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ABSTRACT

Interactions between cell surface proteins mitigate multiple signalling and cell
recognition events during development and disease. Previous methods to screen for extracel-
lular protein interactions have relied on recapitulating these interactions using recombinant
ectodomains of membrane-associated proteins. This approach is well suited for studying
single pass transmembrane and glycophosphatidylinositol (GPI)-linked proteins, which tend
to have single chain ectodomains. However, it has limited capacity for identifying interac-
tions involving proteins with multiple transmembrane domains, which tend to have complex
extracellular regions composed of more than one extracellular loops. Cell-based methods
can help overcome this limitation by providing a native environment for the presentation of
multipass membrane ectodomains. The success of cell microarrays transfected with cDNA
libraries encoding plasma membrane proteins in identifying surface receptors demonstrates
the feasibility of upregulating cell surface proteins for studying extracellular interactions, but
requires significant cost to perform at scale.

Recently, advances in transcriptome editing using CRISPR/Cas9 have enabled
highly efficient and specific gene activation on a genome-wide scale. By systematically upreg-
ulating plasma membrane proteins in human cell lines using CRISPR activation (CRISPRa), I
developed a screening approach to identify novel receptor-ligand interactions in a convenient,
single tube format. I show that this approach detects known interactions with a low false
positive rate and apply it to identify ligands for the adhesion G-protein coupled receptors.
I found that myelin-associated inhibitory proteins, the Nogo receptors, interact with Brain
angiogenesis inhibitor 1 (ADGRB1) and show that the interaction is mediated by the first
three thrombospondin repeat domains of ADGRB1. Together, this suggests that pooled
CRISPRa screening presents a sensitive and convenient approach for genome-scale extracel-
lular receptor-ligand identification, avoiding costly and technically challenging preparation
of cDNA or recombinant protein libraries.
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binant protein is harvested and purified using nickel affinity beads which bind
a 6x histidine tag on the C-terminus of the protein. Tetramers are formed
by incubating recombinant protein with fluorescently labelled streptavidin
(streptavidin-PE). CMV - human cytomegalovirus immediate-early promoter;
Sp - Signal peptide; rCD4 d3+d4 - 3rd and 4th Ig domains of rat CD4. B)
The amount of recombinant protein used for screening is normalised using
the amount needed to saturate 2 µg of streptavidin-PE. Different dilutions of
purified proteins are conjugated to 10 ng streptavidin-PE overnight and the
remaining free biotinylated proteins are captured on a streptavidin-coated
plate. Captured protein is detected with an antibody targeting rCD4 d3+d4
followed by an appropriate alkaline phosphatase-conjugated secondary. Ab-
sorbance at 405 nm indicates the amount of free protein remaining after
conjugation and is shown for the four ligands CD55, CTLA4, EFNA1 and
rCd200r. The highest concentration of biotinylated protein that resulted in
no excess protein was determined (dotted lines) and scaled linearly to derive
the amount needed to saturate 2 µg. . . . . . . . . . . . . . . . . . . . . . 67

4.6 CRISPRa screening unambiguously identifies low-affinity endogenous
interactions A) CRISPRa screening identifies six out of nine reported inter-
actions involving CD55, CTLA4, rCd200 and EFNA1. Blue circles represent
cell surface ligands used as tetramers for screening, pink circles represent
binding partners identified by CRISPRa screening and white circles are bind-
ing partners that were not detected. B) Endogenous binding partners are
identified with high confidence as seen in the gene level enrichment analysis
of each screen. In all four screens, at least one binding partner is detected
below an FDR of 0.1 (red dots) with no other genes showing significant
enrichment at that cut-off. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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5.1 Structure of a typical adhesion GPCR A) Adhesion GPCR structure can
be compartmentalised with reference to topology or cleavage at the GPCR
proteolytic site (GPS). All adhesion GPCRs consist of a tripartite structure
consisting of an extracellular domain (ECD), a seven transmembrane domain
(7TM), and an intracellular (ICD). Some adhesion GPCRs undergo autopro-
teolysis at the GPS to produce an N-terminal (NTF) and C-terminal fragment
(CTF). B) The GAIN domain is a complex fold that mediates autoproteolysis
and subsequent attachment of cleaved NTF and CTFs. It is divided into two
subdomains, A and B. Subdomain B contains and is cleaved at a conserved
sequence of residues (HL↓T/S) located within the GPS motif. C) Ligand
binding to the NTF is thought to induce intracellular signalling by causing
structural changes or complete dissociation of the NTF to reveal a cryptic
tethered agonist which then binds to and activates the receptor. . . . . . . . 75

5.2 The GPS is not an autonomously folded domain but is part of a larger
domain. A) Diagram of ADGRL1 and ADGRB3 showing the domains sug-
gested by the SMART protein domain prediction server. The GPS is defined
as a separate domain in the Pfam database (dark purple). B) Structures of
the GPCR autoproteolysis-inducing (GAIN) domain of ADGRL1 and C)
ADGRB3 by Araç et al. (2012) show that the GPS motif is part of a more
complex fold comprising 13 β sheets and 2 α helices. D) After cleavage,
NTF and CTF remain attached by numerous hydrogen bonds shown between
the cleaved β -strand (orange) and the surrounding β -strands (purple) in
ADGRL1. The cleavage site is indicated with a black star in B), C) and D) . 76
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5.3 T/S→G mutation at the GPS site enables the production of soluble re-
combinant adhesion GPCR ectodomains for CRISPRa screening. A)
Constructs expressing truncated ectodomains of ADGRL4 and ADGRG1
do not produce biotinylated proteins at the expected sizes as observed by
western blotting. 10 µL of culture supernatant was loaded in each well.
Detection of biotinylated proteins was performed by incubating blot with
streptavidin conjuated to HRP and visualised with chemiluminescent per-
oxidase substrate. B) Diagram of truncated ectodomain encoded by the
original constructs and full length ectodomain encoded in the new constructs.
Full length ectodomains are resistent to cleavage at the GPS by a T/S→G
mutation (red line) adjacent to the cleavage site. C) Constructs expressing
full length ectodomains produce higher levels of biotinylated recombinant
protein at the expected sizes. The same amount of culture supernatant as in
A) was loaded in all wells and masses listed include predicted glycosylation.
D) 13 adhesion GPCRs ectodomains were produced as biotinylated, His-
tagged recombinant proteins and purified using Ni2+ affinity beads. Purified
protein corresponded to their expected sizes as determined by SDS-PAGE
and Coomassie staining. E) Recombinant ADGRE5 interacts with its en-
dogenous ligand CD55. Increased absorbance at 485 nm indicate retention of
β -lactamase-tagged CD55 prey in wells coated with recombinant ADGRE5
bait. Negative controls were performed with an unrelated protein, rCd200,
which did not interact with either recombinant ADGRE5 or CD55. Bars
represent blank subtracted mean ± s.d.; n=3. . . . . . . . . . . . . . . . . . 78

5.4 CRISPRa screening identifies known interactions of ADGRL1 and AD-
GRL3, as well as glycosaminoglycan (GAG)-binding properties of AD-
GRA2. A) Transformed gene enrichment P-values are plotted against a
rank-ordered gene list for CRISPRa enrichment screens with cells selected
using recombinant tetramers for ADGRL1 (left), ADGRL3 (right) and B)
ADGRA2. An FDR cut-off of 0.1 was used to determine which genes were
considered significantly enriched (red dots). C) Cell surface binding assays
with SLC35B2 knockout (KO) HEK293 cells suggest that ADGRA2 bind-
ing is GAG-dependent. Fluorescently labelled ADGRA2 tetramers bound
to wildtype HEK293 (red trace) but not SLC35B2 KO cells (blue trace).
Unstained wildtype HEK293 cells (black trace) or cells incubated with
streptavidin-PE (grey trace) were used as negative controls. A representative
of three independent experiments is shown. . . . . . . . . . . . . . . . . . 80



xxviii List of Figures

5.5 CRISPRa screening identifies novel interactions between ADGRB1 and
Nogo receptors. A) Guides targeting RTN4RL1 and 2 are enriched in a
population of cells sorted for gain-of-function binding to ADGRB1 tetramers.
A plot of normalised gRNA read counts in the sorted population against
that of the plasmid library show increased abundance of RTN4RL1 and 2-
targeting guides (left). Transformed gene enrichment P-values plotted against
a rank-ordered gene list for a screen performed with ADGRB1 tetramers
show that RTN4RL1 and 2 are the only genes found to be significantly
enriched under an FDR of 0.1 (right). B) ADGRB1 tetramers stained cells
transfected with cDNAs encoding full-length RTN4R, RTN4RL1, RTN4RL2
(blue lines) but not mock-transfected cells compared to a control ADGRL1
tetramer (orange line), or streptavidin-PE alone (red line). A representative of
four independent experiments is shown. C) RTN4R-targeting guides were not
enriched in the CRISPRa screen using ADGRB1 tetramers. Normalised read
counts of all 5 RTN4R-targeting guides were similar between the ADGRB1-
sorted population and the plasmid gRNA library (left). Transformed gene
enrichment P-values plotted against gene rank also show that RTN4R was
not highly ranked in terms of enrichment. D) Transfection of cells with
cDNAs encoding full-length RTN4R, RTN4RL1, RTN4RL2 did not cause
an increase in the levels of cell surface phosphatidylserine, a known ligand
of ADGRB1, as determined by Annexin V staining of cells in comparison to
mock-transfected cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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5.6 ADGRB1 specifically and directly interacts with Nogo receptors through
the first three thrombospondin repeats (TSRs) in its ectodomain. A) The
ectodomains of ADGRB1 and RTN4R family members directly interact. The
extracellular regions of the named receptors were expressed as soluble bi-
otinylated bait proteins, captured in individual wells of a streptavidin-coated
plate and probed for interactions with pentameric β -lactamase-tagged prey
proteins. Binding is quantified by absorbance at 485 nm of a hydrolysis prod-
uct of the colourimetric β -lactamase substrate, nitrocefin. Bars represent
blank-subtracted mean ± s.d; n=3. ADGRE5-CD55 interaction was used as
a positive control; negative control bait was the CD55 ectodomain. B) The
Nogo receptor binding interface on ADGRB1 is composed of the N-terminal
three TSR domains. Schematic of the Nogo receptor family and ADGRB1
proteins showing their domain organization (left). Binding of RTN4R and
RTN4RL1 preys to fragments of ADGRB1 encompassing the full-length
ectodomain (FL), thrombospondin repeats 1-3 (TSR1-3), TSRs 1-5, or the
hormone receptor motif and GAIN domain (HRM+GAIN) is shown (right).
Bars represent blank subtracted mean ± s.d.; n=3. . . . . . . . . . . . . . . 85

6.1 CRISPRa library guides target a non-cannonical isoform of CD86A)
Guides for CD86 were designed to target a region upstream of the TSS of
NM_006889 as denoted by a black rectangle (CD86 target site). Although
this site is associated with a predicted CAGE-seq TSS peak (FANTOM5 DPI
peak) as well as epigenetic marks commonly associated with promoter re-
gions (H3K27ac), the longer isoform encoded by NM_175862.4 is annotated
as the cannonical isoform. B) Amino acid alignment of coding sequences of
transcripts NM_006889 and NM_175862.4 showing only a difference of 6
amino acids within the signal peptide. . . . . . . . . . . . . . . . . . . . . 94
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