PERIODIC GENE EXPRESSION PROGRAM OF THE FISSION YEAST CELL CYCLE

Gabriella Rustici

This dissertation is submitted for the degree of Doctor of Philosophy April 2004

> Darwin College University of Cambridge

The Wellcome Trust Sanger Institute Hinxton Cambridge, UK

Declaration

I hereby declare that my dissertation contains material that has not been submitted for a degree or diploma or any other qualification at any other university. This thesis describes my own work and does not include the work that has been done in collaboration, except when specifically indicated in the text.

Gabriella Rustici

26/04/2004

Acknowledgments

I would like to thank my supervisor Jürg Bähler and all the present and former members of team 79, in particular Juan Mata and Gavin Burns for their help, knowledge and excellent technical support throughout these years.

Extremely useful has been the collaboration with Paul Nurse and Jacky Hayle from Cancer Research UK in London, from general guidelines on the project to suggestions for the perfect elutriation experiment! Thanks to Iain Hagan and Sergio Moreno for their courteous advice and help. I am also grateful to Alvis Brazma for his understanding during this period of transition from the laboratory to bioinformatics! I also want to acknowledge Cancer Research UK for funding this research.

A special mention to all the friends I have met in Cambridge over the last three years that made my staying unforgettable, in particular Evan and Ranjeeva, which for different reasons made all this possible. A very special thank to Amber, Annalisa, Catarina, Danilo, Fausto, Francesca, Joao, Karina, Laura, Lisa, Luciana, Michal, Mike, Philippe, Samiul, Simona, Susanna and Waqas for their friendship and support.

Tutta la mia gratitudine e riconoscenza vanno alla sola ad unica persona che in tutti questi anni mi e' stata vicino ed ha creduto in me e nella realizzazione di tutto questo anche a costo di una lunga e difficile separazione. Tutti i sacrifici fatti da te mamma hanno per me un immenso valore che nessun ringraziamento sara' mai capace di esprimere.

ABSTRACT

In every cell, thousands of genes and their protein products function in a complicated and orchestrated way that creates life. However, traditional methods in molecular biology and genetics normally work on a 'one gene in one experiment' basis. In recent years, a new technology, called DNA microarray, has attracted tremendous interest among biologists. This technology allows monitoring the expression levels of every gene in a single experiment so that researchers can obtain a global picture of the activity and interactions of thousands of genes simultaneously.

The overall objective of this thesis was to use DNA microarrays containing all the genes of the fission yeast Schizosaccharomyces pombe to analyse transcriptional profiles of the entire gene set during the cell cycle. Cell cycle events form the basis of growth and proliferation of all cells, and fission yeast is a valuable model organism to study cell cycle regulation. Two different standard methods were used to synchronise cells in the cell cycle. mRNA was extracted from different cell cycle stages of wild-type and mutant cells, labelled with fluorescent markers, and hybridised to the microarrays. Hybridisation was then quantified with a confocal scanner, and data evaluated using a wide range of computational methods. This work provides for the first time a genome-wide overview of genes that are periodically expressed during the fission yeast cell cycle. Several deletion mutants of well known as well as less characterised or putative transcriptional regulators have also been used with the purpose of clarifying the mechanisms that regulate gene expression during the cell cycle. Clustering of genes that are co-expressed under various conditions helped to define new consensus sequence motifs required for particular patterns of transcriptional regulation. Conservation of periodic gene transcription through evolution is discussed with respect to the Saccharomyces cerevisiae and human orthologues to the fission yeast periodic genes.

This research forms a basic dataset for future functional genomics approaches in fission yeast and other organisms and provides a valuable framework to characterise unknown genes in more detail using the whole range of genetics, cell biological, and biochemical methods available in fission yeast.

TABLE OF CONTENTS

Declaration	ii
Acknowledgments	iii
Abstract	iv
Table of contents	v
List of figures	х
List of tables	xi

Chapter 1: Introduction

1.1	CELL CYCLE	1
1.1.1	General overview	1
1.1.2	Eukaryotic cell cycle	2
1.1.3	Cell cycle control mechanisms: cyclin-dependent kinases	4
1.1.4	Cell cycle control mechanisms: checkpoints	6
1.2	YEAST CELL CYCLE	8
1.2.1	General overview	8
1.2.2	Budding yeast cell cycle	11
1.2.3	Budding yeast checkpoints	14
1.2.4	Fission yeast cell cycle	15
1.2.5	Fission yeast checkpoints	18
1.3	CONSERVED CELL CYCLE MECHANISMS IN EUKARYOTES	19
1.4	CELL CYCLE CONTROL OF GENE EXPRESSION	21
1.4.1	General overview	21
1.4.2	Transcriptional cell cycle regulation in budding yeast	21
1.4.3	Transcriptional cell cycle regulation in fission yeast	27
1.4.4	Transcriptional cell cycle regulation in humans	30
1.5	CELL CYCLE RESEARCH USING DNA MICROARRAYS	34

Chapter 2: Materials and methods

2.1 FISSION YEAST GROWTH AND MAINTENANCE 36

2.1.1	Propagation and storage of fission yeast strains	36
2.1.2	Experimental conditions	36
2.2	FISSION YEAST MOLECULAR GENETICS	37
2.2.1	PCR-based gene deletions	37
2.2.2	Cloning for overexpression	38
2.2.3	Yeast transformation (Lithium acetate procedure)	42
2.2.4	Construction of double mutant strains	43
2.3	FISSION YEAST PHYSIOLOGY	44
2.3.1	Synchronized cultures	44
2.3.2	Cell number measurement	46
2.3.3	DNA content measurement	46
2.4	FISSION YEAST MICROSCOPY	47
2.4.1	DAPI staining	47
2.4.2	Calcofluor staining	47
2.5	MICROARRAY EXPERIMENTS	47
2.5.1	Microarray fabrication	48
2.5.2	RNA preparation	49
2.5.3	Labelling protocol for total RNA	49
2.5.4	Hybridisation and posthybridisation	50
2.5.5	Image acquisition	50
2.6	MICROARRAY DATA ANALYSIS	51
2.6.1	Image Processing	51
2.6.2	Data Normalization and Evaluation	51
2.6.3	Identification of periodic genes	52
2.6.4	Clustering periodic genes	54
2.6.5	Identification of promoter motifs	54
2.6.6	Comparison between fission and budding yeasts	55

Chapter 3: Periodic gene expression during the mitotic cell cycle in fission yeast

3.1	Experimental overview	57
3.2	Identification of periodic genes	60
3.3	Clustering of periodic genes	61
3.4	Biological function of genes in four clusters	68

Chapter 4: Transcriptional regulation of periodically expressed genes in fission yeast

4.1	Experimental overview	82
4.2	Sep1p-dependent regulation	83
4.3	Ace2p-dependent transcription	86
4.4	Other fission yeast forkhead genes	91
4.5	Cdc10p-dependent transcription	93
4.6	Additional experiments addressing regulation by sep1p, ace2p and cdc10p	96
4.7	Studies with additional potential regulatory genes	100
4.8	Potential regulatory promoter motifs	103

Chapter 5: Conservation of cell cycle regulated gene expression

5.1	Fission yeast and budding yeast: what is conserved?	106
5.2	Conserved genes across yeast species and their function	109
5.3	Yeasts and humans: what is conserved?	111

Chapter 6: General discussion

6.1	Cell-cycle periodic genes and their regulation	113
6.2	Conservation of periodic transcription across eukaryotes	117
6.3	Cell cycle periodic genes and their behaviour in meiosis	118
6.4	Future work	119

Appendices

Appendix I	Strains used in this study	122
Appendix II	List of buffers, solutions, media and antibiotics	123
Appendix III	Primers used in this study	125
Appendix IV	a Time courses experimental conditions	127
Appendix IV	b Mutant strains experimental conditions	128

Appendix V	Additional measurements defining cell cycle synchrony in timecourse	
	experiments and additional clustering	130
Appendix VI	List of 407 genes periodically expressed during the cell cycle	135

References

154

List of figures

Fig. 1.1	Schematic representation of the eukaryotic cell cycle.	2
Fig. 1.2	Mitotic division and its phases.	3
Fig. 1.3A	Life cycles of both yeasts – Budding yeast.	9
Fig. 1.3B	Life cycles of both yeasts – Fission yeast.	10
Fig. 1.4	Central roles of CDK complexes in driving the budding yeast	
	cell cycle.	13
Fig. 1.5	Schematic representation of regulatory events during the fission	
	yeast cell cycle.	17
Fig. 1.6	Serial regulation of gene transcription in S. cerevisiae.	26
Fig. 2.1	Map of the pFA6a-kanMX6 plasmid.	37
Fig. 2.2	Map of the pPCR-Script Cam SK(+) vector.	39
Fig. 2.3	Map of the pREP-3X expression vector.	41
Fig. 2.4	The elutriation process.	44
Fig. 2.5	Overview of a typical microarray experiment.	48
Fig. 2.6	Hypergeometric distribution.	56
Fig. 3.1	Parameters defining cell cycle synchrony.	59
Fig. 3.2	Clustering of cell cycle regulated genes in S. pombe.	63
Fig. 3.3	Cell cycle regulated genes in S. pombe and their classification.	69
Fig. 4.1	Microscopic appearance of wild type (A), $sep1\Delta$ (B), $ace2\Delta$ (C)	
	and $ace2\Delta sep1\Delta$ (D) mutant cells.	85
Fig. 4.2	Microscopic appearance of $leu1-32 h^2$ overexpressing the following	ıg
	vectors: pREP3X only (A), pREP3X-ace2 (B), pREP3X-sep1 (C),	
	<i>pREP3X-fkh2</i> (D) and <i>pREP3X-fhl1</i> (E).	89
Fig. 4.3	Transcriptional regulation of selected cluster 1 and 2 genes.	90
Fig. 4.4	Microscopic appearance of wild type (A), $fkh2\Delta$ (B), $fhl1\Delta$ (C)	
	and $fhll\Delta$ sep $l\Delta$ (D) mutant cells.	93
Fig. 4.5	MBF, ace2p and sep1p transcriptional regulation of cluster 1	
	and 2 genes in a sep1 \triangle cdc25 'block and release' experiment.	98
Fig. 4.6	MBF, ace2p and sep1p transcriptional regulation of cluster 1	
	and 2 genes in a $cig1\Delta$ $cig2\Delta$ $puc1\Delta$ elutriation experiment.	99
Fig. 4.7	Microscopic appearance of wild type 972 h^{-} (A), SPBC19G7.06 Δ	

	(B), meu19 Δ (C) and meu3 Δ (D). DIC photographs are shown.	100
Fig. 4.8	Identification of potential regulatory promoter motifs.	105
Fig. 6.1	Transcriptional regulation cascade in fission and budding yeast.	115
Fig. V.1	Additional measurements for elutriation experiments.	130
Fig. V.2	Additional measurements for cdc25 experiments.	131
Fig. V.3	Additional measurements for cdc25 and cdc10 experiments.	132
Fig. V.4	3-dimensional representation of the four clusters of cell cycle	
	regulated genes for an elutriation experiment.	133
Fig. V.5	3-dimensional representation of the four clusters of cell cycle	
	regulated genes for a cdc25 'block and release' experiment.	134

List of tables

Table 1.1	Yeast checkpoints.	6
Table 1.2	Proteins involved in the S-phase/DNA damage checkpoint in	
	yeast and mammals.	14
Table 1.3	Clusters of periodic genes in S. cerevisiae according to	
	Spellman <i>et al.</i> , (1998).	24
Table 1.4	Periodic gene clusters in HeLa cells according to	
	Whitfield et al. (2002).	32
Table 3.1	Genes previously reported as cell cycle regulated in S. pombe.	68
Table 3.2	Selected cluster 1 members and their biological function.	71
Table 3.3	Selected cluster 2 members and their biological function.	74
Table 3.4	Selected cluster 3 members and their biological function.	76
Table 3.5	Selected cluster 4 members and their biological function.	77
Table 3.6	Selected unclassified genes and their biological function.	80
Table 4.1	Sep1p-dependent periodic genes.	84
Table 4.2	Ace2p-dependent periodic genes.	87
Table 4.3	MBF-dependent periodic genes.	95
Table 4.4	Downregulated genes in SPBC19G7.06 deletion.	101
Table 4.5	Potential regulatory promoter motifs.	104
Table 5.1	Overlap of periodic genes between S. pombe and S. cerevisiae.	107
Table 5.2	Core set of periodically expressed genes in fission and	
	budding yeasts.	108
Appendix I	Strains used in this study.	122
Appendix II	List of buffers, solutions, media and antibiotics.	123
Appendix III	Primers used in this study.	125
Appendix IV	a Time courses experimental conditions	127
Appendix IV	b Mutant strains experimental conditions	128
Appendix VI	List of 407 genes periodically expressed during the cell cycle	135