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Chapter 5  RVMs for Classification of Expression 

Data 

5.1 Introduction 

The phenotypic behaviour of a cell is in large part due to the activity of its proteins. 

These are translated from mRNAs, which are have been transcribed from active 

genes. There are many levels at which the activity of proteins can be regulated, 

however it has generally become accepted that measuring mRNA levels gives a good 

insight into the relative levels of gene activity. The results of simultaneous 

measurements of large numbers of mRNA levels, made in a single experiment, will be 

referred to as ‘expression data’. 

It has become possible to collect expression data systematically using methods such 

as quantitative PCR (Buck, Harris et al. 1991; Nedelman, Heagerty et al. 1992), array 

technologies (Schena, Shalon et al. 1995; Lashkari, DeRisi et al. 1997; Shalon 1998) 

and DNA chips (Guo, Guilfoyle et al. 1994; Hughes, Mao et al. 2001). The 

availability of complete genomes and fairly complete gene annotation has enabled the 

construction of DNA probes to represent most expressed mRNAs in a particular 

population of cells. Many thousands of these probes can be arrayed onto a single 

microarray or DNA chip, making it possible to capture a snapshot of the expression 

state of a cell in a single measurement. 

Given the availability of this measurement technology, it becomes possible to take 

snapshots of a range of conditions of a population of cells and, by processing the 

results, compare the expression levels of different genes under different conditions. 

Examples include comparing the natural state of the cell with its state during 
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conditions of metabolic stress, heat shock or disease. These measurements generate 

large volumes of data that can contain large statistical errors as a result of limitations 

inherent to the experimental technologies. Errors may also arise from stochastic 

variations in the different cell populations under study, due to the inherent dynamics 

of complex systems (for example, see (Guillouzic, L'Heureux et al. 2000; Smolen, 

Baxter et al. 2001) for discussions of ways in which the dynamics of gene expression 

are inherently complex systems). 

For many cellular processes, we have a fair understanding of the ways groups of 

genes are co-regulated as a result of biochemical, genetic and other analysis. 

Expression data gives us the opportunity to systematically extend this understanding 

to the whole genome, showing previously unknown regulatory relationships. The 

expectation is that genes which appear to be co-regulated are likely to be involved in 

the same cellular processes. One way of viewing this data is from the point of view of 

genes, for example, the level of a gene during sporulation (Chu, DeRisi et al. 1998). 

Another way is to classify conditions, i.e. to match a particular cellular expression 

snapshot to a particular cancer condition (Alizadeh, Eisen et al. 2000; Ramaswamy, 

Tamayo et al. 2001). 

The standard method for processing expression data is currently cluster analysis 

(Eisen, Spellman et al. 1998). This describes the dynamics of expression data as a 

hierarchical model, either in terms of similar experimental samples given genes, or 

similar genes given a set of experiments. Many of the major signals that emerge from 

naïve clustering are strongly correlated with histological features, for example in 

different areas of the gut (Bates, Erwin et al. 2002), or different developmental stages 

(Mody, Cao et al. 2001). Sometimes, by selecting sub-trees of genes, sets can be 
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found that co-segregate with a qualitative or quantitative observation. However, this is 

far from being an automated task, relying on human concepts of relevance and 

relatedness. 

One practical application of expression data analysis using machine learning 

techniques has been the classification of cancer cell types from different patients. 

Different cancer cell types can appear very similar, but may have very different 

survival rates which may require different treatments (Kihara, Tsunoda et al. 2001; 

Liefers and Tollenaar 2002; van 't Veer, Dai et al. 2002). In (Ramaswamy, Tamayo et 

al. 2001) SVMs were used to construct a classifier for the expression patterns of 14 

distinct tumour types from 218 samples. Each expression data sample included 

measurements from 16,063 genes. The SVM-based classifier could then be used to 

classify the tumour type of any new sample with a high degree of accuracy (78%). 

They were also able to identify which genes contributed most to the SVM model. 

SVMs were able to carry out the above classification as a result of the large 

expression differences between cancer cell types. A much more difficult problem is to 

automatically extract information about changes in gene expression as a result of a 

much subtler difference, such as in response to drug treatment. The subtler effects 

tend to be masked by the differences between the cell lineages that have been treated. 

Perou (Perou, Sorlie et al. 2000) describes a series of experiments measuring 8,102 

gene expression levels in human breast cancer cell lines and biopsy samples. One sub-

set of the samples are biopsies taken from patients with tumours before and after 

treatment with the anti-cancer drug, doxorubicin. The expression data for 20 before-

after pairs were clustered using hierarchal clustering. All but three of the sample pairs 

clustered together as siblings in the tree. This indicates that the changes in gene 
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expression due to treatment are not reliably detected by clustering against the 

background of the cell lineage. In a further paper (Brenton, Aparicio et al. 2001), 

cluster-analysis could be used to identify sub-types of breast tumours. However, this 

required much larger amounts of data and some human intervention. It also was 

unable to address the issue of what effect the doxorubicin had upon gene expression. 

Typically, when modelling expression data, the aim is both to perform some 

classification task, and also to look at the resulting model and identify genes that 

contribute to the model, with the hope that they will provide biological insight. In this 

chapter the use of SVMs and RVMs is explored to extract information about the 

effects of doxorubicin. We both evaluate whether these methods are able to generate 

models that can classify micro-arrays into pre- and post-treatment with doxorubicin, 

and also to decide if the models they produce are consistent with the known biological 

processes, and therefore could be used in other situations to identify novel relevant 

genes. 

5.2 Cellular Responses to Doxorubicin 

Doxorubicin causes cellular apoptosis by several routes. The primary action of 

doxorubicin activity is due to intercalation into double-stranded DNA. This both 

prevents the normal UV-repair pathway (nucleotide excision repair) and causes 

single-strand breaks, both of which lead to an increase in the rate of DNA repair 

enzyme activation. Normally, topoisomerase II relaxes tension due to supercoiling by 

scanning DNA. It then breaks one of the two phosphate backbones, allows the DNA 

to relax and then repairs the resulting single strand break. If instead it binds to an 

intercalated doxorubicin molecule, the single-strand break is made, but is not repaired. 

In this case, the topoisomerase II protein remains covalently attached to the broken 
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strand (Tewey, Rowe et al. 1984). The activity level of the DNA repair response is 

measured by the cell, and if it increases above a critical threshold, the cell enters an 

apoptotic response. 

Cell lines that are resistant to doxorubicin often share a common set of mutations. 

Topoisomerase II activity can be severely impaired (Potmesil, Hsiang et al. 1988). 

This is consistent with the role of this gene in the drug’s mechanism of action. 

Resistant cell lines frequently express multi-drug resistance proteins, such as P-

glycoprotein (P-gp), and multi-drug resistance associated protein (MRP) (Grandjean, 

Bremaud et al. 2001) which expel the drug from the cells. Impaired systems for 

maintaining levels of small ions, such as Na+ and K+ (Lawrence 1988; Lawrence and 

Davis 1990) also seem to confer a measure of resistance. It is possible that these small 

ions are required to enhance the stability of the complex between topoisomerase II 

and the DNA. Resistant cells often have impaired Jun-Fos pathways (Pourquier, 

Montaudon et al. 1998). During apoptosis, the Jun-Fos transcription factor 

heterodimer is activated via a signal-cascade. This in turn leads to the altered 

expression of gene products, activating the signal-cascades mediating the cellular 

apoptotic pathway. If either Jun or Fos gene is mutated to loss-of-function mutants, 

then is apoptosis pathway can not activate. 

5.3 Generalized Linear Models 

Although SVMs have been used successfully to distinguish between tumour types 

where there have been large numbers of samples available as described above 

(Ramaswamy, Tamayo et al. 2001), previous implementations guarantee that the 

SVM will find a solution even if there is insufficient evidence to support it. The 

training algorithms for SVMs search for the globally ‘best’ separating hyper-plane, 
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and give no indication of the range of hyper-planes that perform similarly well, even 

if they have a radically different plane normal. This brings into question their utility 

for discovering new expression relationships in small or noisy data-sets, as it becomes 

difficult to distinguish between results that are significant, where all ‘good’ hyper-

planes have very similar normal vectors, and those that are correspond to the ‘best’ 

but uninformative solution, where a wide range of normal vectors would perform 

nearly as well. In this chapter, we apply a Bayesian approach to training that is able to 

address this. 

In Section 4.1.1, we discussed how SVMs can be represented as a sum of basis 

functions (Equation 4-5). The general class of models that take on this form are called 

Generalized Linear Models (GLMs) (Nelder and McCulagh 1983). During training, 

the selection of the weights is just a scaling factor for each subspace, stretching the 

dimensions that increase the accuracy of the model, and shrinking those that are 

irrelevant. From this point of view, the basis functions each define a dimension in the 

feature space under consideration. 

Some of the basis functions will be highly correlated with one another. This means 

that using more than one of these will contribute little or no additional information. 

Other basis functions may simply be uninformative to the problem in hand. By 

defining some measure of the information contributed to the model by a given basis 

function, and the additional complexity of including that function, it is possible to 

make a trade-off between the simplicity of a model and how well it fits the data. 

Bayes Theorem states how the probability of simultaneously observing two events 

is related to the probability of observing one event in isolation and the probability of 
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observing the second event given that we already know that the first one has occurred. 

Let us consider the case of observing a model, m  and data, d . 

Equation 5-1 Bayes Theorem 
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This equivalence can be re-arranged to express one of the conditional probabilities 

in terms of the independent probabilities and the other conditional probability. It is in 

this form that Bayes Theorem is most often presented. 

Equation 5-2 Rearrangement of Bayes Theorem 
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The terms in this form all have names in Bayesian statistical analysis. 

Equation 5-3 Bayes Theorem in Words 

evidence

priorlikelihood
posterior

⋅
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In the case of models and data, the posterior is the probability of our model (and 

associated parameters) given the data. The likelihood is the probability of observing 

the data given our model. The prior is the degree of belief we have that the model is 

sensible. The evidence is the probability of observing our data given any possible 

model, which in practice means the sum or integral of the probability of observing the 

data over all possible values for all parameters of the model. 

One method for training GLMs which makes use of Bayesian statistics is the 

Relevance Vector Machine (RVM) (Bishop and E. 2000; Tipping 2000). In the case 
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of RVMs, the prior is chosen in such a way that it favours models where many of the 

weight parameters have values near to zero. For a particular parameter set to have a 

high posterior probability, the prior “cost” of any non-zero weights must be balanced 

by an increased value of the likelihood. If a particular basis function does not 

contribute to the likelihood sufficiently, then a greater overall posterior can be 

achieved by setting its weight to zero. RVMs can be trained by selecting parameters 

that maximize the posterior (Tipping 2000), or by fitting a variational approximating 

distribution to the posterior (Bishop and E. 2000). 

A pure Java implementation of the RVM method has been implemented (Down 

2003). This implementation uses patterns similar to the BioJava SVM implementation 

(Section 4.1.2) to insulate the optimiser from the data. An interface BasisFunction is 

provided that has a single method that returns the value of the basis function for a 

Java object. There is also an interface BasisSource that represents an iterater over a 

set of basis functions. The known implementations of RVMs (Bishop and E. 2000; 

Tipping 2000; Down 2003) all have space and time costs that scale very badly with 

the number of basis functions being considered. The API for Down’s method employs 

the ‘small working set’ heuristic to work around this. During training, many weights 

become sufficiently close to zero to be discarded within a very few cycles of 

optimisation. This is exploited by setting a high and low water-mark for the set of 

basis symbols being considered. Initially, basis symbols are obtained from the 

BasisSource until the high water-mark is reached. The optimiser then runs until it 

has discarded enough basis functions that the low water-mark is reached. At that 

point, basis functions are added until the high water-mark is again reached, all 

parameters are re-initialised and the optimisation is resumed. This process is 

continued until the BasisSource has no more basis functions available. At this point, 
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the optimiser runs until the model converges. This heuristic keeps the cost of training 

a model with increasing numbers of basis functions proportional to the total number 

of basis functions that must be considered, and some function of the working set size. 

In practice, this makes some problems tractable that would be otherwise intractable. 

The RVM API of Down’s implementation interacts with the BioJava APIs for 

SVMs. Where appropriate, interfaces for representing training data and models are 

reused. In addition, there is adaptor code that allows a kernel function and a set of 

training objects to be viewed as a BasisSource over the implied basis functions (see 

Equation 4-4). In practice, very few lines of code need be changed to switch between 

analysing a data set with SVM and RVM methods. 

5.4 Micro-array Classification Using a Support Vector Machine Implemented as 

a Linear Kernel RVM 

To investigate the behaviour of SVMs when applied to a hard expression analysis 

problem, we applied them to the dataset described above (Perou, Sorlie et al. 2000). 

The BioJava implementation of SVMs was used to construct a classifying support 

vector machine using the dot product (linear) kernel function to evaluate expression 

data. The kernel function was implemented so that the expression data was 

represented as an array of the log of the ratio between background and experimental 

sample levels. This was trained using the complete set of expression data described in 

Section 5.1 using the SMO training algorithm. The resulting model contained nearly 

all micro-arrays as support vectors. This suggests that the model was effectively 

memorizing the training set. We therefore decided not to further investigate the use of 

classically trained SVMs for this task, as they seem to be unable to model this 

problem. 



 RVMs for Classification of Expression Data 

   145

To investigate whether the SVMs were extracting any significant data from the 

expression data-set, or just memorizing it as suspected, we applied an RVM approach 

(Section 5.3). An RVM was constructed with a BasisSource using the above training 

data and kernel function to generate basis functions (See Section 4.1.1, and in 

particular Equation 4-4 and Equation 4-5). The RVM was then trained using the 

complete set of micro-arrays. Given these basis functions, the RVM becomes 

equivalent to a Bayesian interpretation of the SVM. This RVM rejected all basis 

functions during training. This indicates that none of the SVM solutions using a linear 

kernel function robustly describes how to separate the pre- and post-treatment 

samples. 

This negative result does not necessarily mean that this task could not be performed 

with either an SVM or an RVM using linear kernel functions, but that there was 

insufficient training data to support any parameters. By working with larger training 

sets, or more complex kernels, it may be possible to apply a kernel RVM to this data. 

However, this result does indicate one of the main benefits of RVM training over 

SVMs in that the RVM was able to indicate that no reasonable model could be 

produced. The SVM produced the best model that it could, which was of poor quality, 

but without any indication to the user that this was the case. Any predictions made on 

the basis of genes contributing to the separating hyper-plane are likely to have been 

incorrect, but there would have been no way to know this purely from the SVM 

results themselves. 
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5.4.1 Framework for Generalised-Linear-Models amenable to Expression Arrays 

Given the failure of the linear kernel model description used above to discover 

expression differences resulting from treatment using doxorubicin, we now present an 

alternative way to model the problem. 

An individual array measurement can be considered as a tuple of measurements 

with one dimension per spot on the array. This is a convenient interpretation for 

database storage and cluster analysis. Another point of view considers each spot to be 

the result of evaluating a probabilistic function on the particular sample (the log of the 

ratio of measured expression levels in experimental and background samples). This 

interpretation takes into account that the expression level measured is subject to noise. 

It transforms individual measurements (and by extension the individual genes) into 

entities amenable to hypothesis-directed reasoning using the RVM framework 

(Section 4.1.1), as now each measurement for each gene can be treated as the value of 

a basis function. 

Consider a set of genes, G , a set of micro-arrays, A , and the function that retrieves 

the level for a gene on an array, ),( AaGgl ∈∈ . For any particular fixed g , there 

exists a conditioned version of this function, which we shall call )(al g . A GLM can 

then be constructed where the set of functions being evaluated is the set (.)gl  for each 

gene. This model produces an output based upon a weighted sum of the log ratios of 

expression levels of multiple genes that is potentially predictive of some process. 

Given any pre-defined classes by which the array measurements can be classified, a 

GLM can be estimated to perform that classification. If the sparse training approach is 

taken, then the hope is that the model will tend to extract key genes that have a type of 
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response that helps in the classification task, and will tend to discard all uninformative 

genes. This has the beneficial property of giving back a list of genes that are 

representative of each distinct response to the stimulus that aids in the classification 

task. If multiple genes share the same or similar expression profiles, the sparsity 

properties of the trainer will tend to find the statistically most representative member 

of that group and discard all others. For some uses of the method, such as where a 

complete list of significant genes would be useful (including those contributing 

similar information), this property is a disadvantage. In these cases, some further 

analysis of the data will be required to recover these other genes from the training 

data.  

5.4.2 RVM Analysis Using the Small Working Set Heuristic 

To evaluate this approach, a training set was constructed containing all of the before 

and after treatment measurements introduced above. The aim was to classify micro-

arrays into those before and after doxorubicin treatment. An output of 1.0 would 

indicate that the method was certain that it was an example of ‘before’. An output of 

0.0 would indicate that the method was certain that it was an example of ‘after’. A 

value between these two values indicates the degree of confidence that the sample 

belongs to one class or the other. 

The number of basis functions to be evaluated was very large (one for each of the 

8,102 genes). It was not practical to train the RVM with all of these simultaneously, 

so the small working set heuristic, described above (Section 5.3), was employed. The 

high water-mark was set to 90, and the low water-mark was set to 75. As long as the 

total number of basis functions needed for the task is below the low water mark, we 

could expect the result to be unaffected. 
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To check whether the heuristic altered the result the training was performed three 

times, using different permutations of the training data and of the order that the 

functions were added. The three models produced were identical (the same genes with 

weights within the bounds of numerical precision), and gave the model shown in 

Table 5-1. This suggests that, with this data set, the small working set heuristic works. 

 

Table 5-1 GLM for all before-after pairs (to 4 s.f.) 

Accession Weight  Gene Name Description 
AA017544 -3.269 RGS1  Regulator of G-protein signalling 1 
T72398 4.982 TDO2 Tryptophan 2,3-dioxygenase 
AA040944 -6.299 FOS  Transcription factor involved in the 

apoptotic pathway 
 

This model correctly classifies all of the training examples using the log-ratios of 

just three genes. Of course, training and testing on the same data-set is not robust for 

assessing how well models generalise, but the simplicity of the model suggests that 

this approach may work. Additionally, one of the three genes used is FOS, which is 

known to be involved in the apoptotic pathway activated in response to doxorubicin 

treatment (see Section 5.2). 

To assess how reproducible these results where, we performed a “leave one out” 

cross-validation. For each of the forty micro-arrays, a prediction was made using a 

classifier trained on the remaining thirty-nine micro-arrays. The accuracy rate of the 

model for unseen data can then be estimated as the average accuracy of these forty 

predictions. 
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Of the 40 different models generated, 29 predicted the unseen item correctly. This is 

an accuracy rate of 72.5%, compared to the expected rate of 50%. All of the correct 

predictions typically had extreme probabilities (< 0.2 or > 0.8) where as the incorrect 

predictions were all relatively close to 0.5 (> 0.3 and < 0.7). 15 models used three 

genes, 23 used four genes and 2 used five genes. Across these models, a total of 22 

different genes were used. Every model contained AA040944 (FOS). 22 of them used 

AA027832 (HBA2) and 17 used AA017544 (RGS1). These results are summarised in 

Table 5-2. 

In the forty models generated by cross-validation, several of them use one of two 

alternative probes for the gene TOP2A. The degree of reproducibility or otherwise of 

the levels associated with those two probes can be taken as an indication of the quality 

of the data-set. Figure 5-1 shows a scatter plot with one data point for each of the 40 

micro-arrays, and x, y co-ordinates given by the level of expression for the two 

TOP2A probes in a given micro-array. The levels have an R2 value of 0.68, indicating 

that although they are correlated, there is a considerable degree of independent 

variation. 

A summary of the expression data for these probes is displayed in Figure 5-2. As is 

seen from the graph, none of the probes used in the models have clearly separate 

distributions before and after treatment. FOS, which is used by every model generated 

during cross-validation, shows differences between the two groups, as does JUN, and 

to a lesser extent, both of the TOP2A probes. However, it should be clear from this 

that there is no one unambiguous indicator gene. 

Given that the cross-validation procedure produced a range of different basis 

functions with a range of weights, it is interesting to consider what linear models can 
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be generated by combining these basis functions and their weights. This should give 

us some further indication of how important particular basis functions are. 

One linear model can be obtained by taking the average weighting of each probe 

across all of the cross-validation models in which it takes part. The result of applying 

this to the micro-arrays is presented in Figure 5-3 as the scores produced prior to 

conversion to probabilities. This model misclassifies only four micro-arrays, giving a 

90% accuracy rate. 

This model does not take into account that some probes are present in fewer 

models. It is possible to reflect this by averaging the weights across all models, using 

a weight of zero where the probe is not used in a particular model. The result of 

applying this to the micro-arrays is presented in Figure 5-4. This model correctly 

classifies all of the micro-arrays. However, the associated confidences are lower, as 

demonstrated by the reduced magnitude of the outputs. The increase in accuracy of 

this model supports the idea that basis functions which are frequently present in 

different models are more informative to the classification task. 

Using the contribution of just FOS to the model in Figure 5-4 (FOS level multiplied 

by its weight), all of the samples taken after treatment can be correctly identified, but 

11 out of the 20 samples taken before treatment are misclassified. Similarly, using just 

the contribution of TDO2, all of samples taken after treatment can be correctly 

identified, but 4 of the samples taken before treatment are incorrectly predicted as 

being after treatment. This contrasts strongly with the behaviour of the contribution of 

the third component RGS1, which uniformly predicts all samples as belong to the 

before treatment class, with just one before and one after treatment sample predicted 

as after treatment. Each of the models generated during the cross validation procedure 
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contains exactly one probe that uniformly predicts all microarrays as belonging to one 

class (data not shown). We propose that the RVM is using these uniform predictors as 

a calibrated model of the level and variation inherent within this data set. 

The aim of this RVM approach is to classify microarrays into two classes using the 

expression levels associated with each gene within each microarray. This 

methodology produces models that can be readily interpreted in terms of the 

contribution of each gene. However, it is not the primary aim of this method to 

indicate discriminating genes. A student t-test is more appropriate as a means for 

identifying genes with differential expression levels. This test calculates the 

probability that two sets of numbers have normal distributions that are distinguishable 

from one-another. 

The student t-test scores associated with the range of levels in the before and after 

treatment groups is presented in Table 3-2. The column labelled TP contains the t-test 

scores for the two sets of microarrays taking into account the pairing between samples 

taken from the same patient before and after treatment. This information was not 

available to the RVM, and the student t-test scores assuming no such pairing are 

contained within the column labelled TS. 

The probes for FOS and JUN have values that are extremely significant, indicating 

that there is very strong support for the hypothesis that the microarray levels before 

and after treatment come from different distributions. Generally, the t-test scores 

(both TS and TP) do not show any clear trend related to the rank of the probe in the 

table, or with the use of the probe as a uniform predictor. Although many of the 

probes used in the cross-validation models do have significant t-test scores, some do 

not, both at the 5 % and the 1 % significance level. Interestingly, many of the TP 
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scores are actually worse than the associated TS scores. It would be expected that in a 

system with low noise, the extra information provided by the sample pairing would 

lead to systematically greater significance. The presence of counter-examples may 

indicate that when considering individual genes, the level of noise in this data in some 

cases obscures the signal provided by the before and after treatment pairing. 
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Table 5-2 Genes used by cross-validation models 

All information taken from the data files providing the expression data. Accession 

values of (*) indicate that the spot had no associated probe. TS is the value of the 

student t-test assuming the before and after samples to be unpaired. TP is the value of 

the student t-test taking into account that before and after samples are paired. 

Probe Accession Symbol Uses TS 
(%) 

TP 
(%) 

Description 

9016 AA040944 FOS 40 0.00 0.00 v-fos FBJ murine 
osteosarcoma viral oncogene 
homolog 

8530 AA027832 HBA2 22 4.89 2.95 Hemoglobin, alpha 2 
243 AA017544 RGS1 17 1.11 1.38 Regulator of G-protein 

signalling 1 
2114 AA454668 PTGS1 11 0.24 0.07 Prostaglandin-endoperoxide 

synthase 1 (prostaglandin 
G/H synthase and 
cyclooxygenase) 

6333 N50845  11 5.74 9.64  
5635 *  8 0.60 0.39  
6077 AA425316 LOC51700 7 1.78 2.02 Cytochrome b5 reductase 

b5R.2 
7399 AA026682 TOP2A 5 0.71 0.60 Topoisomerase (DNA) II 

alpha (170kD) 
3903 *  3 5.13 4.39  
3901 *  2 0.36 0.45  
5284 T72398 TDO2 2 7.33 0.83 Tryptophan 2,3-dioxygenase 
6223 *  2 15.48 16.19  
6494 W96134 JUN 2 0.00 0.00 v-jun avian sarcoma virus 17 

oncogene homolog 
7956 T63045 IGL@ 2 16.01 1.40 Immunoglobulin lambda 

locus 
244 AA074224 RCV1 1 9.98 12.11 Recoverin 
2753 *  1 4.63 6.26  
4468 AA453345 JAK2 1 6.99 3.93 Janus kinase 2 (a protein 

tyrosine kinase) 
5002 AA620359  1 1.20 0.62  
6043 H87471 KYNU 1 20.95 4.81 Kynureninase (L-kynurenine 

hydrolase) 
7704 N71028  1 0.99 0.17  
8494 *  1 4.58 8.33  
8719 AA504348 TOP2A 1 2.34 2.39 Topoisomerase (DNA) II 

alpha (170kD) 
Error! Not a valid link. 

Figure 5-1 Scatter Plot of the Two Topoisomerase II Probes Used. 
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There is one point for each of the 40 micro-arrays. The x values are the levels of the 

probe for AA504348, and the y values are the levels of the probe AA026682. Both of 

these are probes for the TOP2A gene. The R2 value is the correlation between the 

levels measured for these two probes under identical conditions. 

Error! Not a valid link. 

Figure 5-2 Expression Levels for Each Probe Used 

For each probe, there are three bars. Each data-point displays the mean level for a 

probe across a range of micro-arrays. The error bars display two standard deviations 

around the mean. In each case, the left-most bar corresponds to the mean and standard 

deviation of the probes level across the 20 micro-arrays taken before treatment, and 

the right-most par corresponds to the mean and standard deviations for the probe 

across the 20 micro-array measurements after drug treatment. Each data-point is 

labeled with the gene name if present. If this was not present, the accession number is 

used. If this was not available, the probe number is used. The probes are in the same 

order as Table 5-2. 

 

Error! Not a valid link. 

Figure 5-3 Average Weighs Across Relevant Models. 

The samples after treatment are to the left, and samples before treatment are to the 

right. All prediction values are in the units of the GLM before conversion into 

probabilities. Values below 0 will map to probabilities below 0.5, and values above 0 

will map to probabilities above 0.5. All of the before samples have been correctly 

classified. Four of the after samples are misclassified, and are indicated with an 

asterisk (*). 

Before After 

*

***
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Error! Not a valid link. 

Figure 5-4 Average Weights Across All Models 

The samples after treatment are to the left, and samples before treatment are to the 

right. All prediction values are in the units of the GLM before conversion into 

probabilities. Values below 0 will map to probabilities below 0.5, and values above 0 

will map to probabilities above 0.5. All of the samples have been correctly classified. 

After Before 
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5.4.3 Function of Genes Identified by GLM Models 

 If the model learned a biologically significant signal, this should be reflected in the 

probes used to construct the model (as listed in Table 5-2). For many of the genes, this 

is indeed the case. Several genes known to be involved in the action of doxorubicin 

are present. 

TOP2A directly interacts with doxorubicin, leading to the single-strand break 

mechanism of drug activity. This appears to be down-regulated in the group after 

treatment. This could be evidence that the cancers are developing doxorubicin 

resistance by repressing the TOP2A gene. Alternatively, potentially irreversible 

interactions between TOP2A and doxorubicin intercalated with DNA, or the relative 

lack of super-coiling due to many single-strand breaks may be fooling the regulatory 

mechanisms for TOP2A into behaving as if there are sufficient levels of the protein, 

leading to down-regulation of the gene. 

 JUN and FOS are part of the pathway that mediates apoptosis in response to 

excessive rates of single-strand breakages. Both of these appear to be up-regulated in 

the group after treatment. JUN and FOS form a transcription regulatory complex, and 

in cells responding to single-strand break stress, this complex interacts with the genes 

responsible for activating the apoptosis response. The resulting reduction in level of 

free JUN and FOS may cause their synthesis to be up-regulated to compensate. 

RGS1 is a repressor of the G protein signalling that is involved in the regulation of 

b-cell activation and proliferation, as well being indicated in a range of cancers35. It 

appears to be marginally down-regulated after treatment. G proteins are involved in a 
                                                 

35 See http://caroll.vjf.cnrs.fr/cancergene/CG516.html for a description of RGS1 
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wide range of signalling activities, and initiate MAP-kinase cascades. By down-

regulating the repressor, the activity of the G proteins would be enhanced, increasing 

the strength of the signalling pathway. The single strand breaks introduced by 

Doxorubicin activity tend to arrest cell division. An increase in proliferation signals 

mediated by G protein signalling may compensate for this effect. 

Two enzymes, TDO2 and KYNU, are present from the tryptophan metabolism 

pathway. Both of these enzymes appear to be down regulated in response to 

doxorubicin treatment. TDO2 catalysis the conversion of tryptophan to N-formyl-

kynurenine. KYNU catalyses the conversion of this compound to formyl-anthranilate. 

It is intriguing that the models identified these two enzymes, given their proximity in 

a pathway. Intracellular levels of tryptophan around tumours have been shown to be 

abnormal (Iwagaki, Hizuta et al. 1995; Huang, Fuchs et al. 2002), but there is no clear 

indication of why this pathway should be important in response to doxorubicin. 

The two genes HBA2 (haemoglobin alpha 2 subunit) and LOC51700 (cytochrome-b5 

reductase) are present in several models. Both of these appear to be down regulated in 

response to doxorubicin treatment. Cytochrome-b5 and haemoglobin both require haem36 for 

their production. Cytochrome-b5 reductase decreases the levels of available cytochrome-b5. 

Reduction in the levels of this enzyme would lead to increased levels of cytochrome-b5. A 

down regulation of HBA2 production would reduce the amount of haem becoming 

incorporated into haemoglobin. If both proteins are expressed within the same cells, these two 

processes would act together to increase the level of cytochrome-b5. 

                                                 

36 See http://www.genome.ad.jp/dbget-bin/www_bget?compound+C00032 and links from that page for 

a more full description of haem and the Prophyrin metabolism pathway 
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As the samples used for microarray analysis were obtained from biopsies, it is inevitable 

that they represent expression levels from a range of different cell types. It is possible that 

within this population there were immature red blood cells. Although the nucleated red blood 

cell precursors are present only in the bone-marrow, there is a stage in their differentiation 

intermediate between this and mature red blood cells that contains mitochondria and 

messenger RNA. For a couple of days, these are present in the blood stream (Gilbert 2003). 

During this maturation stage, haemoglobin is synthesized. It is possible that the chemotherapy 

results in a decrease rate of red blood cell production. This would lead to a decreased number 

of maturing red blood cells in the circulatory system, and therefore a lower measured level of 

the haemoglobin mRNA. 

5.5 Conclusions, Applications and Future Work 

In this chapter, we have shown that RVMs can be used in the analysis of expression 

data that contains few samples and is noisy. The RVM was both able to perform the 

required classification task, and the model produced has clearly identified biologically 

relevant genes. 

Cluster analysis of this expression data does not help in discovering genes that have 

modified expression levels in response to treatment with doxorubicin. Clustering by 

correlation co-efficient identifies clusters containing pairs of micro-arrays from a 

single patient. It does not produce clusters corresponding to all micro-arrays pre- or 

post-treatment, indicating that the history of the cell line is the primary signal in the 

expression profiles. 

When an SVM was trained using the tumour sample expression data, it appeared to 

memorize the training set. When the same model was trained using the probabilistic 

RVM trainer, the RVM rejected the hypothesis that the data was separable using the 
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linear kernel function. This indicated that with just 20 samples, a conventional SVM 

could not be constructed to classify these samples into pre- and post-treatment. 

Using an alternative strategy, an RVM was constructed with one basis function for 

each unique probe used to measure the level of a gene, and applied to learn a 

discriminator to predict whether tumour samples were pre- or post-treatment. It was 

able to learn signals that correlated with the treatment status. The function learned by 

RVM did appear to display all of the expected traits of sparsity, simplicity and 

generalization expected from this training method. Of course, given 8,102 genes to 

choose from, a model could trivially be constructed that performed very well on the 

training set. However, this would not be expected to generalize to unseen data. The 

results of the cross-validated training indicate that the models do generalize regardless 

of the sub-set used for training and testing, and that the models do not purely contain 

some statistically aberrant signal present by chance in the training set. With larger 

training sets, it should be possible to learn models with better estimates for which 

genes are informative and are less prone to over-fitting. 

Some of the probes identified as basis functions during cross-validation appear to 

show differences in their average levels before and after drug treatment. Others do 

not. However, the RVMs are not looking at genes in isolation, but rather looking at 

interactions between them. A number of genes were identified as indicators that make 

clear biological sense, given the known action of doxorubicin (JUN, FOS, 

topoisomerase II). A number of others are not surprising, such as those associated 

with signalling cascades. Others, such as TDO2 and KYNU are implicated by their 

presence in the model and their differences in mean level before and after treatment. 



 RVMs for Classification of Expression Data 

   160

A final group appear to be used by the model as a measure of the noise in the system, 

or to obtain a baseline from which all other levels can be calculated. 

This use of RVMs is potentially applicable to any situation where large numbers of 

expression levels have been measured and a test is required which will indicate which 

of these are informative for a particular biological response. The classifier generated 

can be used to classify new data. RVMs can be trained using any set of basis 

functions. This is applicable to a wide range of situations, for example, screening 

expression levels from patient samples to estimate which of a range of anti-cancer 

drugs may be an appropriate treatment. It is possible to combine expression data with 

any other measurements. For example, expression levels could be combined with 

information about the presence or absence of SNPs, direct biological measurements, 

such as pulse or breathing rate, and so forth into a single predictive model. 

The RVMs have two advantages over support vector machines (SVM) for this type 

of data. Firstly, to evaluate an SVM it is necessary to calculate products for every 

gene on the micro-array. The SVM will be invalid if all of the genes on the original 

micro-array are not also measured in the clinical sample from the patient, as the full 

dot product between the support vectors and the sample cannot be calculated. In 

addition, this requires one multiplication per micro-array spot per support vector. An 

RVM of the form described above only requires that the genes that are used by the 

model be within the set measured in the patient sample. It requires one multiplication 

for each gene that is used as a basis function to the learned weight. 

Secondly, the GLMs produced by RVMs give an indication of confidence in their 

prediction. This potentially allows the person interpreting the model output to make 

sensible judgements about how to use the model’s prediction (for example, ignoring 
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predictions with very low confidence). SVMs give an output value, but the absolute 

scale of this number is dependant on the distance from the separating hyper-plane of 

the two support vectors corresponding to the closest correctly classified data points 

from each class. Two SVMs using different support vectors will have incomparable 

scales, making it impossible to compare these values directly. 

To evaluate the effectiveness of these RVMs for other classification tasks using 

micro-array data, more data sets need to be analysed. The data set used here was both 

small and noisy. It is to be expected that with larger data sets containing cleaner 

expression levels, that much higher levels of classification accuracy can be achieved. 

In the case where this method is used as a way of identifying biologically relevant 

genes, methods need to be developed to extract models with more genes. This could 

be achieved by training the model repeatedly, removing all probes identified by 

previous models until the model does not perform the classification task. 

Alternatively, it may be possible to look at the information each indicator gene is 

contributing, and to use some form of hierarchical or single-linkage clustering to 

identify those with patterns of expression that share information with it. The RVM 

could be modified to indicate if each basis was rejected because it did not contribute 

to the accuracy of the model, or because it duplicated information present in another 

basis. 

Since this work was carried out, related relevance-based approaches have begun to 

emerge, for example (Li, Campbell et al. 2002) and Gene-Rave37. However, these 

                                                 

37 See http://www.bioinformatics.csiro.au/GeneRave/products.html and the examples link from this 

page 
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methods do not seem to be producing results with quite the same high level of sparsity 

our method generates. Neither of these methods has as yet solved the question of how 

to retrieve the indicator genes removed from the model because they give information 

correlated to that of the selected relevant genes.  
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Concluding Remarks 

The vast volumes of biological data being produced now overwhelm the traditional 

paradigm of individual scientists studying individual results and making and testing 

individual hypotheses. In this dissertation, I present tools and methods that allow data 

sets of genomic scales to be explored, analyzed and learned from. The BioJava project 

provides programming tools for manipulating genomic data sets. HMMs can be 

constructed which leverage un-supervised learning techniques to elucidate the 

inherent structure of chromosomes. SVMs and latterly RVMs can be used to perform 

regression and classification tasks on large quantities data with an unprecedented 

degree of sparsity and generalization. Here, they are used for the diverse tasks of 

predicting recombination rates and classifying tumour samples into those treated and 

un-treated with Doxorubicin. 

During my PhD studies, I have used BioJava and its machine learning 

implementations in a range of other situations, which are not discussed in detail here. 

This was partly to define the limitations of the methods and partly for scientific 

exploration. Briefly, SVMs were applied to a wide range of regression and 

classification tasks. These included the implementation of an e-mail spam filter, 

assessing the accuracy of gene predictions given the outputs of multiple programs and 

curve smoothing for recombination rates. RVMs were applied to an equally wide 

range of problems, including predicting protein secondary structure elements, 

sequence comparison using HMM kernels and simultaneous estimation of expression 

profile class and promoter structures. HMMs were used to model 3-D DNA structure 

using a multinomial Gaussian emission state, Gibbs-sampling of expression profiles, 

promoter finding, protein secondary structure prediction by pair wise alignment and 
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HMM-based kernel functions. This is by no means an exhaustive list of mini-projects 

undertaken within the past four years, but gives a flavour of the range of problems 

that can be tackled using these technologies. 

Since this thesis was written, BioJava has continued to develop (as discussed in 

chapter 2), demonstrating that the original APIs are both flexible and sufficient, 

allowing a wide degree of reuse and extension. 

None of the methods presented here are limited to the problems to which they were 

applied. The task ahead is to use these and other technologies to make new 

discoveries about how genomes are structured, function, evolve and fail. The possible 

applications are wide-ranging; medicine, agriculture, bio-engineering, palaeontology, 

to name but a few. I look forward to seeing where this leads us. 
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Forgive us for what we have done and what we have left undone 

(Extract from the Anglican Order of Service) 

 

 

 

 


