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Abstract

In the malaria parasite Plasmodium falciparum, PfEMP1 (Plasmod-
ium falciparum erythrocyte membrane protein 1) is a protein that
is exported to the surface of infected human red blood cells and
encoded by ~60 var genes. PFEMP1 plays a crucial role in parasite
virulence and pathogenesis. It is also a target of host protective
antibody responses that are avoided by the parasite by transcrip-
tional switches between members of the var gene family resulting in
antigenic variation of the surface expressed PfEMP1.Thousands of
malaria patient samples are being sequenced at the Sanger Institute’s
Malaria Programme to identify common polymorphisms but para-
doxically some of the most variable sequences, such as var genes, are
intractable due to high levels of polymorphism. Our understanding
of var diversity in natural populations is thus limited to the DBL«
domain, a conserved 300-400 bp region found in the majority of
var genes studied so far. This thesis describes novel approaches
developed to assemble full-length var genes from short reads of the

[llumina sequencing platform.

The first part details an evaluation of existing assembly approaches
through a comparative assessment of representative assembly tools.
The results suggest that assembly of var genes in clinical samples
using current methods is not practicaldue to a combination of factors
including inherent sequence features (eg. high A+T content, low
complexity, repeats and duplicates) and technical issues that affect
quality of the raw sequence (eg. sequencing errors and uneven
coverage). An alternative assembly strategy based on conserved
sequence motifs was developed to address limitations of existing

methods.
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The second part investigates applications of short read sequenc-
ing to understand mechanisms of var gene diversity. Analysis of
sequences from five progeny of the first genetic cross in Plasmod-
ium falciparum between clones 3D7 and HB3 revealed evidence of

ectopic-recombination as a mechanism for var gene diversity.

In the third and final part of the thesis, the iterative assembly ap-
proach developed in the first part is applied to a global collection of
~800 clinical isolates resulting in the first and largest collection of
full-length sequences for ~50,000 var-contigs. Assembly results of
var genes from these clinical samples were shown to have a higher
repertoire-completeness (i.e. the number of contigs identified as var
genes was close to the expected number of var genes), and contigu-
ity (i.e. contig N50 size, largest contig size and open reading frame
sizes were comparable with the expected values from previously
completed genomes such as 3D7). Such availability of full-length
var genes is a major progress towards understanding the population

structure and diversity of var genes in natural populations with

Preliminarily analysis of var-contigs based on nucleotide and amino
acid similarities (Chapter 5) revealed distinct clusters of highly con-
served var-contigs within and between populations with percent-
identities of up to 100% over their full length (i.e a match length
of ~5-10 kb). The validity of these continent-transcending var-
contigs was confirmed by looking at the sizes of open reading frames
and aligning short reads back to var-contigs. Potential reasons for
such continent-transcending var-contigs are explored in Chapter 6.
These observations were surprising and potentially interesting as
the majority of continent-transcending var-contigs were members
of a group of var genes that are known to be associated with severe

malaria.
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