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Chapter 1 Introduction 

The emerging field of Bioinformatics bridges the previously distinct worlds of 

computer science and biology. Recently, the volumes of information that can be 

collected with relative ease and moderately low cost per measurement have become 

vast. With the ever increased the volumes of data, it is no longer possible to analyse 

all of the data by hand. Computational methods are being developed to generate and 

test hypothesises and to collate and present these to users. Often, these users are not 

themselves programmers but biologists. Programs like BLAST (Altschul, Gish et al. 

1990) have changed from being of interest to a small group of dedicated programmers 

to being a tool used daily by researchers in experimental “wet” labs throughout the 

world. 

Established approaches for analysing biological data overlap with methods used in 

other subject areas. Neural networks have been applied to a variety of problems such 

as predicting the sub-cellular location of proteins (Reinhardt and Hubbard 1998), 

splice-site prediction (Rampone 1998) and secondary-structure assignments for 

proteins (Rost and Sander 1994). Hidden-Markov-Models (used extensively in 

speech-recognition) have been used as the theoretical basis for a plethora of tasks 

involving the labelling of DNA or protein sequences. These include gene finding 

(Burge and Karlin 1997; Birney and Durbin 2000), elucidating evolutionary 

relationships (Smith and Waterman 1981) and discovering conserved motifs in 

proteins (Grundy, Bailey et al. 1997). Expression data has been extensively analysed 

using a wide range of methods. These range from very simple techniques like ranking 

genes by the difference in absolute level between two conditions (for example, see 

(Butte, Ye et al. 2001) and references therein) through to more complex methods like 
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cluster analysis (Eisen, Spellman et al. 1998) and grouping by mutual information 

(Butte and Kohane 2000). Above all, simple statistical models have been used 

pervasively for almost all tasks. 

With the rapidly increasing size and variety of biological datasets that must been 

considered in any analysis, there has been a corresponding need for software 

frameworks to enable the manipulation of these large datasets and aid in their 

analysis. 

1.1 Existing Software Development Frameworks for Bioinformatics 

There are a variety of standard activities in bioinformatics that have the potential to 

be addressed through the use of integrated software packages. These include data 

visualization and mining, database management, naming and directory services and 

machine learning. The major advantages of using integrated software packages are 

that they enable a user to carry out complex tasks without having to re-implement 

functionality such as file parsing, algorithms and the resource management associated 

with large datasets. This enables their use by those without the necessary computer 

skills required to efficiently implement complex or efficient algorithms. The effort 

involved in developing and maintaining production quality code to address these 

issues is considerable and usually outweighs the effort required to become 

familiarised with a package, its interfaces, design and peculiarities. When the package 

is a community project every user benefits from any user’s contribution to and 

debugging of the code base. 

When we started BioJava, there were many bioinformatics-related applications 

written in almost every conceivable language. Some of these (e.g. HMMER (Eddy 

2001) and BLAST (Altschul, Gish et al. 1990)) distribute source code under an open 
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license. However, usually these applications were coded in isolation from others, so 

that each time a developer needed a parser for a given file format, or a data structure 

for some biological entity, they would need to develop their own. There were a 

handful of toolkits or APIs available under licensing agreements that were compatible 

with free use by third parties. There were also a few toolkits available commercially, 

which generally made them difficult to use in an academic setting. 

1.1.1 The NCBI Toolkit 

The National Centre for Biotechnology Information (NCBI) was founded in 1988 to 

support bioinformatics in the United States1. One of the services it provides is a 

toolkit written in C for the development of bioinformatics applications2. The NCBI 

uses this toolkit internally for managing GENBANK (Benson, Karsch-Mizrachi et al. 

2003) and other databases, as well as several applications including BLAST. The 

current version of the toolkit has data structures for biological sequences, genetic 

maps, genome assemblies and bibliographical references, as well as many of the other 

commonly encountered concepts and data-structures in bioinformatics. There is an 

API for both reading and writing ASN.13 documents, and support has recently been 

added for XML4 documents. ASN.1 is used as the definition language within the 

toolkit for data structures. The basic data structures and bookkeeping functions, such 
                                                 

1 See http://www.ncbi.nlm.nih.gov/About/glance/ourmission.html for more information about the 

NCBI 

2 see http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML for a full listing of the 

functionality of the tool box 

3 see http://www.asn1.org/ for information about ASN.1 

4 see http://www.w3c.org/XML/ for resources relating to the XML standard 
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as object life cycle, serialization and de-serialization are generated directly from the 

ASN.1 definitions, and are therefore named in a consistent manner. 

The NCBI toolkit has had fairly limited use as a development platform outside the 

NCBI. This has probably been because although the source code is available, it has 

never been regarded as a community project, starting as it did before the emergence of 

the open source movement. There are also difficulties inherent to developing and 

maintaining portable C libraries. 

1.1.2 Bioperl 

Perl5 is a loosely- and dynamically-typed scripting language that became adopted as 

the scripting language of choice of bioinformatics during the 1990s. This is due to 

Perl’s ample abilities to act as a scripting language, its powerful regular expression 

handling and its file manipulation abilities. In 1995, the Bioperl (Stajich, Block et al. 

2002) project was formed. From the beginning, it was organized around a web site6 

and there was a strong commitment to open source development and to sharing source 

code between developers using CVS7. It started off as a group of biological scripts, 

and it quickly became apparent that there were common and reusable concepts used 

by many different scripts. The first and most important of these was the ‘Sequence’ 

object. As of the 1.2 release of Bioperl in 2003, the exact definition of the sequence 

object is still evolving. 

                                                 

5 The Perl web site can be found at http://www.perl.org/  

6 BioPerl is co-ordinated via the http://www.bioperl.org/ web site 

7 See http://www.cvshome.org/ for more information about CVS 
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Around 1997, the Bioperl project moved in focus from being a collection of Perl 

scripts to being a library of Perl modules that defined objects. Soon after that, the 

project started to adopt the practice of defining abstract classes or interfaces for these 

data types and then extending these for specific implementations. 

Perl in general and Bioperl in particular has since proven to be very effective as a 

way to glue multiple applications together in pipelines8. Large scale systems have 

been built upon Bioperl, such as the Ensemble genome annotation project (Hubbard, 

Barker et al. 2002). Bioperl still has resource and computational issues when 

managing very large numbers of ‘live’ objects and with allocating and deallocating 

objects repeatedly. These are mainly due to inherent limitations of how Perl 5 

represents objects. 

At the time BioJava was started, Bioperl essentially consisted of a module for 

representing sequences and annotations on those sequences, parsers for a few 

common sequence formats (EMBL (Stoesser, Baker et al. 2003), SWISS-PROT 

(Boeckmann, Bairoch et al. 2003), GENBANK (Benson, Karsch-Mizrachi et al. 

2003)) and parsers for some commonly used applications (primarily BLAST). 

1.1.3 EMBOSS 

Up until the mid 1990s, the commercial software package GCG (Womble 2000), 

written in C, was distributed along with its source code. It provided a collection of 

command-line tools for sequence manipulation. Because the source code was 

available, many new applications using the GCG libraries were developed and 

                                                 

8 See http://www.biopipe.org/ for more information about BioPipe 
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distributed in a package called extended-GCG (EGCG9). When the license agreement 

for GCG was changed (around the same time that GCG Ltd was acquired by Oxford 

Molecular), the source code ceased to be made available. The developers of EGCG 

started to develop the European Molecular Biology Open Software Suite (EMBOSS) 

(Rice, Longden et al. 2000). This is a free, open source package containing a wide 

range of tools for sequence analysis and database access, as well as data-visualisation. 

 At the core of EMBOSS there is a set of libraries for common tasks, such as 

sequence input/output (IO), memory management, documentation of source code, and 

meta-data for command-line parameters. Although most users of EMBOSS are 

probably not programmers, it does provide a relatively effective library for handling 

these mundane tasks. 

The history of GCG and EMBOSS has underlined the need for widely used libraries 

to be available to the community that uses them, without fear of their future removal, 

regardless of how benevolent the current owners may be. 

1.2 BioJava 

In 1997, Java2 was released, together with version 1.2 of the SDK. This was a 

substantial improvement over previous versions of Java, both in terms of 

performance, and in the range of functionality provided by the standard libraries. With 

this development, it became practical to consider developing a Bioinformatics 

software package in Java. It was at this point that I first prototyped a set of interfaces 

in Java which went on to become the core of BioJava. I was familiar with both C and 

Perl, but rejected them for the reasons described below. 
                                                 

9 The original EGCG web site has been taken over by the EMBOSS site and no longer exists 
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C, while being a good language for developing high-performance applications, is 

not always ideal for code reuse and rapid application development. C can be bound to 

Java applications via the Java Native Interfaces. However, it is easier to manage a 

project if it is entirely or mainly in one language. Also, the use of native code stops 

the Java application from being platform-neutral. 

Bioinformatics applications often require large and complex data structures. Perl’s 

capability for handling these structures is limited by two main factors. Firstly, it is 

difficult to handle objects that contain cyclic references, because Perl uses a 

reference-counting garbage collector that will not remove them, and there is no way to 

have a non-counted reference. Secondly, allocating many Perl objects is expensive, 

particularly in terms of the memory foot-print associated with each instance. Many 

bioinformatics tasks require very large numbers of entities to be compared. Java has a 

garbage collector that handles arbitrary graphs of objects. Also, the overhead of a Java 

object is minimal (a couple of words for synchronization and other book-keeping 

tasks). 

At the time, there were no widely used bioinformatics toolkits written in Java. The 

Neomorphic toolkit10 was available commercially and provided some visualisation 

tools that could be embedded within applications. However, it did not provide code 

for flexible file reading and writing. Also, the underlying model for the sequence was 

defined in terms of strings and arrays of characters. These do not scale to sequences 

the size of whole chromosomes. 

                                                 

10 The Neomorphic web site can be found at https://www.Neomorphic.com/das/ngsdk/  
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It was in this context that BioJava (Pocock, Down et al. 2000) was started, with the 

aim of providing APIs for common sequence-related bioinformatics tasks for Java 

applications. The original design was heavily influenced by the Bioperl object model 

at that time, and since then the two projects have had a degree of common design due 

to constant comparisons between how each project approaches issues. The core 

BioJava application programming interfaces (APIs) have been essentially stable since 

2001. 

BioJava was started in 1999, and became part of the Open Bioinformatics 

Foundation11 (OBF) in January 2000. The OBF is an umbrella organisation for the 

open source Bio* projects. These projects together strive to provide programmer-

friendly toolkits in several languages. Currently there are affiliated projects in Perl, 

Java, Python and Ruby. There are also the CORBA, XML and SQL Bio* projects that 

are language-neutral but provide data-formats and API interoperability between the 

language-specific projects. 

1.3 Machine Learning 

Unlike other bioinformatics toolkits, BioJava was developed from the start to 

provide a framework suitable for computational biology analysis by machine learning. 

The main concepts of machine learning are therefore described here together with an 

outline of how these are supported by BioJava. How these various implementations 

are used is addressed in Chapters 3, 4 and 5. 

The majority of machine learning techniques used in this field can be described as 

either acting upon discreet entities (by classification or regression) or as labelling a 
                                                 

11 See http://www.open-bio.org/ for more information about the OBF 
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sequence of observations (by signal analysis). Machine learning approaches can also 

be further divided into two main categories: supervised and unsupervised learning. In 

the case of supervised learning, a training set is available with labelling giving the 

“true” outcome for each example. For unsupervised learning, the objective is to detect 

patterns within data for which there is no a priori labelling, i.e. to investigate if the 

data has any inherent interesting structure. 

The generalisation of a supervised learning method is how well it treats data that 

did not form part of its training set. It is desirable for supervised learning methods to 

generalise well so that the user can have confidence that predictions it generates are 

trustworthy, even if the new data bears little resemblance to the training data. 

A critical consideration in the design of BioJava has been constructing the 

underlying data structures in such a way that they are appropriate for publishing data 

to machine learning algorithms. The following sections discuss the way that 

classification, regression and signal analysis tasks can be represented mathematically. 

This leads to a natural way for structured biological data to be used in machine 

learning techniques. While it is not essential to represent the data and interfaces in this 

way, it does provide us with a common and clear framework upon which we can 

build. This makes it much easier to change the representations of the underlying data 

that is exposed to the machine learning technique as well as enabling the evaluating of 

a range of different machine learning techniques on the same data. 

1.3.1 Clustering, Classification and Regression for Single Items 

Regression is used to predict a continuous function for data items from a set. For 

example, regression could be used to predict rainfall levels from measurements of 

atmospheric conditions. Classification is used to divide a set of items into disjoint 
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subsets. An example would be the classification of predicted transcripts into the sets 

of expressed genes and psuedogenes, based on properties of their sequence. 

Clustering data items produces a hierarchy of relationships, which can be represented 

as a tree, with data items at the leaves. For example, phylogenetic trees are the result 

of clustering the sequences of a protein family. 

When presented with some items for clustering, classification or regression, it is 

often natural to think in terms of these items having features, which may be either 

directly observed (intensity of fluorescence on a micro-array), or calculated (BLAST 

scores). The analysis is performed on these features. Traditionally, a lot of hard work 

has gone into defining informative features (for example, different scoring functions 

for sequence alignments) or for extracting useful information from them (for example, 

Fourier transforms for expression profiles (Chen, He et al. 1999)). Standard machine 

learning techniques can be applied to any set of items which can themselves be 

described by a set of features. We will now consider how these datasets can be 

represented in a way that makes them applicable to machine learning techniques. This 

has a direct bearing upon how the interfaces in BioJava have been designed. 

Given a set of items X  and a set of possible outcomes Y , a space YX × of 

observations and some set of functions called the ‘hypothesis space’ H , we wish to 

chose a hypothesis which is a ‘good’ hypothesis for our data: 

Equation 1-1 A Hypothesis Function 

HhYyXxyx
h

∈∈∈ ,,  whereα  

The methods differ in the types of hypothesis spaces that can be searched and the 

definition of a ‘good’ hypothesis. In the case of clustering, Y  is the space of all 
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possible trees. The set of trees may be restricted to binary trees, trees that have a depth 

of 1 (when partitioning into disjoint groups), or may be any other arrangement. For 

classification Y  is the set of labels. For regression, Y  is the set of possible values for 

the continuous variable being predicted: often a range of real numbers. The case of 

partitioning the data into disjoint groups (classification) is in practice very similar to 

regression, as the regression case can be thought of as a special case where the output 

is one of a very large number of possible groups (one per real number). 

It is always useful to quantify the error associated with a hypothesis. This can be 

used during training to help select a hypothesis, and after training to evaluate the 

success against unseen data. For supervised learning, the error is a measure of how far 

the predictions fall from the true values. For a wide range of classification and 

regression tasks, the error of a hypothesis over a complete data set can be treated as 

the sum of the errors for each individual data point. The exact choice of how to 

measure this distance between predicted and expected output depends upon the model 

being considered. 

Equation 1-2 Error of a Hypothesis 
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xhy
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YXyx
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Where δ  is the difference between the expected and predicted value, γ  is the total 

error and err  is the error function being used. For unsupervised learning there is no 

notion of a “true” value, but it is still possible to define a function that is analogous to 

the error function that is based purely on the assumptions of the model. 
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The error function is part of how the method will attempt to treat outliers, how 

sensitive it will be to ‘fuzzy’ data and how general the resulting model will be. Below 

are some example error functions: 

Equation 1-3 Some Error Functions 
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The third case in Equation 1-3 is interesting, because it includes an insensitive 

region of width d  around the true solution, and any prediction falling in this region 

receives no penalty. In effect, this is saying that errors up to a value of d  are 

unimportant.  

During training, given the training examples T  of the form ),( yx , the aim will be 

to select some function that has a low error value. When used for prediction, we will 

estimate the value of )|( xy  as )(xhy ≈ . The ability of the function to generalise can 

be estimated by computing )(xh  for known outcomes that were not part of the 

training data. A model generalises well if the accuracy of the predictions on unseen 

data is comparable to the accuracy when predicting outcomes on the training set. This 

can be estimated by training on a subset of the available training data, and then doing 

a blind prediction on the rest and calculating the error function or observing the rate 

of correct and incorrect predictions. 

There exists a trivial function that is the exact map defined by T  as long as each x  

appears exactly once (i.e. there is no conflicting information). This function will 

contain no errors. It has exactly as many parameters as T  has members. This has no 
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generalisation power, as the function is not defined for any x  not represented in T . If 

the training method allows this hypothesis or any similar hypothesis to be chosen then 

it is ‘over-fitting’ the training data. If the resulting model contains more free 

parameters than there are training items (assuming that they really can vary 

independently), then it is very difficult to ensure that the model is not over-fitting. A 

good solution to this is to encourage the method to produce models with significantly 

fewer parameters than there are training examples. 

Having defined the problem, we will now discuss a convenient representation of 

data and hypotheses that enables their easy integration into BioJava. 

We can think of the training process as being the selection of the transformation 

that project objects in X  until they superimpose with their image in Y  with sufficient 

accuracy. If, for example, the error function was 2δ  then the problem becomes the 

estimation of a matrix that performs the rotation of a least-squares fit on the 

transformed image of X . 

In the case where Y  has a single dimension, the projection must remove all except 

one dimension from the feature space. This can be visualised as measuring the 

distance from points to a hyper-plane (e.g. a linear surface that is one dimension lower 

than the feature space). This distance is equal to the dot product of the data point with 

the equation of the plane12. 

                                                 

12 For two numbers, ba ⋅  is the product of a  and b . For vectors, there are two common types of 

product – the inner and outer products. These can be explicitly disambiguated as ba,  and ba × . 

Inner products have scalar values. They are often written as ba ⋅  and consequently called dot-
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There are a range of machine learning methods that can be represented in the form 

of a sum of dot products. These include classification, regression, k-means clustering 

and principal component analysis. There are techniques available to adapt this family 

of methods so that they can be generalised to functions considerably more complex 

than the linear dot product. This allows these machine learning techniques to consider 

a much more interesting range of problems. In the rest of this section, we will discuss 

one method of generalisation; kernel functions. 

We can generalise the use of dot products by exploiting the representation of each 

item as a set of features with associated values. For two data items p  and q  of 

compatible types, the natural inner product is the sum of the products of their 

corresponding features. In the following equation, i  is used to index each feature. 

Equation 1-4 Dot Products for Items Decomposable into Sub-Spaces with Dot-products Defined 

∑ ⋅=⋅
i

ii qpqp  

Notice that the dot product requires each feature of the data item to have a dot 

product defined. For numbers, this is just the normal numerical product. However, the 

value of a feature may itself be a complex structure composed from a set of features 

with values. 

Dot products have the properties that (a) they are symmetrical functions, (b) that 

0≥⋅ xx  for all values and (c) that the value of the dot product is only zero if one or 

                                                                                                                                            

products. In this text, ba ⋅  is used where the normal Cartesian dot product is meant, and ba,  is any 

function that is an inner product of a and b in some space. 



Introduction 

   15

both of the arguments has a magnitude of zero. When considering representing 

features in terms of dot products, it is necessary to ensure that they satisfy these 

constraints. For example, it would be invalid to use Blast sequence alignment scores 

as the value for a dot product, as they are not symmetrical. 

It is often useful to first transform data from its natural coordinate system (data-

space) into one another coordinate system (the feature space) in which particular types 

of analysis are easier. If φ  is a function that maps from data-space to feature-space, 

then the dot product of two items a  and b  in that space is )()( ba φφ ⋅ . If there is a 

function k  such that )()(),( babak φφ ⋅= , then k  is a kernel function. More 

explicitly: 

Equation 1-5 Definition of Kernel Functions 

 )()(),( babak φφφ ⋅=  

An interesting subset of kernel functions are equivalent to functions of the data-

space dot product. For example, given two vectors, we could define a transform that 

projected the items into the space of all possible polynomial interactions of order 2 or 

less (Equation 1-6) which allows conics to be constructed in the data-space. This can 

be expressed in terms of dot products in the data-space (Equation 1-7). This form can 

be generalized for data-spaces with any number of dimensions, and for polynomial 

interactions of any order (Equation 1-8).  

Equation 1-6 A Polynomial From a Two-dimensional Coordinate to a Coordinate Containing 

One Component for each Possible Product Involving up to Two Dimensions 

),,2,2,2,1(: 2
2

2
12121 xxxxxxxP α  



Introduction 

   16

Equation 1-7 Dot products between two polynomial mappings reduced to terms involving the dot 

product of the unmapped variables 
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Equation 1-8 Polynomial Kernel Function 

( )nnpoly babak 1),()( +⋅=
 

In terms of the time-and-space constraints, this reduces the problem of finding all 

polynomial interactions between all elements of two vectors from having complexity 

that scales badly on the length of the vectors to one that scales linearly. Explicitly 

computing polynomial interactions of order 5 would require time and space 

proportional to the fifth power of the length of the vectors, where as using an 

appropriate kernel function the cost would still be linear. 

The feature spaces for many kernel functions are very large compared to the data-

space. For almost any training set, the feature space will have more dimensions than 

training examples, and may be too large to represent explicitly. However, if the dot 

products can be calculated as a simple function of the data-space dot product, then the 

feature space size is no longer a constraint to calculations. 

The machine learning methods that can be represented in terms of sums of dot 

products can often be adapted to work with kernel functions, allowing them to explore 

solutions in the feature space of the kernel, while maintaining performance 

characteristics related to the dimensionality of the data-space. 
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It is possible to compose new kernel functions from other kernel functions and 

scalar functions. In all cases, care must be taken to not invalidate the three properties 

of dot products defined above. Here are three examples: 

1.  bgaf +  Equivalent to concatenating the feature spaces of the kernels f  

and g  after scaling them by a  and b  respectively. 

2. gf ⋅  

3. )),(( bafξ  where ξ  is any scalar function that maintains the conditions 

that apply to dot-products, such as the polynomial kernel in Equation 1-8. 

The BioJava support vector machine implementation (discussed in 4.1.1 and 4.1.2) 

provides a linear dot product kernel implementation for sparse vectors of real 

numbers. Additionally, there are a range of kernel functions that are implemented in 

the third form above that return some function of the result of another kernel function. 

These include kernels for radial basis functions, polynomials and hyperbolic tan. 

There are also kernels that implement normalising transformations, such as projection 

onto a unit sphere. Data is made available by implementing the kernel function 

interface so that it returns a dot product for some pair of Java data structures. Then, an 

appropriate feature space can be constructed by composing the kernel function objects 

as required. This affords a great deal of flexibility in the range of feature spaces that 

can be explored. 

SVMs, described in Section 4.1.1, are one of a family of models called Generalised 

Linear Models. Another related form of linear model is trained using the Relevance 

Vector Machine methodology, described in 5.3. Applications of the representations 

described here will be discussed in Chapters 4 and 5 with examples. 



Introduction 

   18

1.3.2 Signal Analysis with Hidden Markov Models 

Signal analysis methods deal with data that are composed from a linear sequence of 

observations, possibly of differing lengths. One approach to signal analysis used 

widely in bioinformatics is to infer properties of the structure of the sequence based 

upon a model of how the sequence may have been generated. The sequence can be 

represented as a series of observations x  which are indexed in the form ix  where if 

ji <  then ix  is before jx  in the sequence. 

Probabilistic Hidden Markov Models (HMMs) (Durbin 1998) are generative models 

that have been applied to a wide range of biological problems since their introduction 

to computational biology (Churchill 1989; Krogh, Brown et al. 1994). Formally, they 

define a probability distribution over all sequences that can be generated using the 

production rules of a stochastic regular grammar. One benefit in representing models 

as HMMs over stochastic regular grammars is that HMMs can be easily visualised as 

graphs, whereas stochastic regular grammars are inherently textual. 

A common and successful application of HMMs is the modelling of a family of 

evolutionarily related sequences. A popular form of model for this kind of application 

is the profile HMM, where a sequence of match states through the model represents 

the consensus sequence for some biological feature. Insertion and deletion states 

model the corresponding evolutionary events. Profile HMMs form the basis of the 

SAM package (Hughey and Krogh 1995), and profiles built with the HMMER 

package (Eddy 2001) form the basis of the Pfam database (Bateman, Birney et al. 

2000). 

Although profile HMMs are a widely used form of HMM in computational biology, 

it is possible to build much more flexible models. For example, Meta-MEME 



Introduction 

   19

(Grundy, Bailey et al. 1997) takes simple ungapped weight-matrices, which are based 

on motifs discovered using the MEME package (Bailey and Elkan 1994), and links 

these together with spacers to form higher-order models. 

Another common type of HMM is an alignment, or pair HMM. This form emits 

correlated pairs of sequences. Pairwise alignment algorithms can be represented in 

this form. The Dynamite package (Birney and Durbin 1997) provides a language for 

implementing new pair-HMM algorithms. However, Dynamite itself does not provide 

any facilities for training the parameters for these models. This means that Dynamite 

models must be parameterised by hand, a process which is more of an art than a 

science. 

HMMs can be trained from labelled training data. That is, given a set of sequences 

where the model states have been assigned, the optimal probabilities for the model 

can be calculated directly. The observation counts are normally regularized using an 

appropriate background model that reduces the possibility of over-fitting the 

examples. It is generally accepted that regularization enhances the generality of the 

model to unseen sequences. 

The most commonly used forms of regularization are Dirichlet priors (which are 

equivalent to pseudocounts) and Dirichlet mixtures (Brown, Hughey et al. 1993; 

Sjolander, Karplus et al. 1996). Dirichlet priors represent probability distributions 

over the range of possible counts, and are used to blend the probability obtained using 

the raw counts with the expected counts if the null model were true. This is 

implemented by adding extra “pseudocounts” to the observed counts. Dirichlet 

mixtures work in a similar way to Dirichlet priors, but in this case there are multiple 
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prior models, and the prior model which is closest to the observation has the most 

weight during the blending. 

It is possible to use other priors, such as multinomial Gaussian distributions and 

their mixtures over log-odds space (O'Hagan 1994), but these have not been 

extensively investigated for biological models. This is probably because as Dirichlet 

priors can be relatively easily implemented and have been applied successfully, there 

is no perceived reason to use different types of prior models. 

In contrast to training from fully labelled data, HMM parameters can be estimated 

from an unlabeled set of sequences given a model architecture. This is achieved 

iteratively by estimating a probability distribution over all possible labellings for each 

sequence given a current set of estimated model parameters. Counts can be added in 

proportion to the probabilities of the labellings, or sampled from this distribution. The 

counts are then normalized and regularized, and these new parameters are used as the 

starting point for the next round of parameter estimation. This cycle is repeated until 

the model parameters cease to change by any significant amount or a pre-determined 

number of cycles have elapsed. It is usually sufficient to start with arbitrary random 

parameters, given a model with few enough free parameters. When counts are added 

in proportion to the probability distribution over all possible labellings, this procedure 

is known as Baum-Welch training (Baum, Petrie et al. 1970; Rabiner 1989; Durbin 

1998). When adding counts by sampling from this distribution, we have called this 

procedure Baum-Welch with sampling. 

Finally, complex models can be parameterised using a mixture of labelled and 

unlabelled data. For example, models for distinguishing between protein secondary 

structure elements may have complex models for α-helix and β-sheet involving 
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multiple repeating patterns of states. Training data may be binned into sets for both 

secondary structure elements, and then maximum-likelihood used within the bins 

(Asai, Hayamizu et al. 1993). This initial splitting of the data is equivalent to a partial 

labelling of the data that restricts those observations to being generated by a sub-set of 

the parameters. 

HMMs can be applied to a wide range of sequence analysis tasks. The BioJava 

dynamic programming toolkit was intended to allow the implementation of a wide 

range of these algorithms through a consistent API. To achieve this, it was helpful to 

find a very general description of HMMs and the algorithms that are used to 

manipulate them. A good formal representation of this general description aids in 

developing clear APIs and good procedural implementations of the procedures 

described above. 

Equation 1-9 Definition of a Probabilistic Hidden Markov Model 
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We can represent an HMM as a tuple of parameters (Equation 1-9). The model 

emits symbols from an alphabet (Ω ), such as DNA. It has a finite set of states ( I ), 

often called the state-space. The model has a set of transitions (Σ ) defined as all 

ordered pairs of states. There is a probability distribution over the transitions ( e ) and 

another over the members of the alphabet emitted by each state ( t ). It is often 

convenient to represent the emission and transition probabilities as being an array of 

functions dependant upon the current state under consideration (for example, 
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Equation 1-10). In an object-oriented interpretation, these functions could be 

modelled as being properties of a state. 

Equation 1-10 Emission and Transition Probabilities 
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It is common for some values of )( jtk  to be constrained to always be zero. In this 

case, we can consider there to be no legal transition from state k  to state j . We can 

describe these states as being unconnected. A small extension to the original model 

redefines the transition term as 2I⊂Σ . From the point of view of implementing 

efficient algorithms that act upon these finite state machines and of efficient data 

structures for storing parameters, it is often important to know which states are 

explicitly unconnected, rather than happening to have a transition probability set to 

zero by a particular parameterisation. 

For example, in an HMM that models a weight-matrix of length 100, there are 100 

states, one for each column of the weight-matrix. The complete transition matrix 

would contain 10,000 elements. However, in the HMM for a weight-matrix, the only 

state that can be reached from a given state is the single one that represents the next 

column. The HMM representing the weight matrix would have 99 legal transitions in 

total. It would be an inefficient use of resources to store the square transition matrix 

when it is only necessary to use an array linear on length to the number of states in 

this model. 

A sequence can be labelled with states so that there is one state associated with each 

observation, and each transition represented by neighbouring pair of states are legal in 
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the HMM. The sequence of states is called a state-path. Formally, this can be written 

as: 

Equation 1-11 Definition of All Legal State-Sequences 

Σ∈∈ − ),(such that   of  valuea is  thereeach For 1 iiii yyIyx  

Given both x  and y  the joint probability of a sequence and its state-path pair can 

be calculated as: 

Equation 1-12 Likelihood of Observing a Given Sequence and Labelling 

)|()|()|,( 1∏ −=
i

iiii yypyxpMyxp  

Given Equation 1-12, it is possible to evaluate any state-path. With a given set of 

parameters, there will be a set of paths (often just one) that have a higher value than 

any others do. The Viterbi algorithm (Rabiner 1989; Durbin 1998) finds one of these 

paths. By summing over every possible state-path, that could have produced a 

sequence, it is possible to calculate )|( mxp . The forwards and backwards recursions 

(Rabiner 1989; Durbin 1998) calculate this value, initialising from the first and last 

symbol of x  respectively (Equation 1-13). In these recursions, it is necessary to loop 

over the variable indexing x  according to its natural ordering (and in the reverse of 

this for the backwards algorithm), and similarly the destination states for each 

transition must be looped over such that the recursion has been calculated for every 

value of the recursion that this step relies upon. 
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Equation 1-13 Common Dynamic Programming Recursions as Applied to Probabilistic Hidden 

Markov Models 
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For the case of aligning multiple sequences, the observation x  can be replaced by 

the product of all sequences being aligned such that for sequences a  and b  we end up 

aligning bax ×=  to the model where ),(, jiji bax = . We can generalise this to any 

number of sequences being simultaneously aligned, and replace the compound 

subscript with a vector i . For the Viterbi, forward and backward algorithms, we can 

proceed exactly as before, as long as we use the partial ordering of i  such that adding 

one to any component of i  would produce a new vector that comes after it. So that 

some states can advance through a sub-set of the sequences being aligned (for 

example, insertion or deletion states in a pair-wise alignment HMM), it is convenient 

to have an advance vector associated with each state. This is of the same 
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dimensionality as i . The advance vector is purely a function of a single state. A valid 

object-oriented interpretation is for states to expose an advance array as a property. 

The BioJava library allows HMMs with arbitrary architectures to be constructed. 

The HMM APIs are strongly modelled on the definitions of HMMs described above. 

In particular, the APIs do not directly distinguish between models that generate one, 

two or any other number of sequences. The sequence of observations presented to an 

HMM is represented using the BioJava Alphabet, Symbol and SymbolList APIs (2.4), 

which allows the algorithms to be applied to a much wider range of data than either 

DNA or character strings without needing to alter the code implementing the 

recursions themselves, or the associated data models. From the users’ point of view, 

there is no programmatic difference between models that are fully connected and ones 

that are extremely sparse. Section 2.6 discusses the BioJava HMM APIs. Chapter 3 

explores the use of HMMs for modelling chromosomal structure. 

1.4 Implementation and Use of BioJava 

In the following chapters the implementation of BioJava and its application to real 

problems are discussed. In Chapter 2, the implementation of the core of BioJava is 

described. In Chapters 3, 4 and 5, BioJava is applied to particular classes of machine 

learning problem. HMMs are used to discover data-compressions for whole 

chromosomes in Chapter 3, SVMs are applied to recombination rate prediction in 

Chapter 4 and RVMs are used to classify expression data in Chapter 5. 




