The National Centre for Biotechnology Information (NCBI) was founded in 1988 to

support bioinformatics in the United States1. One of the services it provides is a

toolkit written in C for the development of bioinformatics applications2. The NCBI

uses this toolkit internally for managing GENBANK (Benson, Karsch-Mizrachi et al.

2003) and other databases, as well as several applications including BLAST. The

current version of the toolkit has data structures for biological sequences, genetic

maps, genome assemblies and bibliographical references, as well as many of the other

commonly encountered concepts and data-structures in bioinformatics. There is an

API for both reading and writing ASN.13 documents, and support has recently been

added for XML4 documents. ASN.1 is used as the definition language within the

toolkit for data structures. The basic data structures and bookkeeping functions, such

1 See http://www.ncbi.nlm.nih.gov/About/glance/ourmission.html for more information about the

NCBI

2 see http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML for a full listing of the

functionality of the tool box

3 see http://www.asn1.org/ for information about ASN.1

4 see http://www.w3c.org/XML/ for resources relating to the XML standard

Introduction

 4

as object life cycle, serialization and de-serialization are generated directly from the

ASN.1 definitions, and are therefore named in a consistent manner.

The NCBI toolkit has had fairly limited use as a development platform outside the

NCBI. This has probably been because although the source code is available, it has

never been regarded as a community project, starting as it did before the emergence of

the open source movement. There are also difficulties inherent to developing and

maintaining portable C libraries.

1.1.2 Bioperl

Perl5 is a loosely- and dynamically-typed scripting language that became adopted as

the scripting language of choice of bioinformatics during the 1990s. This is due to

Perl’s ample abilities to act as a scripting language, its powerful regular expression

handling and its file manipulation abilities. In 1995, the Bioperl (Stajich, Block et al.

2002) project was formed. From the beginning, it was organized around a web site6

and there was a strong commitment to open source development and to sharing source

code between developers using CVS7. It started off as a group of biological scripts,

and it quickly became apparent that there were common and reusable concepts used

by many different scripts. The first and most important of these was the ‘Sequence’

object. As of the 1.2 release of Bioperl in 2003, the exact definition of the sequence

object is still evolving.

5 The Perl web site can be found at http://www.perl.org/

6 BioPerl is co-ordinated via the http://www.bioperl.org/ web site

7 See http://www.cvshome.org/ for more information about CVS

Introduction

 5

Around 1997, the Bioperl project moved in focus from being a collection of Perl

scripts to being a library of Perl modules that defined objects. Soon after that, the

project started to adopt the practice of defining abstract classes or interfaces for these

data types and then extending these for specific implementations.

Perl in general and Bioperl in particular has since proven to be very effective as a

way to glue multiple applications together in pipelines8. Large scale systems have

been built upon Bioperl, such as the Ensemble genome annotation project (Hubbard,

Barker et al. 2002). Bioperl still has resource and computational issues when

managing very large numbers of ‘live’ objects and with allocating and deallocating

objects repeatedly. These are mainly due to inherent limitations of how Perl 5

represents objects.

At the time BioJava was started, Bioperl essentially consisted of a module for

representing sequences and annotations on those sequences, parsers for a few

common sequence formats (EMBL (Stoesser, Baker et al. 2003), SWISS-PROT

(Boeckmann, Bairoch et al. 2003), GENBANK (Benson, Karsch-Mizrachi et al.

2003)) and parsers for some commonly used applications (primarily BLAST).

1.1.3 EMBOSS

Up until the mid 1990s, the commercial software package GCG (Womble 2000),

written in C, was distributed along with its source code. It provided a collection of

command-line tools for sequence manipulation. Because the source code was

available, many new applications using the GCG libraries were developed and

8 See http://www.biopipe.org/ for more information about BioPipe

Introduction

 6

distributed in a package called extended-GCG (EGCG9). When the license agreement

for GCG was changed (around the same time that GCG Ltd was acquired by Oxford

Molecular), the source code ceased to be made available. The developers of EGCG

started to develop the European Molecular Biology Open Software Suite (EMBOSS)

(Rice, Longden et al. 2000). This is a free, open source package containing a wide

range of tools for sequence analysis and database access, as well as data-visualisation.

 At the core of EMBOSS there is a set of libraries for common tasks, such as

sequence input/output (IO), memory management, documentation of source code, and

meta-data for command-line parameters. Although most users of EMBOSS are

probably not programmers, it does provide a relatively effective library for handling

these mundane tasks.

The history of GCG and EMBOSS has underlined the need for widely used libraries

to be available to the community that uses them, without fear of their future removal,

regardless of how benevolent the current owners may be.

1.2 BioJava

In 1997, Java2 was released, together with version 1.2 of the SDK. This was a

substantial improvement over previous versions of Java, both in terms of

performance, and in the range of functionality provided by the standard libraries. With

this development, it became practical to consider developing a Bioinformatics

software package in Java. It was at this point that I first prototyped a set of interfaces

in Java which went on to become the core of BioJava. I was familiar with both C and

Perl, but rejected them for the reasons described below.

9 The original EGCG web site has been taken over by the EMBOSS site and no longer exists

Introduction

 7

C, while being a good language for developing high-performance applications, is

not always ideal for code reuse and rapid application development. C can be bound to

Java applications via the Java Native Interfaces. However, it is easier to manage a

project if it is entirely or mainly in one language. Also, the use of native code stops

the Java application from being platform-neutral.

Bioinformatics applications often require large and complex data structures. Perl’s

capability for handling these structures is limited by two main factors. Firstly, it is

difficult to handle objects that contain cyclic references, because Perl uses a

reference-counting garbage collector that will not remove them, and there is no way to

have a non-counted reference. Secondly, allocating many Perl objects is expensive,

particularly in terms of the memory foot-print associated with each instance. Many

bioinformatics tasks require very large numbers of entities to be compared. Java has a

garbage collector that handles arbitrary graphs of objects. Also, the overhead of a Java

object is minimal (a couple of words for synchronization and other book-keeping

tasks).

At the time, there were no widely used bioinformatics toolkits written in Java. The

Neomorphic toolkit10 was available commercially and provided some visualisation

tools that could be embedded within applications. However, it did not provide code

for flexible file reading and writing. Also, the underlying model for the sequence was

defined in terms of strings and arrays of characters. These do not scale to sequences

the size of whole chromosomes.

10 The Neomorphic web site can be found at https://www.Neomorphic.com/das/ngsdk/

Introduction

 8

It was in this context that BioJava (Pocock, Down et al. 2000) was started, with the

aim of providing APIs for common sequence-related bioinformatics tasks for Java

applications. The original design was heavily influenced by the Bioperl object model

at that time, and since then the two projects have had a degree of common design due

to constant comparisons between how each project approaches issues. The core

BioJava application programming interfaces (APIs) have been essentially stable since

2001.

BioJava was started in 1999, and became part of the Open Bioinformatics

Foundation11 (OBF) in January 2000. The OBF is an umbrella organisation for the

open source Bio* projects. These projects together strive to provide programmer-

friendly toolkits in several languages. Currently there are affiliated projects in Perl,

Java, Python and Ruby. There are also the CORBA, XML and SQL Bio* projects that

are language-neutral but provide data-formats and API interoperability between the

language-specific projects.

1.3 Machine Learning

Unlike other bioinformatics toolkits, BioJava was developed from the start to

provide a framework suitable for computational biology analysis by machine learning.

The main concepts of machine learning are therefore described here together with an

outline of how these are supported by BioJava. How these various implementations

are used is addressed in Chapters 3, 4 and 5.

The majority of machine learning techniques used in this field can be described as

either acting upon discreet entities (by classification or regression) or as labelling a

11 See http://www.open-bio.org/ for more information about the OBF

Introduction

 9

sequence of observations (by signal analysis). Machine learning approaches can also

be further divided into two main categories: supervised and unsupervised learning. In

the case of supervised learning, a training set is available with labelling giving the

“true” outcome for each example. For unsupervised learning, the objective is to detect

patterns within data for which there is no a priori labelling, i.e. to investigate if the

data has any inherent interesting structure.

The generalisation of a supervised learning method is how well it treats data that

did not form part of its training set. It is desirable for supervised learning methods to

generalise well so that the user can have confidence that predictions it generates are

trustworthy, even if the new data bears little resemblance to the training data.

A critical consideration in the design of BioJava has been constructing the

underlying data structures in such a way that they are appropriate for publishing data

to machine learning algorithms. The following sections discuss the way that

classification, regression and signal analysis tasks can be represented mathematically.

This leads to a natural way for structured biological data to be used in machine

learning techniques. While it is not essential to represent the data and interfaces in this

way, it does provide us with a common and clear framework upon which we can

build. This makes it much easier to change the representations of the underlying data

that is exposed to the machine learning technique as well as enabling the evaluating of

a range of different machine learning techniques on the same data.

1.3.1 Clustering, Classification and Regression for Single Items

Regression is used to predict a continuous function for data items from a set. For

example, regression could be used to predict rainfall levels from measurements of

atmospheric conditions. Classification is used to divide a set of items into disjoint

Introduction

 10

subsets. An example would be the classification of predicted transcripts into the sets

of expressed genes and psuedogenes, based on properties of their sequence.

Clustering data items produces a hierarchy of relationships, which can be represented

as a tree, with data items at the leaves. For example, phylogenetic trees are the result

of clustering the sequences of a protein family.

When presented with some items for clustering, classification or regression, it is

often natural to think in terms of these items having features, which may be either

directly observed (intensity of fluorescence on a micro-array), or calculated (BLAST

scores). The analysis is performed on these features. Traditionally, a lot of hard work

has gone into defining informative features (for example, different scoring functions

for sequence alignments) or for extracting useful information from them (for example,

Fourier transforms for expression profiles (Chen, He et al. 1999)). Standard machine

learning techniques can be applied to any set of items which can themselves be

described by a set of features. We will now consider how these datasets can be

represented in a way that makes them applicable to machine learning techniques. This

has a direct bearing upon how the interfaces in BioJava have been designed.

Given a set of items X and a set of possible outcomes Y , a space YX × of

observations and some set of functions called the ‘hypothesis space’ H , we wish to

chose a hypothesis which is a ‘good’ hypothesis for our data:

Equation 1-1 A Hypothesis Function

HhYyXxyx
h

∈∈∈ ,, whereα

The methods differ in the types of hypothesis spaces that can be searched and the

definition of a ‘good’ hypothesis. In the case of clustering, Y is the space of all

Introduction

 11

possible trees. The set of trees may be restricted to binary trees, trees that have a depth

of 1 (when partitioning into disjoint groups), or may be any other arrangement. For

classification Y is the set of labels. For regression, Y is the set of possible values for

the continuous variable being predicted: often a range of real numbers. The case of

partitioning the data into disjoint groups (classification) is in practice very similar to

regression, as the regression case can be thought of as a special case where the output

is one of a very large number of possible groups (one per real number).

It is always useful to quantify the error associated with a hypothesis. This can be

used during training to help select a hypothesis, and after training to evaluate the

success against unseen data. For supervised learning, the error is a measure of how far

the predictions fall from the true values. For a wide range of classification and

regression tasks, the error of a hypothesis over a complete data set can be treated as

the sum of the errors for each individual data point. The exact choice of how to

measure this distance between predicted and expected output depends upon the model

being considered.

Equation 1-2 Error of a Hypothesis

)(

)(
),(

xhy

err
YXyx

−=

= ∑
×∈

δ

δγ

Where δ is the difference between the expected and predicted value, γ is the total

error and err is the error function being used. For unsupervised learning there is no

notion of a “true” value, but it is still possible to define a function that is analogous to

the error function that is based purely on the assumptions of the model.

Introduction

 12

The error function is part of how the method will attempt to treat outliers, how

sensitive it will be to ‘fuzzy’ data and how general the resulting model will be. Below

are some example error functions:

Equation 1-3 Some Error Functions





−
<=

=

=

d
ddhr

sqr

lin

δ
δδ

δδ

δδ

0
)(),(

)(
)(

2

The third case in Equation 1-3 is interesting, because it includes an insensitive

region of width d around the true solution, and any prediction falling in this region

receives no penalty. In effect, this is saying that errors up to a value of d are

unimportant.

During training, given the training examples T of the form),(yx , the aim will be

to select some function that has a low error value. When used for prediction, we will

estimate the value of)|(xy as)(xhy ≈ . The ability of the function to generalise can

be estimated by computing)(xh for known outcomes that were not part of the

training data. A model generalises well if the accuracy of the predictions on unseen

data is comparable to the accuracy when predicting outcomes on the training set. This

can be estimated by training on a subset of the available training data, and then doing

a blind prediction on the rest and calculating the error function or observing the rate

of correct and incorrect predictions.

There exists a trivial function that is the exact map defined by T as long as each x

appears exactly once (i.e. there is no conflicting information). This function will

contain no errors. It has exactly as many parameters as T has members. This has no

Introduction

 13

generalisation power, as the function is not defined for any x not represented in T . If

the training method allows this hypothesis or any similar hypothesis to be chosen then

it is ‘over-fitting’ the training data. If the resulting model contains more free

parameters than there are training items (assuming that they really can vary

independently), then it is very difficult to ensure that the model is not over-fitting. A

good solution to this is to encourage the method to produce models with significantly

fewer parameters than there are training examples.

Having defined the problem, we will now discuss a convenient representation of

data and hypotheses that enables their easy integration into BioJava.

We can think of the training process as being the selection of the transformation

that project objects in X until they superimpose with their image in Y with sufficient

accuracy. If, for example, the error function was 2δ then the problem becomes the

estimation of a matrix that performs the rotation of a least-squares fit on the

transformed image of X .

In the case where Y has a single dimension, the projection must remove all except

one dimension from the feature space. This can be visualised as measuring the

distance from points to a hyper-plane (e.g. a linear surface that is one dimension lower

than the feature space). This distance is equal to the dot product of the data point with

the equation of the plane12.

12 For two numbers, ba ⋅ is the product of a and b . For vectors, there are two common types of

product – the inner and outer products. These can be explicitly disambiguated as ba, and ba × .

Inner products have scalar values. They are often written as ba ⋅ and consequently called dot-

Introduction

 14

There are a range of machine learning methods that can be represented in the form

of a sum of dot products. These include classification, regression, k-means clustering

and principal component analysis. There are techniques available to adapt this family

of methods so that they can be generalised to functions considerably more complex

than the linear dot product. This allows these machine learning techniques to consider

a much more interesting range of problems. In the rest of this section, we will discuss

one method of generalisation; kernel functions.

We can generalise the use of dot products by exploiting the representation of each

item as a set of features with associated values. For two data items p and q of

compatible types, the natural inner product is the sum of the products of their

corresponding features. In the following equation, i is used to index each feature.

Equation 1-4 Dot Products for Items Decomposable into Sub-Spaces with Dot-products Defined

∑ ⋅=⋅
i

ii qpqp

Notice that the dot product requires each feature of the data item to have a dot

product defined. For numbers, this is just the normal numerical product. However, the

value of a feature may itself be a complex structure composed from a set of features

with values.

Dot products have the properties that (a) they are symmetrical functions, (b) that

0≥⋅ xx for all values and (c) that the value of the dot product is only zero if one or

products. In this text, ba ⋅ is used where the normal Cartesian dot product is meant, and ba, is any

function that is an inner product of a and b in some space.

Introduction

 15

both of the arguments has a magnitude of zero. When considering representing

features in terms of dot products, it is necessary to ensure that they satisfy these

constraints. For example, it would be invalid to use Blast sequence alignment scores

as the value for a dot product, as they are not symmetrical.

It is often useful to first transform data from its natural coordinate system (data-

space) into one another coordinate system (the feature space) in which particular types

of analysis are easier. If φ is a function that maps from data-space to feature-space,

then the dot product of two items a and b in that space is)()(ba φφ ⋅ . If there is a

function k such that)()(),(babak φφ ⋅= , then k is a kernel function. More

explicitly:

Equation 1-5 Definition of Kernel Functions

)()(),(babak φφφ ⋅=

An interesting subset of kernel functions are equivalent to functions of the data-

space dot product. For example, given two vectors, we could define a transform that

projected the items into the space of all possible polynomial interactions of order 2 or

less (Equation 1-6) which allows conics to be constructed in the data-space. This can

be expressed in terms of dot products in the data-space (Equation 1-7). This form can

be generalized for data-spaces with any number of dimensions, and for polynomial

interactions of any order (Equation 1-8).

Equation 1-6 A Polynomial From a Two-dimensional Coordinate to a Coordinate Containing

One Component for each Possible Product Involving up to Two Dimensions

),,2,2,2,1(: 2
2

2
12121 xxxxxxxP α

Introduction

 16

Equation 1-7 Dot products between two polynomial mappings reduced to terms involving the dot

product of the unmapped variables

() ()
()2

2

2
2

2
2

2
1

2
121212211

2
2

2
12121

2
2

2
12121

1

12

2221

),,2,2,2,1(),,2,2,2,1()()(

+⋅=

+⋅+⋅=

+++++=

⋅=⋅

ba

baba

aababbaababa

abbbbbaaaaaabPaP

Equation 1-8 Polynomial Kernel Function

()nnpoly babak 1),()(+⋅=

In terms of the time-and-space constraints, this reduces the problem of finding all

polynomial interactions between all elements of two vectors from having complexity

that scales badly on the length of the vectors to one that scales linearly. Explicitly

computing polynomial interactions of order 5 would require time and space

proportional to the fifth power of the length of the vectors, where as using an

appropriate kernel function the cost would still be linear.

The feature spaces for many kernel functions are very large compared to the data-

space. For almost any training set, the feature space will have more dimensions than

training examples, and may be too large to represent explicitly. However, if the dot

products can be calculated as a simple function of the data-space dot product, then the

feature space size is no longer a constraint to calculations.

The machine learning methods that can be represented in terms of sums of dot

products can often be adapted to work with kernel functions, allowing them to explore

solutions in the feature space of the kernel, while maintaining performance

characteristics related to the dimensionality of the data-space.

Introduction

 17

It is possible to compose new kernel functions from other kernel functions and

scalar functions. In all cases, care must be taken to not invalidate the three properties

of dot products defined above. Here are three examples:

1. bgaf + Equivalent to concatenating the feature spaces of the kernels f

and g after scaling them by a and b respectively.

2. gf ⋅

3.)),((bafξ where ξ is any scalar function that maintains the conditions

that apply to dot-products, such as the polynomial kernel in Equation 1-8.

The BioJava support vector machine implementation (discussed in 4.1.1 and 4.1.2)

provides a linear dot product kernel implementation for sparse vectors of real

numbers. Additionally, there are a range of kernel functions that are implemented in

the third form above that return some function of the result of another kernel function.

These include kernels for radial basis functions, polynomials and hyperbolic tan.

There are also kernels that implement normalising transformations, such as projection

onto a unit sphere. Data is made available by implementing the kernel function

interface so that it returns a dot product for some pair of Java data structures. Then, an

appropriate feature space can be constructed by composing the kernel function objects

as required. This affords a great deal of flexibility in the range of feature spaces that

can be explored.

SVMs, described in Section 4.1.1, are one of a family of models called Generalised

Linear Models. Another related form of linear model is trained using the Relevance

Vector Machine methodology, described in 5.3. Applications of the representations

described here will be discussed in Chapters 4 and 5 with examples.

Introduction

 18

1.3.2 Signal Analysis with Hidden Markov Models

Signal analysis methods deal with data that are composed from a linear sequence of

observations, possibly of differing lengths. One approach to signal analysis used

widely in bioinformatics is to infer properties of the structure of the sequence based

upon a model of how the sequence may have been generated. The sequence can be

represented as a series of observations x which are indexed in the form ix where if

ji < then ix is before jx in the sequence.

Probabilistic Hidden Markov Models (HMMs) (Durbin 1998) are generative models

that have been applied to a wide range of biological problems since their introduction

to computational biology (Churchill 1989; Krogh, Brown et al. 1994). Formally, they

define a probability distribution over all sequences that can be generated using the

production rules of a stochastic regular grammar. One benefit in representing models

as HMMs over stochastic regular grammars is that HMMs can be easily visualised as

graphs, whereas stochastic regular grammars are inherently textual.

A common and successful application of HMMs is the modelling of a family of

evolutionarily related sequences. A popular form of model for this kind of application

is the profile HMM, where a sequence of match states through the model represents

the consensus sequence for some biological feature. Insertion and deletion states

model the corresponding evolutionary events. Profile HMMs form the basis of the

SAM package (Hughey and Krogh 1995), and profiles built with the HMMER

package (Eddy 2001) form the basis of the Pfam database (Bateman, Birney et al.

2000).

Although profile HMMs are a widely used form of HMM in computational biology,

it is possible to build much more flexible models. For example, Meta-MEME

Introduction

 19

(Grundy, Bailey et al. 1997) takes simple ungapped weight-matrices, which are based

on motifs discovered using the MEME package (Bailey and Elkan 1994), and links

these together with spacers to form higher-order models.

Another common type of HMM is an alignment, or pair HMM. This form emits

correlated pairs of sequences. Pairwise alignment algorithms can be represented in

this form. The Dynamite package (Birney and Durbin 1997) provides a language for

implementing new pair-HMM algorithms. However, Dynamite itself does not provide

any facilities for training the parameters for these models. This means that Dynamite

models must be parameterised by hand, a process which is more of an art than a

science.

HMMs can be trained from labelled training data. That is, given a set of sequences

where the model states have been assigned, the optimal probabilities for the model

can be calculated directly. The observation counts are normally regularized using an

appropriate background model that reduces the possibility of over-fitting the

examples. It is generally accepted that regularization enhances the generality of the

model to unseen sequences.

The most commonly used forms of regularization are Dirichlet priors (which are

equivalent to pseudocounts) and Dirichlet mixtures (Brown, Hughey et al. 1993;

Sjolander, Karplus et al. 1996). Dirichlet priors represent probability distributions

over the range of possible counts, and are used to blend the probability obtained using

the raw counts with the expected counts if the null model were true. This is

implemented by adding extra “pseudocounts” to the observed counts. Dirichlet

mixtures work in a similar way to Dirichlet priors, but in this case there are multiple

Introduction

 20

prior models, and the prior model which is closest to the observation has the most

weight during the blending.

It is possible to use other priors, such as multinomial Gaussian distributions and

their mixtures over log-odds space (O'Hagan 1994), but these have not been

extensively investigated for biological models. This is probably because as Dirichlet

priors can be relatively easily implemented and have been applied successfully, there

is no perceived reason to use different types of prior models.

In contrast to training from fully labelled data, HMM parameters can be estimated

from an unlabeled set of sequences given a model architecture. This is achieved

iteratively by estimating a probability distribution over all possible labellings for each

sequence given a current set of estimated model parameters. Counts can be added in

proportion to the probabilities of the labellings, or sampled from this distribution. The

counts are then normalized and regularized, and these new parameters are used as the

starting point for the next round of parameter estimation. This cycle is repeated until

the model parameters cease to change by any significant amount or a pre-determined

number of cycles have elapsed. It is usually sufficient to start with arbitrary random

parameters, given a model with few enough free parameters. When counts are added

in proportion to the probability distribution over all possible labellings, this procedure

is known as Baum-Welch training (Baum, Petrie et al. 1970; Rabiner 1989; Durbin

1998). When adding counts by sampling from this distribution, we have called this

procedure Baum-Welch with sampling.

Finally, complex models can be parameterised using a mixture of labelled and

unlabelled data. For example, models for distinguishing between protein secondary

structure elements may have complex models for α-helix and β-sheet involving

Introduction

 21

multiple repeating patterns of states. Training data may be binned into sets for both

secondary structure elements, and then maximum-likelihood used within the bins

(Asai, Hayamizu et al. 1993). This initial splitting of the data is equivalent to a partial

labelling of the data that restricts those observations to being generated by a sub-set of

the parameters.

HMMs can be applied to a wide range of sequence analysis tasks. The BioJava

dynamic programming toolkit was intended to allow the implementation of a wide

range of these algorithms through a consistent API. To achieve this, it was helpful to

find a very general description of HMMs and the algorithms that are used to

manipulate them. A good formal representation of this general description aids in

developing clear APIs and good procedural implementations of the procedures

described above.

Equation 1-9 Definition of a Probabilistic Hidden Markov Model

()

iesprobabilitn transitio ies;probabilitemission
s;transition states; alphabet;emission model;

; ,,,, 2

==
=Σ===

=ΣΣΩ=

te

IΩM

IteIM

We can represent an HMM as a tuple of parameters (Equation 1-9). The model

emits symbols from an alphabet (Ω), such as DNA. It has a finite set of states (I),

often called the state-space. The model has a set of transitions (Σ) defined as all

ordered pairs of states. There is a probability distribution over the transitions (e) and

another over the members of the alphabet emitted by each state (t). It is often

convenient to represent the emission and transition probabilities as being an array of

functions dependant upon the current state under consideration (for example,

Introduction

 22

Equation 1-10). In an object-oriented interpretation, these functions could be

modelled as being properties of a state.

Equation 1-10 Emission and Transition Probabilities

()
() Σ∈∀=

Ω∈=
∈

),(|)(
|)(

jkkjpjt

kapae

Ik

k

k

It is common for some values of)(jtk to be constrained to always be zero. In this

case, we can consider there to be no legal transition from state k to state j . We can

describe these states as being unconnected. A small extension to the original model

redefines the transition term as 2I⊂Σ . From the point of view of implementing

efficient algorithms that act upon these finite state machines and of efficient data

structures for storing parameters, it is often important to know which states are

explicitly unconnected, rather than happening to have a transition probability set to

zero by a particular parameterisation.

For example, in an HMM that models a weight-matrix of length 100, there are 100

states, one for each column of the weight-matrix. The complete transition matrix

would contain 10,000 elements. However, in the HMM for a weight-matrix, the only

state that can be reached from a given state is the single one that represents the next

column. The HMM representing the weight matrix would have 99 legal transitions in

total. It would be an inefficient use of resources to store the square transition matrix

when it is only necessary to use an array linear on length to the number of states in

this model.

A sequence can be labelled with states so that there is one state associated with each

observation, and each transition represented by neighbouring pair of states are legal in

Introduction

 23

the HMM. The sequence of states is called a state-path. Formally, this can be written

as:

Equation 1-11 Definition of All Legal State-Sequences

Σ∈∈ −),(such that of valuea is thereeach For 1 iiii yyIyx

Given both x and y the joint probability of a sequence and its state-path pair can

be calculated as:

Equation 1-12 Likelihood of Observing a Given Sequence and Labelling

)|()|()|,(1∏ −=
i

iiii yypyxpMyxp

Given Equation 1-12, it is possible to evaluate any state-path. With a given set of

parameters, there will be a set of paths (often just one) that have a higher value than

any others do. The Viterbi algorithm (Rabiner 1989; Durbin 1998) finds one of these

paths. By summing over every possible state-path, that could have produced a

sequence, it is possible to calculate)|(mxp . The forwards and backwards recursions

(Rabiner 1989; Durbin 1998) calculate this value, initialising from the first and last

symbol of x respectively (Equation 1-13). In these recursions, it is necessary to loop

over the variable indexing x according to its natural ordering (and in the reverse of

this for the backwards algorithm), and similarly the destination states for each

transition must be looped over such that the recursion has been calculated for every

value of the recursion that this step relies upon.

Introduction

 24

Equation 1-13 Common Dynamic Programming Recursions as Applied to Probabilistic Hidden

Markov Models

()

()

)),(()()(),(

)),(()()(),(

)),(()(),(

)),(()()(),(

),(

),(

),(

),(

maxarg
max

kkadviBxektIjiB

kjadviFjtxeIjiF

kjadviBpjtIjiBp

kjadviVjtxeIjiV

kjk
ikj

jkk
kij

k

jkk

k
jkk

ij

+⋅⋅=∈

−⋅⋅=∈

−⋅=∈

−⋅⋅=∈

∑

∑

Σ∈∋

Σ∈∋

Σ∈∋

Σ∈∋

j state by the advancedbeen have directionswhich represent to toadd vector to theis adv(j)

j k to state fromy probabilitn transitio theis (j)
states ofset theis

state upon the lconditionaindex at that symbol theofy probabilitemission theis)(
score backwards theis),(

score forwards theis),(
one previous the tostatecurrent thefromr backpointe theis),(

index sequenceat j statefor score viterbi theis),(

aligned being sequences theinto indecies of vector theis

i

t

I

xe

IjiB

IjiF

IjiBp

iIjiV

i

k

ij

∈

∈

∈

∈

For the case of aligning multiple sequences, the observation x can be replaced by

the product of all sequences being aligned such that for sequences a and b we end up

aligning bax ×= to the model where),(, jiji bax = . We can generalise this to any

number of sequences being simultaneously aligned, and replace the compound

subscript with a vector i . For the Viterbi, forward and backward algorithms, we can

proceed exactly as before, as long as we use the partial ordering of i such that adding

one to any component of i would produce a new vector that comes after it. So that

some states can advance through a sub-set of the sequences being aligned (for

example, insertion or deletion states in a pair-wise alignment HMM), it is convenient

to have an advance vector associated with each state. This is of the same

Introduction

 25

dimensionality as i . The advance vector is purely a function of a single state. A valid

object-oriented interpretation is for states to expose an advance array as a property.

The BioJava library allows HMMs with arbitrary architectures to be constructed.

The HMM APIs are strongly modelled on the definitions of HMMs described above.

In particular, the APIs do not directly distinguish between models that generate one,

two or any other number of sequences. The sequence of observations presented to an

HMM is represented using the BioJava Alphabet, Symbol and SymbolList APIs (2.4),

which allows the algorithms to be applied to a much wider range of data than either

DNA or character strings without needing to alter the code implementing the

recursions themselves, or the associated data models. From the users’ point of view,

there is no programmatic difference between models that are fully connected and ones

that are extremely sparse. Section 2.6 discusses the BioJava HMM APIs. Chapter 3

explores the use of HMMs for modelling chromosomal structure.

1.4 Implementation and Use of BioJava

In the following chapters the implementation of BioJava and its application to real

problems are discussed. In Chapter 2, the implementation of the core of BioJava is

described. In Chapters 3, 4 and 5, BioJava is applied to particular classes of machine

learning problem. HMMs are used to discover data-compressions for whole

chromosomes in Chapter 3, SVMs are applied to recombination rate prediction in

Chapter 4 and RVMs are used to classify expression data in Chapter 5.

