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Chapter 4  Investigation of Recombination Rates 

Using SVMs 

4.1 Introduction 

In Chapter 3 attempts were made to divide chromosomes up into blocks with 

uniform but distinct properties using HMMs. The justification for this was the 

observation that certain biological processes appear to segregate with such patterns. 

Another way to look at chromosomes is to consider if there are associated properties 

that are continuous in nature. One property that appears to have this behaviour is the 

probability of recombination occurring between any two bases on the sequence. 

Recombination events are responsible for the inheritance of a unique, mosaic 

combination of alleles during sexual reproduction. In humans it has become clear that 

the single nucleotide polymorphisms observed are grouped into regions bounded by 

points of recombination, which have recently been mapped for Chromosome 22 

(Dawson, Abecasis et al. 2002). How much variation in recombination rates 

influences the inheritance pattern in organisms including man has to date not been 

quantified.  

The exact mechanisms that drive differences in recombination rate are unknown. It 

has been shown in some organisms that some recombination hot spots can be directly 

controlled by very small regions of a chromosome, and that the trait of recombination 

rate is heritable (Dixon and Kowalczykowski 1991). It is always possible that the 

heritable component is something other than the genome sequence, such as the 

methylation pattern. The objective of this chapter is therefore to look for a sequence 

based signal. 
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Human Chromosome 22 provides the source of data for this investigation. The rate 

of recombination has been estimated along a large portion of the q-arm of human 

chromosome 22 between some 35 genetic markers (Dib, Faure et al. 1996; Dunham, 

Shimizu et al. 1999). With the advent of a finished sequence for this chromosome, it 

is possible to compare the genetic and physical distances. As indicated by the blue 

line in Figure 4-1, the recombination rate is not uniform across the region. By plotting 

physical position along the x-axis and the ratio of genetic to physical distance on the 

y-axis, the non-linearity shows up clearly as spikes. There may be recombination rate 

enhancing and repressing signals within the chromosome that are causing this 

position-dependant difference in recombination rate. 

 The process of learning how to predict recombination rate from sequence content 

can be addressed by a supervised learning approach. The dimensionality of the data is 

extremely high if we consider all possible sub-sequences within a region of interest. 

One methodology which has been used successfully for very high dimensional data is 

the support vector machine (SVM) which is now described in detail.  
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Figure 4-1 Comparison of physical and genetic distances along chromosome 22 

The x-axis represents the genetic distance of each marker on the q-arm of 

chromosome 22 from the centromere, as measured in megabases. The pink line is the 

distance in centi-morgans of each marker from the first marker. The blue line displays 

a data-point between each consecutive pair of markers, with a height proportional to 

the ratio between the difference in the genetic distance between the two markers and 

their physical distance. Peaks in the blue graph indicate regions of relatively high 

recombination. 
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4.1.1 Support Vector Machines 

Support vector machines (SVM) (Vapnik 1995) are linear models that use dot 

products and kernel functions to perform classification and regression tasks (see 

Section 1.3.1). They are designed to estimate an affine transform from an arbitrary 

dimensional input space to a single dimensional output space. This output space is 

defined as the distance of a data item from some plane in input space. The distance of 

a point from a plane can be computed as the dot-product between the point and the 

normal of the plane, plus the plane’s constant (the smallest distance of the plane from 

the origin). All points lying within a plane satisfy the equation: 

Equation 4-1 Equation of a Plane 
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Dot-products of sums can be re-written as sums of dot-products: 

Equation 4-2 Normal to a Plane as a Weighted Sum of Vectors 
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It follows that we can represent the normal of the plane by a weighted sum of the 

training examples. Although most of the problems encountered do not have a good 

linear solution in the data-space, there is often a linear solution in some alternate 

‘feature space’ that is equivalent to a non-linear solution in the data-space. For 

example, the space of all polynomial interactions of order two or less between the two 

components of a vector describes all conics in the data-space. If there is a kernel 
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function that computes dot-products in this feature space, Equation 4-2 shows that the 

equation of the plane can be implicitly represented as a weighted sum of the kernel 

functions acting upon each data point and the data-item x . The full equation becomes 

Equation 4-3 where iβ  is the weight of the i th training example in the plane normal. 

Equation 4-3 Definition of a Support Vector Machine 
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This formulation has the interesting property that although the solution is in a 

potentially large feature space, there is exactly one more parameters than there are 

training examples. The standard SVM training algorithms introduce a further 

constraint upon the parameters such that one of them is not free. This means that 

regardless of the resulting model, it can contain no more information than the original 

training data. 

When using a SVM, it is usual to vary x  for some fixed range of values for ix  and 

iβ . This can be made more explicit by rewriting the kernel function term as a basis 

function: 

Equation 4-4 Basis Functions for Kernel Functions and Data Points 

),()( xxkx ii =φ  

This allows the SVM equation to be re-written as follows. 

Equation 4-5 SVMs in Terms of Basis Functions 
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If any of the weights iβ  are zero, then the associated basis function does not affect 

the result. If only a few of the weights are non-zero then the resulting function is 

relatively simple. This property is called sparsity and the data-points associated with 

the contributing basis functions are called support vectors, as for separable problems, 

when displayed graphically in the feature-space (and if the feature space is related by 

a continuous function to the data-space, in that also), they ‘support’ the learned 

hyperplane (or decision boundary in the data-space). For the special case of pair-wise 

classification, the support vectors are the data points that lie on the boundaries of the 

convex hulls of the two sets of data in feature space. 

There are several methods available to estimate the parameters of the hyperplane 

( )h,β  given an error function. We found the most efficient method currently 

available to be the SMO algorithm (Platt 1998). This method optimises for pairs of 

support vectors at a time, and eventually this leads to the complete solution being 

found. For problems with appreciable sparsity, this method takes time approximately 

proportional to the training set size. Once trained, SVMs are computationally very 

cheap to apply to new data items, assuming that the kernel function is easy to 

compute. 

4.1.2 BioJava APIs for Support Vector Machines 

Support for SVMs is provided by BioJava. Their implementation builds upon the 

formulism discussed in Section 1.3.1 by providing a Java interface called 

KernelFunction that computes the kernel function for any two Java objects. There 

are now a number of other publicly available SVM implementations, such as SVM-
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fu32. However, unlike many of the other implementations, BioJava allows arbitrary 

kernel functions to be used. One of the benefits of this flexibility is that we can 

manipulate the data inside the kernels, for example normalizing vectors onto a unit 

sphere or scaling some subspace. We have also observed that for complex kernel 

functions, the performance of the BioJava implementation does not degrade. 

4.2 Methods 

4.2.1 Searching for a Signal Affecting Recombination Rates Using a Word-

Frequency Kernel Function 

Under the assumption that there are sequences within chromosomal DNA that affect 

recombination rate, and given example sequences known to have high or low rates, it 

should be possible to discover some metric of the sequence which is predictive of its 

recombination rate. It is possible that recombination rate is mediated by very simple 

sequences (e.g. poly-A or poly-GC), or relies upon very complex patterns (e.g. entire 

promoters or histone-binding regions). Either way, it is likely that part of the signal 

will correlate with scores collected by counting word frequencies (such as the 

frequencies of all octamers). 

Once the sequence data is transformed into a format that is equivalent to counts 

over a finite set of properties, it becomes suitable data for processing with a Support 

Vector Machine using a simple kernel function. The transform from sequence to 

counts can be considered to be equivalent to a data-to-feature space transform, 

inducing a new kernel function that both projects sequences to counts and then 

calculates the dot-product of the counts. 
                                                 

32 SVM-fu is distributed through the http://www.ai.mit.edu/projects/cbcl/ web site 
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In previous studies with word-count based kernel functions, greater accuracy has 

been achieved by normalizing the counts prior to calculating the kernel function as it 

is usually the relative proportion of the different words and not the absolute count that 

is informative, and normalization both controls for document size and numerical 

instabilities introduced by large differences in size between the magnitudes of training 

data (for example, see example training data accompanying svm-light33). However, 

this normalization can actually be performed within the kernel itself (Equation 4-6) as 

the process of normalizing each input vector is itself a transform from some data-

space to a feature space (projection of all points onto a unit hyper-sphere). 

In the cases when the data-space is very large and the cost of normalizing this is 

prohibitive but the un-normalized kernel is cheap to compute, the normalizing kernel 

saves both space and time. It potentially makes reading the computer code easier as 

the entire data-to-feature transform is represented in one place, the kernel, rather than 

being spread amongst multiple pre-processing steps. If repeatedly calculating the 

terms aa,  and bb,  is found to be expensive then these values can be cached. By 

applying an object-oriented design methodology, we can implement a kernel that 

delegates to an underlying kernel function for all values not known and caches the 

results for all terms of the form xx ⋅  for quick access. This is the approach taken in 

the BioJava toolkit, and we have found that it drastically decrease the computational 

load of kernel functions such as the normalizing and radial basis kernels that require 

some values to be repeatedly calculated. 

                                                 

33 See http://svmlight.joachims.org/ for an example of using normalised counts for classification 
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Equation 4-6 The Normalizing Kernel 
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The family of kernel functions used in this study can be represented as: 

Equation 4-7 SuffixTree Kernel 
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Because of how the suffix trees are constructed, they will not contain nodes for zero 

counts. By definition, if a given sub-string is absent from the entire sequence, then all 

other sub-strings containing that string will also be absent. For this reason, the nodes 

of the tree are sparsely populated (only nodes that store non-zero counts are 

instantiated). Thus, the index i  in Equation 4-7 need actually only loop over values of 

dΩ  that are populated in both a and b. 

The depth function term )(⋅df  allows the counts associated with strings of a 

particular length to be given greater or lesser weight. For example, a depth function 

that always returns 1 will leave the counts un-scaled (uniform depth function). A 

depth function that returns non-zero for one value and zero for all others will have the 

effect of only including words of a single length. A depth function of the form dΩ  

will make longer matches more significant than shorter ones, taking into account the 

fact that they are less likely by chance (normalizing depth function). 
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In principal, the depth functions are a subset of functions that return a scale factor 

for each i  that is purely a function of its length. In cases when the sequence bias is 

significantly divergent from uniform, it may be worth re-defining Equation 4-7 in 

terms of a per- i  scaling function instead of a depth function. However, we considered 

that in this case any increased accuracy obtained would be off-set by the need to 

optimize the scaling function, and any associated computational overhead. 

4.2.2 Construction and Training of an SVM for Predicting Recombination Rate 

The SVM used was constructed with the normalized suffix-tree kernel as described 

above. Both the uniform and normalizing depth functions were evaluated. The 

maximum tree depths were fixed from 1 to 9 for the uniform model and 1 to 8 for the 

normalized model. The models were trained using the SMO method for classifiers as 

at the time the BioJava implementation of SVM regression that was not numerically 

stable.  

All clones in the partially finished Human chromosome 22 were extracted, together 

with their approximate coordinates within the chromosome. These were fully repeat-

masked for both simple and complex repeats using repeat masker34. The chromosomal 

locations of all 35 markers were used. The high-recombination rate region within 

approximately 18-21Mb and the low recombination rate region within approximately 

21-17Mb were used as the positive and negative training sets respectively. All clones 

from these regions were used for training. All clones outside of this region were 

included during the prediction phase. 

                                                 

34 se here for an online reference for repeatmasker, currently unpublished:  

http://ftp.genome.washington.edu/RM/RepeatMasker.html 
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4.3 Results 

4.3.1 Recombination Rates Predictions 

In no cases could any of the models with a depth of less than four be trained. This 

indicates that the information necessary to predict recombination rates relies upon 

sequences of at least four in length. To bin sequences into two categories should only 

have required one variable, or the ratio of two variables, so the tree depth of 1 or 2 

should have been sufficient to trivially separate them if the signal was purely based 

upon low-order sequence bias (such as AT/GC ratio). 

For the models with maximum depth 4 and upward, the SVM produced an output 

centred on 0.0, indicating that the model is not consistently predicting items as being 

positive or negative. During training, the procedure attempts to predict a function such 

that all negative examples have a value less than –1.0, and all of the positive examples 

have a value of greater than +1.0. All items that are within the range –1.0 and +1.0 

will be support vectors. If unseen data has an output between –1.0 and +1.0, this 

indicates that the SVM considers this data-point ambiguous, but it still attempts a 

classification that can be read by looking at the sign of the output. Values of 

magnitude larger than 1.0 indicate that the SVM was confident in its assignment. 

The models trained using the uniform counts (Figure 4-2, Figure 4-3, Figure 4-4) 

learned functions that model the training data well, giving outputs around +1 for the 

high recombination regions and -1 for the low recombination regions. The higher 

depth models (6-9) produce SVM outputs that are noticeably closer to zero and less 

spread than the lower depth models. However, the general shapes of these curves (as 

judged by the 10 point moving average) are very similar. Arguably, the output 

shadows the recombination curve, particularly around the peak at 10Mb, and the dip 
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at 30Mb. However, it also predicts a recombination-poor region at 5Mb. The 5Mb 

feature may be biologically significant but not visible in the recombination plot due to 

marker density, or may be an artefact. 

The models trained using length-normalized counts, Figure 4-5 Figure 4-6, Figure 

4-7) are less prone to wild fluctuations (compare the scattering visible in Figure 4-2 

and Figure 4-5), which may indicate that the predictions are more robust. In addition, 

the dynamics of the predicted recombination frequencies are more similar to the 

actual rates (Figure 4-6, Figure 4-7). Again, as the depth of the suffix-tree is 

increased, the resulting function becomes smoother, closer to zero and fluctuates less 

wildly. 

4.3.2 Cross-Validation 

To assess how robust the predictions of the SVMs are with respect to the training 

data, the sequences within the positive and negative training sets were partitioned into 

three sets randomly. Three models were trained, one for each partition, and then tested 

by predicting the membership of the other two partitions. This 3-way jack-knifing was 

performed for all depths in the normalized models using training methods which 

where otherwise identical to those used above. The best accuracy of 80 % (random 50 

%) is achieved for a depth of 5, with accuracy becoming worse for greater depths. 

The resulting models appeared to be memorizations of the training data, with very 

few example sequences not included as support vectors (between 1 and 4 training 

examples left out). They do seem to be consistent among one another (depth of 5 

being the most reproducible), with prediction accuracies that are consistent, both 

inside the training data (Figure 4-8), and across the entire chromosome (Figure 4-9). 
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However, over all, the chromosomal predictions are less informative of recombination 

rate. This is as to be expected with less training data. 
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Error! Not a valid link. 

Figure 4-2 Total Results of Training the SVM using Uniform Counts 

SVM predictions are displayed as points on the scatter graph. For comparison, the recombination rate is also displayed. 

Error! Not a valid link. 

Figure 4-3 Moving Average for Uniform Counts models of Depth 4-6 

10 point moving averages of the SVM predictions are displayed for models with depths of four, five and six. For comparison, the rate of 

recombination is also displayed. 

Error! Not a valid link. 

Figure 4-4 Moving Average for Uniform Counts models of Depth 7-9 

10 point moving averages of the SVM predictions are displayed for models with depths of seven, eight and nine. For comparison, the rate of 

recombination is also displayed. High LowTest Test 

High LowTest Test
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SVM Trained on Normalized Rates
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Figure 4-5 Total Results of Training the SVM using Normalized Rates 

SVM predictions are displayed as points on the scatter graph. For comparison, the recombination rate is also displayed. 

Test Test High Low
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SVM Trained on Normalized Rates (4-6)
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Figure 4-6 Moving Average for Normalized Rates: Depths 4-6 

10 point moving averages of the SVM predictions are displayed for models with depths of four, five and six. For comparison, the rate of 

recombination is also displayed. 

Test High Low Test
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SVM Trained on Normalized Rates (7-8)
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Figure 4-7 Moving Average for Normalized Rates: Depths 7-9 

10 point moving averages of the SVM predictions are displayed for models with depths of seven, eight and nine. For comparison, the rate of 

recombination is also displayed. 

Test TestLowHigh
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Reproducability Under 3-way Jack-knifing
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Figure 4-8 Accuracy for Recombination SVMs Under 3-Way Jack-knifing 

The percentage accuracy for each group of jack-knifed models is displayed as a bar. The y-axis displays the percentage accuracy of each group 

of jack-knifed models. Error bars represent two standard deviations. The bar representing 5-mers has the greatest height. 
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Predictions from the 3 Jack-Knife Models
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Figure 4-9 Predictions Across the Entire Chromosome from the 3 Jack-knife Models for Depth of 5 
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4.4 Discussion 

It is clear that the normalized rates kernel appears to be more robustly predicting 

recombination rates than the uniform counts kernel. This exposes one of the 

interesting properties of SVMs when dealing with data containing errors. The relative 

magnitude of each data-space basis (here each word) acts in the spirit of a prior over 

how likely this basis is to form part of the normal to the hyper-plane. In theory, the 

training method for SVMs should allow these affects to be removed. In practice, with 

incomplete and stochastically sampled data sets it seems to be important to try to 

make sure that the raw data is presented in such a way as to normalize out any biases 

(such as normalizing vectors, pre-normalizing each dimension and the like). It is 

possible that the RVM methodology (explored in Chapter 5 for a different type of 

problem) would be more robust for this kind of data as during training it makes an 

estimate of the degree of certainty with which parameters can be set. This would have 

the effect of removing dimensions that sharply but inconsistently affect the predicted 

value regardless of their magnitude. SVMs will tend to be locked into local minima 

associated with these sharply varying dimensions, as they are greedy algorithms (they 

search for a global maximum by hill climbing). 

The jack-knife results indicate that the signal being learned is not strongly 

dependant on the training data. This is evidence that these models are learning real 

signals. It is interesting that the 3 jack-knife models appear to be memorizing their 

training sets but still generalize in comparable ways to each other. Because the 

function learned is represented as a sum of normals to a plane (each support vector 

representing one of these normals), different combinations of support vectors and 

associated weights may be constructing a very similar hyper-plane. It would be 

interesting to attempt to calculate the total normal to the hyper-plane in each case and 
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in the case where all training data is used to find the short sequences that are actually 

informative. This has not yet been attempted, as the raw data has gone though several 

data-to-feature space projections before arriving in the space for which the hyper-

plane is constructed and it is not clear how to represent these transforms in terms of 

raw word counts. 

Recombination hot spots are still not, to our knowledge, fully explained or 

predictable by any method available. However, recently there has been evidence that 

poly GT/AC tracts may contribute to differences in recombination rates (Gendrel, 

Boulet et al. 2000; Majewski and Ott 2000). In the light of this, it would be worth re-

running the analysis with the now finished and un-masked chromosome 22 sequence. 

The masked sequences used here almost certainly had most of this signal screened 

out. An important message to this story is that ‘junk’ DNA may well have 

functionality within the genome, and should not be discarded out-of-hand. The 

genome contains sequences with many functions, many of them which are not directly 

related to coding for valid proteins.  


