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Chapter 2 The BioJava Core Interfaces 

BioJava is intended to provide Java based APIs for common bioinformatics tasks. It 

also strives to be a convenient basis for writing potentially computationally expensive 

algorithms. To reduce the learning curve, and to decrease maintenance overhead, 

individual APIs must be complete enough to allow them to be used algorithmically, 

but slim enough that they can be easily implemented and used. The balance between 

making the APIs not only powerful but also small, is sometimes difficult to maintain, 

but has, in my view, fostered a high degree of elegance in the underlying object 

design. 

There are two clearly different cases where code reuse is beneficial. The first, and 

most commonly thought of case is the reuse of library code by invoking it from 

multiple applications. For example, it is very common to reuse a matrix mathematics 

library during numeric programming. We could call this the “new using old” case. 

The other reuse case is when library code can execute a tried-and-tested procedure 

that in turn calls some application specific code. For example, in Java, a listener can 

be registered with a window to handle mouse movement events. In this case, the 

library code is responsible for drawing the window and for invoking the listener of 

mouse movements, but the exact behaviour of the library is customized by the 

listener. We could call this the “old using new” case.  

The design and implementation of the BioJava libraries has primarily been an 

exercise in computer science, not biology. Throughout, we have striven to foster a 

high degree of code reuse both by providing APIs that can be used in a wide range of 

contexts (new using old), and by providing opportunities for developers to drop in 

new implementations of these APIs without affecting existing code (old using new). 
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The APIs relevant to this dissertation, and for which I have been primary designer and 

implementer, are the following: 

• Nested Exceptions and Assertions 

• Changeability 

• Symbols, Alphabets and SymbolList 

• Sequence, Feature and SequenceDB 

• Distribution 

• MarkovModel 

• Query 

Wherever possible, the API is defined in terms of Java interface definitions, 

allowing for the seamless integration of multiple implementations. Indeed, it has been 

the reliance on interfaces that has made the development of the BioJava library 

relatively rapid and robust. We have discovered that nearly all core data types can be 

implemented in multiple ways depending upon a host of factors, so the entire toolkit 

makes as few assumptions about implementation as are possible. 

2.1 Java as a Language for Bioinformatics 

Java (Gosling, Joy et al. 2000) is a language created by Sun Microsystems, 

originally for use in imbedded systems such as mobile phones, watches and ABS 

systems. It relies upon a definition of a virtual machine (VM) (Lindholm and Yellin 

1999) that is responsible for thread and memory allocation, byte-code instruction 

execution and enforcing security restrictions. The byte-code is naturally object-
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oriented and has support for advanced features such as exception handling and thread 

synchronization. The byte-code acts upon a stack of working variables, an arbitrarily 

large set of virtual registers and the object (or class) that is currently in scope. There is 

no pointer type in Java, or in the byte-code, making it impossible to write byte-code 

that addresses arbitrary memory. Theorem provers can be used to validate that a given 

portion of byte-code is safe to execute, avoiding some of the issues with other 

languages (such as invalid memory allocation, executing instructions on inappropriate 

types and validation that the execution stack is always in a consistent state). 

The Java VM is responsible for interpreting the byte-code and for environment 

functions such as memory allocation and garbage collection (freeing objects from the 

memory pool once they are no longer within scope), system calls (IO, process 

execution, thread management) and managing peers to the native operating system 

graphical user interface (GUI). With a VM of a given version (e.g. 1.2.2) and any 

platform (e.g. Sun for Windows, Compaq for Tru64), executing a portion of byte-code 

should produce exactly the same results, even if the performance differs13. This code 

portability by design is historically one of the major benefits of Java. In practice, 

platform incompatibilities nearly always arise from platform-specific portions of the 

VM, such as graphical peers, rather than bugs in the execution of byte-code. 

                                                 

13 Since version 1.4 of Java, some floating-point mathematical operations may be implemented by 

processor-specific instructions that do not conform to the IEEE floating-point maths required by the 

Java virtual machine specification. In the vast majority of cases, this does not change the result of a 

calculation greatly enough to alter program behaviour. The keyword strictfp can be applied to any 

class or method that must uses the IEEE-compliant math operations, such as numerically intensive code 

that needs particular overflow/underflow and rounding semantics. 
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Pure Java byte-code interpretation has historically been slow relative to native code 

(compiled from C/C++ or FORTRAN, for example), but has always compared 

favourably to other interpreted languages such as Perl. Recently, with the move of 

Java from toy examples and small graphical applications to large, demanding 

applications such as web-server back ends (especially J2EE14) and large-scale 

numerical processing (for example, the Colt matrix mathematics library15), a number 

of technologies have appeared to improve the performance. 

Initially, just-in-time (JIT16) compilers increased performance of large blocks of 

numerical code to that comparable with C++ by compiling each byte-code function 

into native code for the physical processor once a class was first loaded (present even 

in many Java1.1 VMs). Some Java byte-code instructions could be represented 

cleanly as one or more simple native instructions (for example, the arithmetic 

operations). However, many Java byte-code instructions have no direct representation 

(such as object allocation, or method invocation), so must be converted into calls to 

the virtual machine. JIT compilers tend to do a good job of increasing the 

performance of numeric code that resembled more classically procedural 

programming styles. JITs proved insufficient for many tasks as many Java methods 

are small, and very often are executed as virtual calls which can not be resolved at 

compile-time. In addition, due to the highly polymorphic nature of much Java code, it 

is often impossible to perform optimisations because the simple type-based system 

                                                 

14 See http://java.sun.com/j2ee/ for information related to the J2EE standard 

15 Colt is distributed from http://tilde-hoschek.home.cern.ch/ ~hoschek/colt/index.htm 

16 See http://java.sun.com/docs/jit_interface.html for more information about Sun’s JIT compiler 
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can’t give enough information to know the context within which code will be 

executed. 

The latest family of virtual machines are based upon Sun’s Hotspot Virtual 

Machine architecture17. This uses a mixture of several techniques to remove 

performance bottlenecks and optimise code execution. Firstly, a large portion of Java 

execution time can be spent in object allocation and garbage collection. This is 

especially expensive for objects that are allocated and then discarded within inner 

loops. Hotspot initially flags objects with a creation time, and places them into a 

nursery area. When more memory is needed, Hotspot first attempts to free objects 

within the nursery rather than completing a full garbage-collection cycle. 

As an anecdotal example of how this can impact performance, I wrote some code 

that unnecessarily allocated a large number of objects within a tight loop, and then ran 

the application on a PIII 800MHz with the Hotspot Virtual Machine and a Compaq 

DS40 with Compaq 1.2.2 Fast VM. After one and a half days, the process on the 

DS40 had still failed to complete. On the PC, it completed after 110 seconds. Once 

the unnecessary objects were not being created, the Compaq server took just 20 

seconds to execute the code, and the PC took 56 seconds. This clearly indicates the 

affect of the VM implementation upon performance. 

After careful memory management, the second truism of code optimisation is that 

5% of the code will account for 95% of the execution time, so if you wish to focus 

efforts upon optimisation, this is the portion to target. The hotspot VM continually 

                                                 

17 See http://java.sun.com/products/hotspot/docs/whitepaper/ Java_HotSpot_WP_Final_4_30_01.html 

for more information about Sun’s hotspot VMs 
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profiles the application, and concurrently optimises each of the execution hot spots. 

This results in applications increasing in performance as they are run (often by factors 

of greater than 10 times). 

Method invocations make many optimisations impossible, especially if the method 

is bound at execution time rather than at compile time (for example, virtual method 

invocations). This is because the optimiser does not know what the side-effects of the 

invoked code will be, so it can’t really perform aggressive optimisations to eliminate 

redundant code or to reorder instructions across function calls. 

In traditional languages, this has been tacked with tactics such as macro-expansion, 

inlining and by defining many methods as not being over-ridden by subclasses, 

making the linkage static. The hotspot VM takes another approach by dynamically 

inlining functions to produce multiple context-dependant compiled and optimised 

versions of a given portion of an application. Most small functions, such as get/set 

pairs can be trivially inlined, removing the method invocation overhead completely. 

Increasingly complex methods may be inlined, allowing loop variables to be merged 

and larger blocks of code to be optimised. Certain types of objects can be proven to 

decompose to the set of their fields and methods only (i.e. their object reference is 

never explicitly used to test for identity), in which case the fields can be allocated on 

the stack. This is similar in spirit to having the power of a templated method that can 

be parameterised with the template type during run-time. The result of these 

optimisations is that hotspot-interpreted Java code that is polymorphic or uses many 

small methods can often execute at speeds comparable to or faster than similarly 

polymorphic C++ code. Currently, dedicated procedural style C or C++ may out-

perform similar Java code, but even here Java is making inroads. For example, the 
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Colt matrix maths library in Java now has comparable performance to the FORTRAN 

matrix math libraries. There is undoubtedly more work to be done for high-end 

computation in Java, but it is no longer an insurmountable obstacle to the acceptance 

of Java for the hard end of Bioinformatics. 

Bioinformatics is a field that is constantly redefining itself. Some problems are 

clearly defined, such as the alignment of two proteins using the Smith-Waterman 

algorithm (Smith and Waterman 1981). However, many other issues are moving 

targets. There is also the constant pressure to produce results quickly. Traditionally 

this has caused a polarization between the development of handcrafted applications in 

languages such as C for specific tasks like the BLAST applications (Altschul, Gish et 

al. 1990), and the use of rapidly developed ‘throwaway scripts’ in scripting languages 

such as Perl18 and Python19. In practice, ‘throwaway scripts’ often become the basis of 

sequence analysis pipelines that have a lifetime of months or years, and are 

maintained by a succession of individuals. Eventually, these must be re-written to 

improve performance, to fix bugs inherent in the initial design, or to allow the 

application to perform tasks that were not part of the original design aims. 

Java is a suitable language for rapidly developing Bioinformatics applications. It 

can be used to write the computationally expensive as well as the flow-control 

portions of Bioinformatics scripts. If libraries of biological functionality are 

developed, and these are easy to use and extend, then it becomes possible to achieve 

rapid development of throwaway scripts. If these short-term applications become part 

                                                 

18 The Perl web site can be found at http://www.perl.org/ 

19 Python is distributed from the http://www.python.org web site 
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of pipelines, the object-oriented nature of Java code means that it is potentially 

possible to salvage much of the intellectually expensive code, and to quickly isolate 

design faults. 

The Java compilers are much more pedantic than C or C++ compilers, disallowing 

many unsafe constructs that can generate strange runtime behaviour. For example, 

casts are checked where possible, and arbitrary pointers do not exist. Memory 

allocation and de-allocation are handled by the VM. This means that many errors that 

would show up as a program crash in other languages cause the Java compiler to 

generate error messages. 

BioJava is intended to provide the functionality needed to rapidly develop effective 

Java applications for bioinformatics. The design of the language, compiler and virtual 

machine help greatly in quickly developing robust applications. BioJava builds upon 

this strong foundation by providing APIs for common biological objects and tasks, 

such as biological sequences, and reading these from files. Additionally, a number of 

classes provide basic functionality that increases both the encapsulation and the 

robustness of BioJava’s highly polymorphic code. The rest of this chapter describes 

the core classes and interfaces that provide this functionality, and for which I was 

solely or primarily responsible for the design and implementation. 

The conventions adopted here for referring to Java types and methods are those 

used in the Java documentation. When referring directly to types and methods, the 

type used is fixed width. When methods are referred to, the usual form will be to 

name the method followed by ellipses as in someMethod(), regardless of the actual 

arguments accepted by the method. If it is necessary to describe the parameters 

accepted by a method, either for the clarity of the text, or to disambiguate over-loaded 
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methods, the types of the arguments will be included as in anotherMethod(String, 

int). In a few very rare cases, the names of the arguments must be included as in 

substring(int start, int length) so as to make the semantics more clear. In 

general, once a method is introduced, it will be referred to using the shortest 

unambiguous form. 

2.2 Nested Exceptions and Assertions 

Both during the development of applications and their deployment, failures occur. 

These may be due to the application being implemented incorrectly, being used with 

data that it was never designed to be used with, or by some external failure, such as a 

break in network communication. Programmatically handling failures gracefully and 

informatively is a key to developing robust software rapidly. 

Java supports the handling of error conditions by the throwing of exceptions. The 

built in exceptions have a constructor that takes a message String only. Java methods 

can be defined as throwing a list of Exception types. This means that the method can 

raise any one of these exceptions if it is unable to complete processing, and that it is 

limited to this list of checked exceptions. Some exceptions, such as 

OutOfMemoryException are unchecked as it would be difficult to guard against the 

many places where they may be raised without bloating both the volume of source 

code and impacting upon run-time performance. During invocation, a method may 

choose to not raise any of the listed exceptions (indicating that it was successful). 

Function calls in C generally return an error code to indicate error status. In Java, the 

method would return a value if it was successful or throw an exception if it was 

unable to complete. The basic exceptions are applicable to the case where the error is 
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caused by a failure in the program that is clearly attributable to a single action, such as 

accessing a file, or an array index being out of bounds. 

When complex applications are composed of multiple ‘black box’ modules, failures 

in one module may cause failures in another module. With classical exceptions, the 

original cause would either percolate up by allowing the Exception to be thrown 

from all methods in the first module that invoke methods in the second one, or would 

have to be caught, and a new Exception thrown to describe the failure. The first 

alternative tends to lead to methods throwing very large numbers of specific 

exceptions defined in other modules or it leads to methods throwing extremely 

general exceptions that provide poor programmatic control over error handling. This 

problem becomes even more pronounced when there are multiple implementations of 

a given interface. The interface author can not possibly foresee all of the ways the 

interface may be implemented or the range of potential failures, so can not declare all 

of the exceptions that may be raised by all implementations. For example, if an 

interface is implemented using a Common Object Request Broker Architecture20 

(CORBA) peer in one case and file access in another, the implementations may fail 

due to CORBA-specific exceptions or problems with file access, but the original 

interface author could not have known this, so would not have listed exceptions 

specific to these two failures in the methods. 

BioJava provides subclasses of Exception and Error (the base-class for unchecked 

exceptions) that have an extra field that contains a reference to a causal exception. 

These are called NestedException and NestedError respectively. In the above 

                                                 

20 http://www.omg.org/ is the web-site for the organisation that manages the CORBA standards 
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example, the interface author would declare the methods as throwing sub-classes of 

NestedException describing the type of the failure (something like 

RetrievalFailedException). The CORBA implementation would catch the 

CORBA-specific exceptions and then construct and throw a new 

RetrievalFailedException instance that refers to the CORBA exception. Similarly, 

the file-based implementation would catch IOException instances and throw new 

RetrievalFailedException instances that refer to the IOException that caused the 

failure. NestedException and NestedError can be nested to arbitrary depths, 

allowing a complete ‘chain of evidence’ to be collected about the cause of errors 

without requiring modules to have knowledge of all of the exceptions raised by 

indirect dependencies. 

This ability to have both a complete chain of evidence for any failure while 

respecting encapsulation has made it much easier to develop portions of the BioJava 

library independently of one another while still allowing them to rely on functionality 

provided by other BioJava modules. In our view, this has strongly contributed to the 

rapid development of the libraries. 

Because of a combination of Java not supporting sub-classing by restriction, and the 

Java compiler being pedantic about ensuring that each error condition is accounted for 

in the code, exceptions must be caught even when they are logically impossible to 

generate. For example, if counts are being collected for a probability distribution over 

the DNA alphabet, and the sequence is known to be DNA, then it should be 

impossible to raise an IllegalSymbolException. However, because the component-

based APIs don’t have this information, the compiler will expect the exception to be 

handled. The recommended way to handle this is to catch the exception and throw a 



The BioJava Core Interfaces 

   37

NestedError instance indicating that an assertion has been violated. The 

NestedError instance will cause the stack to unwind until it is explicitly caught. If 

not caught, the thread will exit with an error message. In theory, this case should 

never happen, but in practice, incorrectly implemented objects manage to invalidate 

these checks, particularly during development, and the assertion failures clearly 

pinpoint the source of the errors. 

Nested errors and exceptions are used throughout the BioJava libraries and in many 

of the applications that use these libraries. They have proven to be invaluable in 

writing robust code. Sun has added the concept of nested exceptions to the latest 

version of Java (1.4), and we look forward to merging our system with theirs. 

2.3 Changeability 

When developing complex applications, and in particular those which may contain 

multiple threads of execution, it is important to control which resources may change 

and which can not. Often, it is also very important to be informed if something does 

change so that some action can be taken. Unfortunately, the exact details may need to 

be decided at run-time, so can not be implemented at compile-time as a mutable or 

immutable interface implementation or by using keywords (such as C’s const 

modifiers). Robust applications that are built in a modular manner need strong 

guarantees about which resources will and won’t be modified, and expect these to be 

enforced.  

An object may change state because a method is invoked that would directly modify 

it. Alternatively, it may change state because some other object, that it delegates state 

maintenance to, is modified. For example, a List instance may be modified by 

invoking the add method to append an item to the list. A view on the list returned by 



The BioJava Core Interfaces 

   38

Collections.unmodifiableList(List) cannot be modified directly, but if the 

underlying list is altered, then the unmodifiable view will reflect this change. This 

illustrates the difference between modifiability and changeability. The unmodifiable 

list is changeable, as there is a legal way for its data to be altered, even though it can’t 

be modified directly. 

BioJava contains a complete object model for tracking the changes made to objects, 

and for allowing changes to be prevented, without breaking object encapsulation. The 

Changeable interface defines methods to add and remove listeners which will be 

informed when the state of an object alters. These listeners are informed before the 

object attempts to change, and have an option to veto the change by throwing a 

ChangeVetoException. If none of the listeners throws an exception, then the object 

updates its state and then informs each listener of the change. At this stage, each 

listener can synchronize state to ensure data-integrity. In principal, this is a very 

similar design pattern used by Java Beans to implement ‘bound properties’, but offers 

several advantages akin to those provided by a simple cascading transaction 

processing framework. 

Each BioJava interface that extends the Changeable interface has public final static 

fields that hold ChangeType instances that encapsulate one way that the Interface 

implementations may change state. For example, FiniteAlphabet defines a static 

field called SYMBOLS that represents a modification that changes which Symbol 

instances are contained within the alphabet. Each implementation of FiniteAlphabet 

is required by the Changeability API to allow ChangeListener instances to be 

registered. The ChangeType class supports the idea of a hierarchy of change types. 
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The root of this hierarchy is UNKNOWN. When listeners are added to a changeable, 

they will be informed of all events that descend from that type. 

It is required by the contract described in the Changeable documentation to inform 

all listeners registered for a given type and all of its descendents whenever state 

changes by invoking the preChange() method on each listener before it changes state 

If any one of the listeners vetoes the change, or if for any other reason the state cannot 

be updated, then an exception will be raised. If the change can go ahead, it will 

commit the state change and then invoke the postChange() method on listeners to 

inform them that the state has been successfully modified. There is no guarantee made 

about the relative orders that different listeners will be informed either before or after 

a change is made. It is legal to inform different listeners in different threads, and in 

some situations this may be a sensible thing to do, if for instance, the listeners need to 

communicate with network resources. 

The preChange() method indicates that a change should not be made by raising a 

ChangeVetoException. ChangeVetoException extends NestedException, 

allowing a change to be prevented because of a failure elsewhere in the application to 

publish this information. A common cause for this is when an object stores its state in 

a delegate. If a method is invoked on the object that would modify the delegate, and 

the change on the delegate is vetoed then the delegate will raise a 

ChangeVetoException. This will be caught by the object and a new 

ChangeVetoException will be thrown indicating that the requested modification 

could not be made. This new exception will nest the original exception, allowing the 

complete reason for the failure to be maintained. One very useful ChangeListener is 

the AlwaysVeto instance. This always throws a ChangeVetoException in 
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preChange(), ensuring that the change cannot go ahead. In this way, a mutable 

implementation of an interface can be instantiated, populated and then locked. From 

that moment on, no more modifications can be made to it. 

The way that the Changeability API can be used to dynamically constrain what data 

can change, and what data is fixed, can be illustrated by the dynamic programming 

code. While an HMM is being used for an alignment, AlwaysVeto is registered as a 

listener to all of its parameters, preventing them from changing. Once the alignment 

has been completed, the AlwaysVeto listener is removed, allowing it to be modified 

again. This kind of fine-grained and dynamic control of which properties can be 

modified is key to developing robust and modular BioJava functionality. 

ChangeEvent contains a field to store another ChangeEvent. This is used in the 

case when a change in one object leads to a change in another. For example, if a 

probability distribution that encapsulates some transition probabilities in an HMM 

changes then the HMM will no longer have the same parameters. The HMM will 

listen to each distribution, waiting for them to change. Whenever they do, it will 

inform listeners that the model parameters have changed with a ChangeEvent 

instance that refers back to the event fired by the probability distribution. Again, by 

maintaining references back to the event that caused the new event to be fired, a 

complete ‘chain of evidence’ can be built up about why an object wishes to change, 

without invalidating the objects encapsulation. This potentially allows listeners to 

accept or reject a change according to one of the underlying causes. 

To avoid the expense of maintaining the entire changeability infrastructure all of the 

time, several BioJava objects only build the support objects once listeners have been 

registered. In this way, the cost of having changeability support in an object with no 
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listeners is the cost of one field in the object that has a null value. Once listeners are 

added, this field would be filled with a reference to the support data-structures. 

Mutator methods can easily chose not to perform expensive operations while there are 

no listeners, such as protecting the listener list with a synchronized block. In addition, 

if some listeners have been registered, but none have been added that need to be 

informed of changes to state-delegation objects, then there is no need to instantiate the 

change-forwarding apparatus. By implementing the classes that will take part in a 

network of Changeable objects carefully as described here, it is possible to avoid 

almost all unnecessary overhead. 

The Changeability API is used extensively throughout the BioJava libraries. It has 

proven to be effective at guarding against design flaws and has prevented countless 

bugs that could have been caused by assuming the involatility of data. It has also been 

leveraged within the DAS21 (Dowell, Jokerst et al. 2001) and GUI packages to 

implement efficient data-caching schemes. In the future, it may be necessary to 

implement a full transaction-processing framework. Until then, the Changeability API 

will continue to be an invaluable tool. 

2.4 Symbols, Alphabets and SymbolList 

Although BioJava must deal with DNA and protein sequences, the underlying 

interfaces for defining sequences is extremely flexible, allowing almost any signal to 

be represented as a stream of symbols. This allows all code defined in terms of these 

APIs to be applied to a wide range of use-cases. For example, the FASTA file format 

object can be used to read and write state labels from HMMs without any change, 

                                                 

21 The DAS standard, and associated information is published at the http://biodas.org/ web site 
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simply by parameterising it with the alphabet of states for that HMM, and the 

sequence viewing APIs can be used ‘out of the box’ with this data. This section 

describes these APIs and how they can be used to represent sequences of complex 

data structures in addition to DNA.  

The interfaces borrow heavily from the concepts of an entity, a set and a string. A 

set is an item that contains some number (possibly zero) of entities. A string is an item 

that can be represented as an ordered list of entities (possibly zero in length). If all of 

the entities in a string belong to a particular set, then it is described as a string over 

that set. For Java String objects, the entities are char instances, the set is the 

Unicode Character Set and the string is the String class. In BioJava, the Symbol 

interface represents an individual entity, Alphabet represents a set of Symbols and a 

SymbolList represents a string over an Alphabet. These interfaces are designed to be 

as mathematically elegant as possible, as over time this has made them very useful for 

seamlessly implementing algorithms. This has had the unfortunate side effect that a 

large amount of documentation is needed to describe what all of the API does. 

Fortunately, users of these APIs usually do not need to know the finer details to 

perform all common tasks. 

To reduce the amount of special-case code required, the Symbol interface 

represents ambiguity symbols, such as ‘n’ or ‘x’ and gaps ‘-’ as well as concrete 

symbols such as the nucleotides ‘a’, ‘g’, ‘c’ and ‘t’. Sometimes the natural alphabet to 

work in can be represented as the cross product of other alphabets. When writing code 

to translate a region of RNA, it is convenient for the code to work with RNA triplets. 

The natural alphabet for this is RNAxRNAxRNA, which contains symbols that 



The BioJava Core Interfaces 

   43

represent entities like [a, u, g] and [c, c, c]. To allow all of this to be represented 

consistently, three symbol interfaces extend one another. 

Symbol is the most generic interface. Alphabet and SymbolList are defined in 

terms of in terms of this interface. Symbol has two methods. A textual representation 

is provided by getName(), which returns a human-readable string like ‘Adenine’ or 

‘gly’. The getMatches()returns an Alphabet that contains all of the Symbols that are 

valid matches to this one. The matches Alphabet will by definition contain the 

symbol itself, as it must match itself. For a Symbol that is ambiguous, such as ‘n’, this 

alphabet will contain multiple items. For a Symbol that has no ambiguity, such as ‘a’, 

this will return an Alphabet containing just that single Symbols. Gaps are represented 

by symbols that return an empty alphabet for getMatches(), representing the idea 

that there is literally nothing there, even though space must be reserved for it. Two 

Symbol instances are considered equivalent if their getMatches() alphabets contain 

exactly the same set of Symbols. An Alphabet does not contain a Symbol if there are 

any members of getMatches() that are not also members of the Alphabet. 

BasisSymbol extends Symbol and adds the method getSymbols() that returns a 

List of Symbol instances. Any column of any alignment can be represented as 

BasisSymbol instance, as it is a list of individual symbols, one from each sequence in 

the alignment. If a Symbol comes from some Alphabet ‘a’ that can be represented as 

the cross product of a list of alphabets, ‘A’, then it is a BasisSymbol if it can itself be 

represented as a list of BasisSymbols. All one-dimensional Symbols are 

BasisSymbols, as clearly an alignment of a single sequence contains columns with 

single symbols in it. 
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The codon [a, a, t] is a BasisSymbol because it is represented by the list ‘a’, ‘a’ and 

‘t’ from the DNAxDNAxDNA alphabet. The codons {[a, a, t], [a, c, t]} can be 

represented as [a, {a, c}, t], which again is a list of three symbols. The codon {[a, a, t], 

[a, c, t], [a, a, g]} can not be represented as any single list of symbols, so it is not a 

BasisSymbol. However, {[a, a, t], [a, c, t], [a, a, g], [a, c, g]} can be represented as [a, 

{a, c}, {t, g}], so is a BasisSymbol. An Alphabet does not contain a BasisSymbol if 

there is any member of getMatches() that it does not contain. Additionally, an 

Alphabet does not contain a BasisSymbol if it is of a different order to the Alphabet 

(for example, the basis symbol is of length 3, but the alphabet is the product of two 

other alphabets). 

AtomicSymbol extends BasisSymbol but adds no methods. These symbols actually 

make up an alphabet, and are never ambiguous. There is an AtomicSymbol for ‘a’ or 

the codon [a, t, c]. Since AtomicSymbol instances can’t be ambiguous, AtomicSymbol 

adds the constraints that getSymbols() must return a List that only contains 

AtomicSymbols. For the same reason they also add the constraint that getSymbols() 

must return an Alphabet that contains exactly one Symbol, and that should be the 

instance itself. Two AtomicSymbol instances are considered to be equal if they are 

referred to by the same Java reference, that is, they are comparable by the == operator. 

This constraint is not mathematically required, but is necessary to implement efficient 

algorithms. A Java reference is of the same size as a pointer, and the == operator will 

have the same overhead as pointer comparison. On many architectures, this will be as 

efficient as comparing integers or characters. 

In practice, most user code never need know that Symbol instances can be cast to 

BasisSymbol or AtomicSymbol because the API is complete enough that any APIs 
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can be defined to work with Symbol directly and hide any casting inside library code 

methods. For example, the TranslationTable interface defines a method to translate 

a Symbol from one Alphabet into a Symbol in another Alphabet (representing the 

concept of a function with the domain being the first Alphabet, and the codomain 

being a subset of the second Alphabet). This can be implemented by maintaining a 

table for each AtomicSymbol in the source alphabet and the associated AtomicSymbol 

in the target alphabet. Given any Symbol, it would first check if it was castable to 

AtomicSymbol. If it is, then the return value can be found directly by looking it up in 

the table. If it is not, then each AtomicSymbol instance in the getMatches() alphabet 

can be translated in turn and a new ambiguous symbol can be made representing this 

set of translated symbols. In either case, the code calling the translate method need not 

know anything about the actual type or implementation of the symbol instance. 

The gap symbol needs special treatment to avoid various logical problems. The 

purest version of gap would represent a perfectly empty set, which is dimensionless. 

Indeed, the EMPTY_ALPHABET constant contains just this entity. The pure gap is a 

Symbol that returns EMPTY_ALPHABET in response to getMatches(). All 

Alphabet instances contain this gap. This is because there is no AtomicSymbol 

instance that matches the gap, so there can never be one that matches the gap that is 

rejected by any Alphabet instance. 

In addition to the pure gap, there are gap symbols that represent columns in 

alignments that contain gaps themselves. We can refer to a BasisSymbol that is a list 

containing as [gap]. The gap and [gap] symbols are distinct entities. The pure gap 

takes up no space in any direction. The [gap] symbol takes up space in one direction. 

Alphabets like DNAxDNA would contain both gap and [gap, gap], but it would not 
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contain [gap], as [gap] is a 1-dimensional BasisSymbol, and DNAxDNA is two-

dimensional. Using this notation, we could represent a column in an alignment 

between two sequences with a gap in the first sequence as [gap, sym]. Symbols like 

this have no AtomicSymbol instances that could possibly match them, so their 

getMatches() alphabet is empty. In geometrical terms, this is similar to finding the 

volume of a solid that has one dimension of size zero. If there is some alphabet that is 

the cross product of other alphabets, some of which are themselves cross products of 

other alphabets, the gap symbol respects this. For example, the alphabet 

DNAx(DNAxDNA) would have the gap symbol [gap,[gap,gap]]. Although this looks 

complicated, it is in fact necessary to correctly maintain all available information 

about a Symbol. It allows algorithms such as the dynamic programming recursions to 

distinguish between insertions in each sequence, cells that are at the start or end of 

one sequence, and cells that lie outside the range of the sequences.  

The Alphabet interface represents a set of Symbols, and can therefore be uniquely 

represented as a set of AtomicSymbol instances. It follows that any ambiguity symbol 

is a member of an alphabet if its getMatches() Alphabet is a subset of the 

alphabet. The contains(Symbol) method returns true if the argument is a member of 

the Alphabet, and false otherwise. As a convenience to code that uses Alphabet, it 

also has the method validate(Symbol) that throws an IllegalSymbolException if 

the symbol is not contained in the alphabet, and silently returns otherwise. This is in 

concept similar check to a run-time class cast check. 

 Alphabets have a name retrieved by getName(). This is intended to be human-

readable. It is also used as a unique identifier for the alphabet, allowing alphabets to 
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be serialized between different virtual machines and resolve to a single unique 

instance. 

To convert from text to Symbol instances, an Alphabet can provide access to 

multiple SymbolTokenization instances via the getTokenization(String) 

method. The tokenization registered under the string ‘token’ will allow Strings to be 

parsed into Symbols using some well-known single character codes. Alphabets may 

provide other tokenizations. 

When the product is taken of a List of Alphabet instances, getAlphabets() for 

the resulting Alphabet will returns an equivalent List. It follows that 

getAlphabets() returns a List of Alphabets that when multiplied together in that 

order would generate that Alphabet. The EMPTY_ALPHABET constant is 

equivalent to the product of a zero length list. One-dimensional Alphabets such as 

DNA, return a single element List containing themselves. The Alphabet 

DNAxDNAxDNAxPROTEIN would return the list [DNA,DNA,DNA,PROTEIN], 

and so on. 

Two factory methods allow Symbol instances to be retrieved from an Alphabet 

while allowing it to maintain internal state and manage memory efficiently. The 

getAmbiguity() method takes a Set of Symbol instances. It returns a Symbol 

instance that has a getMatches() value that contains all of the AtomicSymbol 

instances matching any one of the Symbol instances in the Set. The getSymbol() 

method takes a List of symbols and returns a single Symbol that represents the 

product of these. Both methods validate the input collections to ensure that the 

resulting Symbol is a legal member of the Alphabet. 
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These methods could potentially need to do some fairly involved processing. They 

must make sure they return the most specific type of symbol possible. If an equivalent 

symbol exists in the virtual machine, it should return that instance. The 

AlphabetManger class provides several methods to help in this process, simplifying 

the implementation of Alphabet. 

FiniteAlphabet extends Alphabet and represents the case when there are a finite 

number of AtomicSymbol instances that are contained in the Alphabet. Because the 

set is now finite, we can meaningfully define some more methods. The number of 

AtomicSymbol instances in the Alphabet is returned by size(), and iterator() 

returns an Iterator over these. Additionally, it adds the mutator methods 

addSymbol() and removeSymbol(), which allow the set of symbols contained to be 

altered. 

Alphabets such as DNA and PROTEIN are represented by instances of 

FiniteAlphabet. There are non-finite Alphabet instances for things like the set of 

all integers and doubles. The Alphabet representing all Symbols for integers between 

1 and 100 will be a FiniteAlphabet. Otherwise, they are non-finite, and just 

implement Alphabet. There are a range of package-private implementations of 

Alphabet and FiniteAlphabet that implement these rules. AlphabetManager 

provides the main API for manipulating these entities. 

SymbolList represents a list of Symbol instances from a single Alphabet. The 

getAlphabet() method returns the Alphabet it is over. The symbolAt(int) method 

returns the Symbol at that index. The length of the SymbolList is returned by 

length(). Arguments to symbolAt() must be between 1 and length() inclusive. A 

portion of the SymbolList can be retrieved by invoking subList(int start, int 
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end), where start and end must also be legal indexes. The sub-list returned is 

inclusive of both start and end. 

The default implementations of SymbolList in BioJava over finite alphabets all use 

the ‘flyweight’ design pattern (Gamma, Helm et al. 1994)[195] to keep memory 

consumption to a minimum. Internally, the SymbolList maintains references to the 

small number of Symbol instances in their Alphabet. This means that in a 

SymbolList that is a million DNA symbols in length will be represented as a list of 

one million references to the four DNA AtomicSymbol instances in the DNA 

Alphabet. Because the SymbolList interface places no requirements on the actual 

storage of the data, it is possible to implement many different storage mechanisms. 

For example there are implementations that fetch portions of the underlying data from 

files or databases on demand. 

Alphabets for DNA, RNA and protein are in use daily with the BioJava toolkit. 

Additionally, subsets of the alphabet of all double values are used to represent DNA 

physical properties (such as curvature or flexibility), and higher order alphabets are 

routinely used to encapsulate everything from multiple-sequence alignments to the 

results of alignment algorithms to 3-D coordinates. The apparent complexity of the 

underlying symbol model has more than paid for itself by the vast increase of 

potential applications now available to objects and algorithms which purely rely on 

these interfaces, not the underlying data. 

2.5 Locations, Sequences and Features 

The Symbol, Alphabet and SymbolList APIs were primarily designed to be a good 

basis for developing algorithms. In contrast, Sequence and Feature are designed for 

representing bioinformatics concepts such as database IDs, repeat regions and exons. 
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Sequence represents an entire biological sequence, be it a chromosome, a clone or a 

primer. A Feature represents a region of a Sequence that is annotated as being 

interested for some reason. It may, for example, be a repeat, an exon or a protein 

active site. The position of a Feature is specified by a Location object. 

The Location interface represents an immutable set of indices. A Location may be 

a single index (such as 73), or the range of indices (like [1000..1100]), or all indices 

that are odd, or any other arbitrary set (for example, {73, [1000..1100]}). Location 

defines the methods getMin() and getMax() to return the lowest and highest index 

contained within that Location. The method contains(int) indicates whether an 

index is contained. For all locations other than EMTPY_LOCATION, both getMin() 

and getMax() are contained by the Location. 

There are specific implementations for special cases, such as PointLocation for a 

single index and RangeLocation for a contiguous range, and CompoundLocation for 

dis-continuous regions. The equals() method will return true if two instances contain 

exactly the same set of indices, regardless of the concrete class of the instances. 

The methods isContiguous() and blockIterator() work together to expose the 

state of the Location without exposing the storage. The isContiguous() method 

returns true if there are no indices above getMin() and below getMax() that are not 

contained. The blockIterator() method returns an Iterator over a minimal set 

of Locations that are guaranteed between them to contain each index exactly once, 

and are themselves contiguous. For a contiguous Location, this will return an 

Iterator that just returns that instance. 
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There are several methods that compute new Locations from old ones; 

translate(int dist), intersections(Location l) and union(Location) 

perform the obvious functions. The methods overlaps(Location) and 

contains(Location) return true or false depending on whether the argument 

overlaps or is entirely contained within the Location respectively. Using these 

operations, it is possible to build arbitrary Location instances without ever needing 

to know how a Location is implemented. This makes code using the Location APIs 

very easy to maintain, while enforces ridged encapsulation. 

Locations are used within the context of the APIs described here. They have, 

however, been found useful for a range of other applications including bookkeeping 

to store which pixel indices have been used in GUIs, and also for prime-number 

searching algorithms. 

The FeatureHolder interface represents a collection of Feature instances. It has 

methods to count how many features it contains, return an iterator over them, and to 

return a FeatureHolder containing all the Features that match a filter criterion. 

There are implementations of FeatureHolder that directly store features. Other 

implementations encapsulate views of over FeatureHolders (for example, 

performing a translation and strand-flip operation) or just store the rule necessary to 

fetch the underlying data when needed (quite common when implementing adapters 

to high-latency storage, such as databases). 

The Annotatable interface specifies one method, getAnnotation(), which returns 

an Annotation object. The Annotation object is just an associative array (key to 

value mapping) where arbitrary information can be stored. 
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Sequence extends FeatureHolder, making it a container of features. It also 

extends the SymbolList interface so that it can represent the primary sequence. In 

addition, it adds a name and URI property for naming the sequence uniquely and also 

extends Annotatable so that arbitrary information that pertains to the entire sequence 

can be stored. 

There are implementations of Sequence that store the sequence and features in 

memory. Other implementations include those that manipulate whole-chromosome 

assemblies or data from Ensembl (Hubbard, Barker et al. 2002) and DAS. The 

interface-centric design means that an implementation of Sequence that suits a 

particular situation can usually be trivially composed from a suitable implementation 

of SymbolList, Annotation and FeatureHolder. As Java does not support multiple 

inheritance of implementations, this is achieved by storing references to objects 

implementing each of these interfaces and explicitly forwarding method invocations 

as needed. 

Other than the effort required to initially enter the code that forwards method calls, 

this actually has some benefits over inheritance. Firstly, the implementing objects 

may in some cases be expensive to initialize or use a lot of memory. As they are 

private state of, and not directly part of (by inheritance) the implementation, they can 

be lazily instantiated. Secondly, it is possible to choose a specific implementation 

class at run-time, for example, by choosing an implementation of Annotation 

optimized for efficiently storing very small numbers of values, or for retrieving values 

associated with a very large number of properties. 

Feature extends FeatureHolder and Annotatable. In addition, Feature has 

source, type, location, parent sequence and symbol properties. Source and Type are 
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equivalent to the GFF source and type fields. Source should represent the program or 

process that produced the evidence for the feature (such as a particular gene finder), 

and Type should indicate what the feature is meant to represent, such as CDS, or 

transcription start site. The Location represents which region of the Sequence the 

Feature is attached to. The parent is the FeatureHolder that directly contains this 

Feature. The Sequence property always refers to the Sequence that ultimately contains 

the Feature. As Feature extends FeatureHolder, it is possible to build up arbitrary 

hierarchies of features (but always as a tree). For example, a gene feature may contain 

zero or more child features that represent transcription factor binding sites or perhaps 

exons. The parent of the exon would be the gene feature, and the parent of the gene 

would be the sequence. However, both exon and gene objects will return the same 

Sequence for getSequence(). Lastly, the symbols property returns a SymbolList 

that represents the Symbols contained within the Feature. The exact semantics of this 

method is left up to the Feature implementation. Sub-interfaces of Feature are 

provided which add more specific properties such as strand information, frame and 

protein translations. 

So that the feature hierarchy on sequences can be modified, there must be an API 

for adding features to other features and to sequences. So that a given implementation 

of Sequence and Feature can maintain implementation integrity, there must be some 

sort of factory method (Gamma, Helm et al. 1994)[107] defined in the interfaces. The 

original implementations had methods like createFeature(), 

createStrandedFeature() or createExon(), but as the number of interfaces grew, 

it became obvious that this would not scale well as the interface would have to be 

modified every time another type of feature was added. 



The BioJava Core Interfaces 

   54

This was solved by using a single createFeature() method that takes a 

polymorphic argument of type Feataure.Template. The template has public fields 

that hold the properties of the feature to make, such as location, type, source and the 

like. This mirrors the memento design pattern (Gamma, Helm et al. 1994)[283]. In 

each interface that extends Feature, a public static inner class extends 

Feature.Template called by convention Template. For example, to instantiate a 

StrandedFeature, you invoke the createFeature() method with an instance of 

StrandedFeature.Template as the only argument. It is then the responsibility of the 

Sequence and Feature implementation to create a StrandedFeature implementation 

with the same information as the template. If the particular Sequence implementation 

can’t provide an appropriate implementation of Feature, it should either instantiate 

the closest one it can and put the missing information into the annotation bundle, or 

throw an exception. This approach allows sequence implementations to support an 

arbitrary sub-set of the available feature types without requiring the feature creation 

interface to grow in complexity with the number of feature types defined. 

Sequences and features represent the bulk of information manipulated by most 

applications. By designing the APIs from the foundation to support polymorphism 

and encapsulation, we have produced a design that allows the underlying data to be 

represented in any one of a number of different ways. There are implementations that 

are backed by relational databases (Ensembl and BioSQL adaptors), CORBA 

(BioCorba adaptors) and by web services (DAS and XEMBL clients) in addition to 

those using Java objects directly. The feature creation API provides a uniform and 

easy to implement way to create features conforming to a range of interfaces with a 

range of different concrete implementations. The result is that developers can interact 
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with a single API and have access to a wide variety of different information without 

needing to know anything about the implementation details of how this is achieved. 

2.6 Probability Distributions and Hidden Markov Models 

Hidden Markov Models (HMMs) (see Section 1.3.2) are a popular method of 

analysing biological sequences. BioJava contains APIs for representing and working 

with probabilistic HMMs. This includes code for representing models, as well as 

implementations of the common dynamic-programming (DP) algorithms for 

evaluating alternative state-paths and training model parameters. All of these APIs 

build upon the Symbol, Alphabet and SymbolList APIs (Section 2.4), allowing them 

to be applied without change to the wide range of signal types these data-structures 

can be used to represent. 

To model HMMs effectively, it is useful to provide a mechanism for representing 

probability distributions. There are a wide range of other contexts within which 

probability distributions can be used, such as in modelling weight matrix columns, so 

to aid in their reuse there is a separate Java package dedicated to their representation 

and implementation. 

The Distribution interface encapsulates a probability distribution over an 

Alphabet. The method getWeight(Symbol) returns the current probability of 

observing the symbol from the probability distribution. This is notionally equivalent 

to integrating or summing a probability distribution out over the range of all 

AtomicSymbol instances in the symbol’s getMatches() Alphabet. The 

manufacture of distributions is usually performed by a DistributionFactory object. 

This allows particular implementations of Distribution to be tailored to a particular 

Alphabet without client code needing to know the details. For example, the default 



The BioJava Core Interfaces 

   56

implementation of the factory returns Distribution implementations that use either 

linear lookup or binary search lookups based upon which is most time-efficient for the 

alphabet size. In addition, OrderNDistribution extends the Distribution interface, 

and defines that it will be a probability distribution over one alphabet conditional 

upon another. For example, given the Alphabet DNAxDNA (containing all ordered 

pairs of nucleotides), an OrderNDistribution could be built that was four 

independent Distributions over the second Alphabet conditioned upon the first 

(i.e. the probability of the second nucleotide appearing given that we knew what the 

first one was). 

Background database probabilities of the amino acids in Swiss-Prot (Boeckmann, 

Bairoch et al. 2003) could be represented as a probability distribution over the 

PROTEIN alphabet. The probabilities could be estimated by counting the frequencies 

of each amino acid in the database and then normalizing these counts to give a 

probability distribution.  

The MarkovModel interface encapsulates state-emitting HMMs. MarkovModels 

contain one or more State objects. The State interface extends AtomicSymbol. 

EmissionState specializes State by having an associated emission Distribution. 

In generative model terms, EmissionStates emit the symbols within sequences. 

DotState extends State, and represent non-emitting, silent states. These are useful 

for rationalising the architecture of models. 

The MarkovModel interface has a stateAlphabet() property that returns a 

FiniteAlphabet containing every State in the model. It also has an 

emissionAlphabet() property that is the Alphabet that matches the Alphabet of the 

Distribution objects associated with the EmissionState instances. In addition, 
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there is a method getWeights(State) that returns the transition probabilities from a 

State as a Distribution. The Alphabet of the Distribution will be a sub-set of 

the states Alphabet, representing every State that is reachable from that State. 

MarkovModel also has a property getHeads() that represents how many 

SymbolList instances are aligned to each other and the model. A single-head model 

emits a single SymbolList of sequence and a single SymbolList of States. These 

co-linear lists of symbols and states can be used to label a sequence, which may, for 

example, mark up features like repeat regions, protein domains or exon boundaries. 

Models with two heads perform pair-wise alignment. These can be used to align pairs 

of sequences based upon evolutionary relationships, or to find portions of two 

sequences that are more similar than would be expected by chance. Models with three 

or more heads align that number of SymbolList instances to one another and label 

the alignment with the states used. 

The EmissionState interface defines one other property named advance, which is 

an array of integers (usually 0 or 1) that indicate how much each head of the model is 

advanced by the emission. For example, in pairwise alignments, the states that emit 

aligned regions will advance in both directions, having an advance property of [1, 1], 

where as the insert states will have an advance of [1, 0] and the delete states will have 

an advance of [0, 1]. The Distributions associated with emission states should emit 

gap BasisSymbols that have a BasisSymbol in each dimension that is 1, and a gap in 

each dimension that is 0. Gaps are used to represent the concept that there is a gap in 

the list of symbols for that dimension, or equivalently that although the global index 

has advanced, the index of the underlying data being viewed has not. 
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The MarkovModel interface is the data-structure that defines how some sequences 

could be emitted. These HMMs are purely data, and have no algorithms associated 

with them. The recursions that align sequences given a MarkovModel are defined by 

the DP interface. DP defines methods to calculate the forwards, backwards and Viterbi 

recursions (see Equation 1-13). In addition, it defines a method to generate sequences 

from the model. The efficient implementation of these recursions depends upon the 

structure of the model and the number of heads the model has. 

To hide implementation detail from the user, the DPFactory interface defines how 

to get a DP implementation for a given model. For models with one or two heads, 

there is a DP factory implementation that returns DP implementations that invoke 

interpreters. For two head models, there is also a DP implementation that generates 

Java byte code optimized to the architecture of a particular model. The DP compiler 

outperforms the DP interpreter significantly, particularly for models that contain many 

states that have transitions from only one source state. The interpreter is more suited 

to situations where the model architecture is being altered, as the compiler would have 

to produce new code each time the model architecture is modified. 

For pairwise alignment, using the notation of Equation 1-13, i  is a 2-tuple of the 

index for the first and second sequences respectively. We can impose a partial 

ordering upon the set of 2-tuples that follows the natural ordering of each component. 

To calculate the cell at i , we must first have calculated all cells that are before i . For 

the 2-dimensional case, this means calculating the cells at )0,1(−i , )1,0(−i and 

)1,1(−i . The naive way to ensure this is to construct an in-memory matrix to store 

results, and to perform a nested loop over two index variables starting at 0 and going 

to the first and second sequence length respectively. There are many ways to loop 
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over all possible values of i  while guaranteeing this ordering. As long as all of the 

values that are needed for uncalculated cells to be calculated are present, it is not 

necessary to store any of the other values. 

Assuming that the entire dynamic programming matrix is not required, we can write 

a space-optimised implementation of pairwise DP that uses space proportional to the 

length of the shortest sequence. Given an index a  into the first sequence (the shortest) 

and b  into the second (the longest), we can have an outer loop over the values of b . 

A single row of the dynamic programming matrix (indexed by a  ) containing the 

results of the previous iteration (at 1−b ). Then, a new row can be calculated for the 

row at b . At the end of the iteration, the column at 1−b  and be discarded, and that at 

b  becomes the array used as the known results for the next iteration (at 1+b ). 

The back pointer structure is a matrix of the same shape as the Viterbi matrix, but 

storing the state used to reach that cell. This contains all the information necessary to 

trace back from the final cell to the beginning of the alignment to retrieve the highest 

scoring alignment. However, this introduces a space cost proportional to the product 

of the sequence lengths. It is clear that many sub-optimal paths will exist through the 

matrixes that are not needed for the eventual trace back. 

Instead of holding a reference to the previous state in the matrix, BioJava stores a 

BackPointer object. This stores a reference to the previous BackPointer, a step-

wise score and reference to the State associated with that position. Because 

BackPointer instances refer directly to the previous entry in the chain, there is no 

need to store the entire matrix in memory explicitly. The Java virtual machine will 

take care of garbage-collecting all BackPointer instances that are not reachable from 

the current states. It is then only necessary to explicitly hold in memory the 
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BackPointer objects associated with the cells that still have uncalculated 

dependencies. 

In this way, the memory cost for the back pointer data-structures can be reduced to 

something that is at a maximum proportional to the memory used to store the values 

of the dynamic programming matrix, and which converges to something proportional 

to the length of the final alignment (which can never be longer than the sum of the 

lengths of the sequences). The BackPointers will form a directed a-cyclic graph. The 

trace back path must be from one of the leaves of this graph to the root. While 

calculating this directed acyclic graph (DAG), the garbage collector will drop entire 

branches from memory when they are no longer reachable. The more fully connected 

the model is, the quicker the BackPointer graph will converge towards being linear 

on alignment length. 

Space-saving versions of the Forwards and Backwards recursions can be similarly 

constructed. Since these algorithms consider all possible paths, there is no need to 

consider the BackPointer data structures, so these algorithms require memory 

proportional to the length of the shortest sequence and the number of states only. 

This allows very large pair-wise alignment problems to be considered without 

memory resources becoming the limiting factor. Clearly, this does not remove the 

need to evaluate every part of the recursions, so the algorithms still scale 

computationally on the product of the lengths of the sequences being aligned. 

The parameters of a Distribution (and by extension the emission and transition 

probabilities in an HMM) can be estimated using the DistributionTrainer 

interface. This provides a transactional framework for associating observed counts 
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with a Distribution, for aggregating these, normalizing them and resetting them to 

zero. Given labelled data, parameters are estimated by adding whole counts to the 

DistributionTrainer proportional to the observations and then invoking the train 

method to update the Distribution parameters. 

 In many cases, a collection of distributions will need to be trained simultaneously. 

The DistributionTrainerContext interface encapsulates such a set. This allows all 

of the distributions within an HMM to be trained simultaneously. Since 

Distribution is an interface, there will often be cases when implementations do not 

actually store the values directly, but rather perform some calculation on the 

parameters of another Distribution. For example, there is an implementation of 

Distribution in BioJava that takes an underlying Distribution and a table that 

maps input Symbol instances to a Symbol for an underlying distribution. This allows, 

for instance, a Distribution over DNA symbols to have emission probabilities equal 

to those of the complementary symbols in another Distribution. When the 

distributions are registered with a DistributionTrainerContext, the 

implementations will ensure that counts for the complementary view are routed on to 

the underlying Distribution instance, and once the context is asked to train all the 

parameters from the aggregated counts, the complementary view will reflect the new 

parameters of the newly trained distribution. 

Training distribution parameters via DistributionTrainerContext allows very 

complex parameterisation of models to be explored, both in terms of the emission 

probabilities and for the transitions as well, without altering the dynamic 

programming recursions or the routines used to collect observation counts. 
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HMMs have been constructed with this API to model 3-D DNA structures 

(BasisSymbols with one dimension per physical property and Distributions that 

model multinomial Gaussians over these properties), align pairs of protein secondary 

structure, find transcription factor binding sites, perform GIBBS sampling of 

expression data, find eukaryotic and prokaryotic promoters, as well as a host of other 

tasks. 

2.7 Query 

2.7.1 Motivations 

Fairly early on in the use of the Feature interfaces, there was the need to find 

features of a particular type, or with particular properties, or some combination 

thereof. Initially we started adding many getFooByBar() methods, but it quickly 

became apparent that this would not scale. 

2.7.2 Initial Implementation 

After reading the Dragon compiler book (Aho, Sethi et al. 1985), we developed a 

small language for describing constraints for accepting or rejecting feature types, and 

added the method filter(FeatureFilter aFilter, boolean recurse) to the 

FeatureHolder interface. The FeatureFilter interface has the single method 

accept(Feature) which returns true if the feature is to be included in a return-set 

and false otherwise. There are implementations of FeatureFilter for accepting 

features based upon their properties (type, location, annotations and the like). There 

are also several logical filters. For example, FeatureFilter.And is an 

implementation of filter that will accept a feature if two other filters both accept it. 

There are implementations for the logical Operations ‘and’, ‘or’, ‘not’ and ‘nand’. 

Using these logical Operations and the basic filters, it is possible to build up quite 
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sophisticated constraints. The ‘recurse’ flag in the filter method indicates whether to 

apply the filter to the current collection of features only or whether to apply it to those 

features and all features that they contain recursively. This provides coarse-grain 

control over how to navigate the feature hierarchy. 

The filtering language allows collections of features to optimise the processing of 

requests as they can interrogate the query to find portions that they can easily process. 

For example, a given FeatureHolder implementation may know that it only contains 

features of a particular type. It can then optimally handle any filter expression that 

contains a ByType expression by just comparing the two types and either accepting or 

rejecting the entire set of features. This is much cheaper than comparing every feature 

in turn with the filter expression. Filters are used in nearly all library and script code 

that manipulates features. For data-specific implementations such as the DAS or 

Ensembl bindings, the ability to compare filters can be used to implement reasonable 

lazy-fetching strategies to avoid loading unnecessary information into memory from 

high-latency storage (the web, or an SQL database for example). For GUIs, the rules 

for deciding which features to display can be stored in these flexible filter objects and 

modified at will. 

2.7.3 Limitations of This System 

This scheme has served us well over the last two years. However, there are several 

shortcomings with this approach. The first one is that it can only be applied to 

features. To extend this to all BioJava objects would require many sets of filters to be 

written, each with rules about how to interpret them. In addition, in practice it would 

be nice to be able to retrieve sequences from a SequenceDB instance based upon 

whether they do or don’t contain a given type of Feature. This would require the 
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ability to specify filters that span multiple object types. The other main shortcoming is 

the way that the recursion through the feature hierarchy is performed. For example, 

when retrieving features of a particular type within a region of a human chromosome 

we must recurse down through each level of the assembly pruning it as we go 

according to region and then search for features of that type at each level. This 

process is not easy to represent as a single filter. In practice, we end up constructing 

recursive function calls that each do non-recursive filters to prune the selection by 

location, find the features of the appropriate type to return, and recurs down to each 

feature with children. 

Because the filter statement does not represent the entire process of finding the 

features, it is impossible to perform optimal searching and data-caching strategies for 

these complex cases. This causes potential inefficiencies to creep in to an otherwise 

elegant system. 

To address these issues, we are evaluating a range of approaches for modelling 

complex queries, including finite state machines, ontology languages and graph 

grammars (refs). 

2.8 Recent Developments 

Since late 2001, BioJava has continued to be developed, expanding far beyond the 

original group of two individuals. There are now over thirty developers, five of which 

form the core development team. In this time, existing APIs have been consolidated, 

and new ones have been added. In this section we will discuss some of the areas 

where I have personally been the primary developer, as well as some of the 

functionality which the community has contributed. 
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The three primary areas of personal contribution are in the design and 

implementation of the tag-value parser framework, flat-file indexing, and a 

constraints-based type system for Annotation objects. 

Major community contributions include improvements to the FeatureFilter 

language, the ‘change hub’ mechanism for managing large numbers of change 

listeners, bit-packed sequences, parsers for blast (and other sequence similarity search 

formats) and an emerging API for representing and manipulating ontologies. To a 

greater or lesser extent I have had personal involvement in each of these, but the bulk 

of the design or implementation has been undertaken by others. 

2.8.1 The Tag-Value Parser 

A large proportion of the data analysed by bioinformaticians is stored in text files. 

Commonly, these are structured as lists of records. Each record is composed from one 

or more lines that contain a tag specifying its type and an associated value. For 

example, EMBL entry files have entries separated by lines consisting of ‘//’, and each 

entry has one or more lines with a two letter line-type identifier code (such as ‘AC’, 

‘OC’ or ‘FT’) with a value present in columns 6 to 80. Genbank files have a similar 

structure, but in this case the record separator is ‘///’ and the different line types are 

identified by full names (such as ‘ACCESSION’, ‘ORGANISM’ or ‘FEATURE’). 

There are a large number of file formats that closely resemble either EMBL or 

Genbank files, but contain different tags and represent different types of information, 

such as classes of enzymes (Bairoch 2000), taxonomies (Benson, Karsch-Mizrachi et 

al. 2003) and protein families (Falquet, Pagni et al. 2002). 

In our experience, developing custom parsers for these file formats is an error-prone 

task. One system that has implemented a general approach to parsing biological flat 
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files is the SRS system with its language Icarus22. Here we describe a similarly 

generic framework for parsing these files within BioJava. 

The tag-value framework is an attempt to provide a unified way to abstract out the 

common parts of the parsing task (such as recognizing record boundaries and dividing 

lines of text into tags and values) while allowing the exact details to be customised as 

needed. The approach we took was to use a mixture of the strategy (Gamma, Helm et 

al. 1994)[315] design pattern and liberal use of listeners. Strategies are used to 

encapsulate the variable portion of a process into an interface on its own, so that the 

unchanging portion can handle the unchanging functionality and delegate to the 

strategy where needed. All data is treated as Java Object instances rather than String 

instances, allowing the same framework to work un-changed on on-textual 

information. 

Over all, the flow of parsing events is very similar to that in the Simple API for 

XML (SAX23). In the XML analogy, the text files are like XML files, the tag-value 

listeners are like SAX events, and the Annotation API is the equivalent of the 

Document Object Model (DOM24). There are also similarities with the Boulder IO 

package25, as well as the way that the BioPerl SearchIO has been designed. 

                                                 

22 We have been unable to find documentation about icarus on the LION bioscience web site. However, 

the EBI is currently providing documentation, which can be found at http://srs.ebi.ac.uk/doc/icarus.pdf  

23 The SAX standard is coordinated through the http://www.saxproject.org/ web site 

24 The DOM specification can be found at http://www.w3.org/DOM/  

25 BoulderIO is described at http://stein.cshl.org/software/boulder/  



The BioJava Core Interfaces 

   67

The class Parser has a single method read(BufferedReader, TagValueParser, 

TagValueListener) that reads all of the text from the buffered reader, uses the tag-

value parser to process this into tags and values, and informs the tag-value listener of 

these pairs. For users of the API, this is the main method that they would invoke. 

The TagValueParser interface encapsulates the process of splitting each line of 

input into a tag and a value, and also of deciding if the tag is new or not. If the tag is 

different from that on the previous line, then the parser assumes that it is new. In the 

case where it is the same, the tag-value parser can indicate that it should be treated as 

a new instance of that tag, rather than as an additional value for the current tag. For 

example, rather than SWISS-PROT comments being treated as just one series of 

values for a single comment tag, the tag-value parser could force a new comment tag 

event to be fired for each logical block of comments. There are implementations of 

TagValueParser that split lines into fixed-width areas (with two pre-built instances, 

for files formatted similarly to EMBL and Genbank), and one that splits according to 

a regular expression. 

The TagValueListener interface has five methods. These are all invoked by a 

Parser instance, and it is the Parser that is responsible for ensuring correct nesting 

of these method invocations. The two methods startRecord() and endRecord() 

signal that records have started and ended respectively. All other events are emitted 

within the scope of this pair of events. The startTag(Object) and endTag() 

methods indicate that a tag has been started and ended respectively. These are called 

within the scope of the record. Tags are never directly nested. That is, for every 

startTag(), there is never a directly nested startTag() invocation, and for every 

startTag() there is exactly one matching endTag(). The value(TagValueContext, 
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Object) method is used to inform the listener of values associated with the current 

tag. The value() method is only ever invoked within the context of a tag, and never 

directly within the context of the record. For each value associated with a tag, there 

will be a separate invocation of value(), and it is up to the listener how this should 

be interpreted. 

Values can be replaced with Objects that are not String instances. For example, 

while parsing an EMBL entry, the lines relating to organism information could be 

transformed by a listener into a single taxonomy value. It is common to transform 

textual representations of things like URLs and Enzyme Classification (EC) numbers 

into light-weight objects. This greatly enhances the richness of the data consumed by 

the ultimate listener. 

Some of these tag-value file formats have embedded sub-documents. For example, 

EMBL and Genbank files have an embedded feature table document. The tag-value 

framework supports these by using the context passed in as the first argument to 

value(). The listener can uses the pushParser(TagValueParser, 

TagValueListener) method to indicate to the Parser that all values of the current 

tag should themselves be split into tag and value pairs. The pushed tag-value parser 

will be used to split the values of these lines, and the results will be passed onto the 

pushed listener. Once the outer tag ends, the pushed parser and listener pair are 

popped back off the processing stack, and the original listener will be informed of an 

endTag() event as normal. The listener pushed will receive the full set of start/end 

record and tag events associated with the sub-document, and may itself choose to 

push new listeners for embedded documents. 
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This framework allows flexible processing of files into event streams. However, it 

is useful to further process these events. To support this there are a range of listener 

implementations that wrap other listeners, and pass on altered evens. For example, the 

accession lines of EMBL and Genbank files can contain a list of accession numbers, 

separated by semi-colons. A listener would receive one value event for each accession 

line. The data becomes easier to interpret if one value event can be produced for each 

accession number. A RegexSplitter instance could be used to recognize each 

portion of the accession line that is an accession, and then fire one value event to the 

wrapped listener for each accession. 

The ValueChanger listener implementation is the class responsible for changing 

values associated with particular tags. It is responsible for either replacing a value 

with some other value, or for firing off multiple values. Again, the strategy pattern is 

used, in this case to factor out the mapping between tags and actions into a separate 

class named ChangeTable. A ChangeTable instance maintains a table of which 

actions are associated with which tags. This greatly promotes code reuse and 

modularisation. The ValueChanger code just manages the flow of events. The actions 

themselves are trivial to implement as little Java classes (often in practice as 

anonymous classes). We have found that this kind of composition and 

parameterisation is far superior to inheritance-based methods of customizing 

behaviour. 

The TagMapper listener is used to systematically replace tags with other tags. For 

example, it would be possible to configure a TagMapper instance to map all EMBL 

tag names to Genbank tag names. This allows event streams to be transmuted into 

those accepted by standard listeners and factory objects. For example, by 
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transforming reference information in to tags and values that resemble those emitted 

from the EMBL parser, the same reference handlers used for EMBL processing can 

be reused.  

Using the built in tag-value classes, and by supplementing these where needed with 

some application-specific code, it is possible to rapidly develop parsers for tag-value 

formats of nearly any kind, and transform the information in these files into that 

required for a particular application, while achieving a very high degree of code reuse. 

2.8.2 Flat File Indexing 

A related problem to that of parsing these files is that of retrieving one entry among 

potentially the many hundreds of thousands of entries in a single or multiple files. It 

was decided by members of the OBF that it would be useful for all of the projects to 

share a mechanism for indexing these files. There exist a number of indexing 

strategies (for example, emblcd26). However, these tend to pose problems when 

accessed from multiple different languages and on multiple platforms as they are 

binary file formats. The OBDA flat file indexing specification27 defines an indexing 

strategy that just uses plain text files to store the indices. 

BioJava contains a full implementation of this specification, allowing a wide range 

of file types to be indexed, and for individual records to be fetched in time 

                                                 

26 Applications for manipulating embl CD index files can be found at 

http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/dbiflat.html 

27 See http://cvs.biojava.org/cgi-bin/viewcvs/viewcvs.cgi/obda-

specs/flatfile/indexing.txt?rev=HEAD&cvsroot=obf-common&content-type=text/vnd.viewcvs-markup 

for the most recent version of the specification.7 
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proportional to the cost of a binary search through the index. Records can be retrieved 

either by primary ID or by secondary IDs. The BioJava implementation is wholly 

compatible with the other OBF implementations (in Perl, Python and C). 

Sequence files can be indexed using the standard BioJava classes for reading 

sequences from a stream. Additionally, any format that can be parsed with the tag-

value framework can be indexed. In the future, we will be continuing to enhance 

support for secondary IDs, and provide simple APIs to allow different flat-file formats 

to be linked to one another by IDs in a manner similar to SRS28. 

2.8.3 Annotation Types 

Since the beginning, BioJava has supported free-form associations of keys and 

values through the Annotation interface. Ironically, many applications need to be 

able to guarantee that certain property keys will be present in an Annotation, or that 

certain values will be present. The project started to gain a lot of repetitive and error-

prone code that first checked an annotation to see what properties and values it had, 

and then acted accordingly. 

In order to reduce the need to write this error-prone and repetitive code, we chose to 

develop a dynamic type system for Annotation instances, based around the new 

AnnotationType interface. The main two methods are instanceOf(Annotation) 

and subTypeOf(AnnotationType). Both compare the argument to the current type. 

The instanceOf() method returns true if the argument is an instance of the type, and 

subTypeOf() returns true if the argument is a sub-type of the type. An Annotation is 
                                                 

28 Mode information about SRS can be found at the 

http://www.lionbioscience.com/solutions/products/srs web site 



The BioJava Core Interfaces 

   72

an instance of an AnnotationType on the basis of what properties and values it has. 

One type is a sub-type of a super-type if every annotation that is an instance of the 

sub-type is also an instance of the super-type. Two AnnotationType instances are 

equivalent if exactly the same set of Annotation instances are accepted by the 

instanceOf() methods of both types. 

Restrictions are placed upon the range of values that can be associated with 

properties by using instances of the CollectionConstraint interface. This has two 

main methods. The accept(Object) method returns true if the argument is 

acceptable to the constraint. The subConstraintOf(CollectionConstraint) 

method returns true if all items acceptable by the sub-constraint are also acceptable to 

the super-constraint. The AnnotationType instanceOf() and subTypeOf() methods 

are implemented purely by using these methods. There are implementations of 

CollectionConstraint that perform the normal logical operations, as well as checking 

properties of the item under consideration. 

There are many utility methods in AnnotationTools that deal with the common 

operations that may be performed upon AnnotationType and Annotation instances. 

This use of the façade design pattern (Gamma, Helm et al. 1994)[185] insulates users 

of the API from its necessary complexities. AnnotationTools implements a wide 

variety of logical operations upon AnnotationType directly, such as computing types 

that are the logical union, intersection and difference of two types. It is very common 

to compare the results of these to the AnnotationType constants that accept or reject 

every Annotation. Additionally, it can be used to generate new Annotation 

instances from an old one and a type, for example, by retaining or removing all keys 

defined by the type. 



The BioJava Core Interfaces 

   73

The AnnotationType APIs differ from the way the Java type system works. In Java, 

every Object maintains a reference to its Class. This Class maintains references to 

all Classes that it inherits from, both implemented interfaces and extended classes 

(the Java introspection APIs use the same type to represent both classes and 

interfaces). With AnnotationType, Annotation instances maintain no such 

reference. As properties are added and removed, or the associated values are altered, 

the Annotation may change which annotation types it is an instance of. Code that 

wishes to check types should always use the AnnotationType.instanceOf() 

method. We tend to think of annotations as being ‘castable to’ an annotation type, 

rather than inheriting from or implementing them. 

The AnnotationType interface works synergistically with annotations and the tag-

value parsers. If the tag-value framework is like SAX and the Annotation API is like 

DOM, then AnnotationType is like XML-SCHEMA29. Annotation types are also 

used extensively in the recently enhanced implementation of feature filters. 

2.8.4 Enhanced Feature Filters 

The FeatureFilter APIs have since been developed by the community into a fully 

functional constraint language for Feature hierarchies. In addition to adding 

implementations for nearly all conceivable feature properties, there are now 

implementations that accept or reject a feature based upon the type of the annotation 

associated with the feature. Additionally, there is now much finer grained control of 

searches through the hierarchy, using filters like ByAncestor and HasChild. 

                                                 

29 The XML Schema and related standards can be found at http://www.w3.org/XML/Schema  
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There is a façade class named FilterTools that implements many common 

operations upon feature filters. This includes composing new filters that are the union, 

intersection or difference between two filters and a range of factory methods. The 

results of these are often compared to the FeatureFilter constants that accept or 

reject all features. Another very common operation is to compare two FeatureFilter 

instances to see if they accept a disjoint set of features. 

A range of FeatureHolder implementations now publish FeatureFilter instances as 

schemas describing what features they contain. Given a query, it is possible to 

efficiently see if the query is disjoint from the schema and potentially avoid 

comparing the contained features to the filter. 

Some Feature and Sequence implementations now look at the FeatureFilter 

instances being passed into the filter() method, and check the filter for known types of 

annotation. For example, if a FeatureFilter is used to filter Ensembl, and it is 

constraining upon the “ensemble_id” property in the feature’s annotation bundle, the 

Ensembl code will be able to recognize this and do optimized database lookups rather 

than looping over all possible feature instances. 

 For database and high-latency applications, such as Ensembl and DAS, this 

constraints-based language has allowed the existing Sequence and Feature APIs to 

scale gracefully to queries that potentially scan many hundreds of thousands of 

entities. By careful comparison of the filters with known schemas, and by 

introspecting the filters for constraints that can be optimised, we experience 

performance comparable to that for special case code that manually plans search 

strategies. 
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2.8.5 Change Hubs 

Another bottle-neck upon scalability was the implementation of how change 

listeners were registered with resources such as database objects. Sequence databases 

that contain mutable implementations of Sequence need to behave as if the complete 

network is in place to forward events from every one of the sequences it contains. In 

the case of database implementations like BioSQL and Ensembl, there may be 

anywhere from a few hundred to several hundreds of thousands of sequence and 

feature instances that theoretically need to be listened to. However, in a typical 

application, only a few of these are ever directly accessible in memory. 

In these special cases, there are implementations of the Changeability support 

classes which we call “change hubs” that maintain data-structures to keep track of 

which listeners logically exist. As each sequence is instantiated in memory, the 

change hub registers the required listeners to it. As the sequence goes out of scope, it 

takes care of removing the listeners. In this way, users of these databases can appear 

to be listening indirectly to a vast number of objects, while the implementation cost in 

terms of memory, and the time needed for event notification, can be kept to a 

minimum. 

This is one of the many examples of where designing BioJava from the start in 

terms of interfaces has allowed us to drop in a complex replacement for some 

standard functionality without altering the APIs exposed to users.  

2.8.6 Bit Packed Sequences 

As it became more common to work with complete genomic information, the 

original implementation of SymbolList became impractical. It stores references to 

Symbol instances in an array. References in Java are the same size as a pointer. On 
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32-bit platforms, this is a clear overhead compared to storing bytes (8 bits), and this is 

even more pronounced on 64-bit platforms. 

To allow very large sequences to be loaded into memory, an API was developed for 

mapping between Symbol instances and bit patterns. The Packing interface 

encapsulates the mapping between all Symbols in an Alphabet and unique bit 

patterns. To encode all atomic symbols, the bit patterns must be wide enough to 

encode the size of the alphabet. For example, the DNA alphabet has four members. 

This can be packed into two bits. The PROTEIN alphabet has 20 members. This will 

require 6 bits as 5 bits can only represent 16 combinations, but 6 bits can represent 32. 

To encode all symbols, including the ambiguities, the bit pattern will have one 

element per atomic symbol in the alphabet. This allows the presence or absence of 

that atomic symbol to be indicated. DNA therefore requires 4 bits, and PROTEIN 

requires 20 bits. 

For small alphabets, like DNA and RNA, the memory saving associated with 

packing the sequence is considerable (2 bits vs. 32 or 64 bits). The performance 

penalty is approximately a factor of two compared to the implementation that accesses 

references directly for linear scans. However, the code that is shared between the 

packed and unpacked implementations has been tuned now to be over three times 

faster than it originally was, so that the current packed implementation is in fact faster 

than the original unpacked implementation.  

Long symbol lists are implemented by storing a List of fixed-length symbol list 

instances. When a symbolAt() request comes in to the symbol list, it calculates which 

child list it is in, extracts that symbol list and passes the request on (after adjusting the 

index accordingly). One benefit of this is that if a sub-list has been taken of a region, 
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and that region falls totally within the range of one of the child symbol lists, the sub-

list will only maintain a reference to this child symbol list, allowing the large one to 

be garbage collected once it goes out of scope. 

Another benefit is that different child lists can be implemented using different 

SymbolList implementations. Most sequences present today have a very small 

number of ambiguity symbols, and when they are present, they are usually runs of ‘n’ 

characters. Child lists that have no ambiguity at all can be packed using the most 

efficient packing possible. Child lists that do have ambiguity can be packed using an 

ambiguity-capable packing. 

The bit-packing APIs have facilitated the implementation of a pure-java 

implementation of SSAHA (Ning, Cox et al. 2001), as well as making it feasible to 

store complete human chromosomes in memory. It demonstrates again the flexibility 

afforded by interface-based design. No methods in the Alphabet or SymbolList 

interfaces needed to be modified, meaning that all existing applications benefit from 

these improvements without alteration. 

2.9 Conclusions 

The BioJava APIs outlined here are designed to be extremely flexible, while 

imposing minimal restrictions on how the interfaces are implemented. This is 

achieved by pervasively using Java interfaces rather than abstract classes to define 

APIs, and leveraging nested exceptions to handle errors. Potentially variable 

behaviour is systematically encapsulated by strategy objects. The Changeability API 

allows programmers to maintain tight control over which object may be modified and 

under what circumstances this will be allowed, while also facilitating the 

synchronization of objects’ state and simultaneously enforcing the principal of strong 
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object encapsulation. The Symbol and Location APIs provide examples of how 

careful object modelling can make software disproportionately powerful by ensuring 

that the interfaces have a complete but minimal set of operations that allow for all 

conceivable uses of the objects. The DistributionFactory and DPFactory 

interfaces demonstrate how tailor-made implementations of interfaces can be 

instantiated without the users of APIs needing to know about these implementations. 

The creation of features by using Feature.Template instances demonstrates how 

two-dimensional polymorphism (interface and implementation) can be implemented 

without pushing responsibility for data-integrity to the users of the API. The 

FeatureFilter and AnnotationType APIs demonstrate how data structures can be 

queried efficiently without violating encapsulation. 

Because of the strongly interface-centric design, it is fairly easy to view underlying 

data in several forms by defining only the transformation to be applied. For example, 

OrderNSymbolList views an underlying symbol list as the nth order view. A 1st order 

view of a DNA sequence would produce a SymbolList with the alphabet 

DNAxDNA, containing symbols that represent each overlapping pair of symbols from 

the original sequence. Similarly, distributions can be constructed that represent a 

translated view of another distribution, such as the complementary distribution. This 

paradigm allows very elegant data-structures to be built up without duplicating either 

the underlying data or the code that performs view transformations. Indeed, BioJava 

strongly discourages data duplication. As an extreme example, to reverse-complement 

an entire chromosome, BioJava would construct a ComplementarySymbolList that 

views a ReverseSymbolList that views the underlying SymbolList for the 

chromosome. The total additional cost in memory for complementing the 

chromosome is two Java object instances, rather than the memory for the entire 




