
Chapter 1

Introduction

The interactions between proteins are an important component of organismal complex-

ity. As a result, there has been rising interest in protein interactions, bringing about

developments to automate their detection. This growing flood of molecular interaction

data has been compared to the development of genome sequencing in the past decade,

where the number of sequences deposited in public databases grew rapidly over the

years (Sharan and Ideker, 2006). For example, more than 20000 human and 45000

S. cerevisiae protein interactions have been deposited in protein interaction databases

(Gandhi et al., 2006) and many more can be inferred from other model organisms, but

it is assumed that this only constitutes a fraction of the full protein interaction network

in a human cell (Hart et al., 2006).

One of the key findings that has helped to tackle the data avalanche in genomics

is that genes, or at least parts of a gene, fall into evolutionarily related families with

homologous sequence. This means that it is possible to summarise thousands of in-

dividual sequences into a single group which is likely to share similar structural and

often also functional properties. For coding genes, protein family databases such as

Pfam (Finn et al., 2008) collect these data and allow to quickly search new sequences

for homology against known families.
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1.1 Protein Interactions

The evolutionary relationships that can be inferred in this way hold great potential

for the analysis of interaction networks. They can both assist in understanding the

evolution of observed connections, as well as allow us to make predictions on the be-

haviour of proteins which belong to a family but have not themselves been thoroughly

studied.

In this introduction, I will first give an overview of the field of protein interaction

research, describing known structural properties of interactions, followed by an overview

of the most important experimental techniques used to infer protein interactions. I will

then discuss several previous finding relating to networks of protein interactions, before

introducing the Pfam and iPfam databases.

1.1 Protein Interactions

The combination of protein subunits into large multimeric complexes was first described

by Theodor Svedberg in 1929 (Svedberg, 1929). He observed that in a density ultra-

centrifuge, large proteins would separate into subunits of smaller molecular weight. His

findings did not meet a wider audience until, 30 years later, Gerhart et al. first de-

scribed allosteric regulation between proteins (Gerhart and Schachman, 1965; Gerhart

and Pardee, 1962). This discovery revealed the importance of interactions between

proteins and spawned a multitude of investigations into the quarternary structure of

proteins. In their excellent review, Klotz et al. (1970) outline the importance of sub-

unit stoichiometry, geometry, energetics and cooperativity for the function of protein

complexes.

Quarternary structure Figure 1.1 shows the structure of the bacterial HslUV pro-

tein. On different levels of granularity, this complex can be described by merely listing

the composition of subunits, reflecting stoichiometry. On this level, we can distin-

guish between homo- and heteromeric complexes as well as combinations thereof. The
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Figure 1.1: Structure of bacterial AAA+ Protease (PDB 1yyf). This chaper-
one consists of three homo-oligomeric subcomplexes which form a hetero-oligomeric
complex. Illustration taken from the “PDB molecule of the month”, cour-
tesy of David S. Goodsell: http://www.rcsb.org/pdb/static.do?p=education
discussion/molecule of the month/pdb80 1.html.
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1.1 Protein Interactions

structure in Figure 1.1 for example is composed of two homo-oligomeric components of

hslU and one homo-oligomeric hslV protease, which assemble into a hetero-oligomeric

complex. Several technological advances, reviewed in brief further below, have greatly

accelerated the detection of interactions between proteins without requiring crystal

structures. However, these methods cannot determine the molecular details of the in-

teraction, such as the region of the protein which contains the binding site or even the

exact atoms which mediate the contact between the bound proteins.

Interaction interfaces Beyond stoichiometry, it is important to identify the inter-

faces through which the individual subunits of a protein interact. This information can

usually only be acquired by crystallography or, in some cases, by nuclear magnetic reso-

nance imaging (NMR), and is therefore only available for a small number of complexes.

Even more difficult to elucidate are mechanisms of information transfer between protein

subunits. Thus, it is often not clear how the stoichiometry and geometry contribute to

the function of the complex as a whole.

Duration of interaction Finally, it is important to differentiate between protein

complexes which are permanent, or even necessary for the correct folding of the subunit

proteins (obligate complexes) and interactions which only occur under certain physio-

logical conditions and are usually time-limited (transient interactions). The complex

shown in Figure 1.1 is obligate, i.e. it stays permanently assembled, whereas Figure 1.2

shows the G-protein coupled receptor signalling cascade where information is transmit-

ted between proteins through transient interactions.

Properties of binding interfaces A range of investigations have attempted to de-

scribe the properties of interaction interfaces in terms of geometry and residue compo-

sition. In their comprehensive review, Jones and Thornton (1996) noted that interfaces

of both homo- and heteromeric complexes vary substantially in size and shape. They
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1.1 Protein Interactions

Figure 1.2: Schematic view of the G-Protein coupled receptor signalling path-
way. Illustration taken from the “PDB molecule of the month”, cour-
tesy of David S. Goodsell: http://www.rcsb.org/pdb/static.do?p=education
discussion/molecule of the month/pdb58 2.html. Structures in this picture were
taken from PDB entries 1f88, 1got, 1cul and 1tbg. Colour-filled areas denote regions
for which no structure is available.
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1.1 Protein Interactions

also found that large hydrophobic and uncharged polar residues were more frequent in

the interfaces compared to the rest of the surface. It has furthermore been established

that transient interactions generally employ smaller interfaces compared to obligate

interactions (Janin et al., 2007).

Another important discovery regarding protein interaction interfaces was the exis-

tence of so-called hot-spots within the interface which contribute over-proportionally to

the free energy upon binding (Cunningham and Wells, 1989). Measuring the individual

contribution of a residue to the overall binding energy through targeted mutagenesis

is a laborious process. Thorn and Bogan (2001) have created a repository for the re-

sults of such alanine-scanning experiments called ASEdb which I will describe in more

detail later in this thesis. However, even though progress has been made, the current

knowledge about protein interfaces is not sufficient to reliably predict the position of

such interfaces in monomeric structures, let alone from sequence alone.

1.1.1 Methods to detect protein interactions

There have been several attempts to identify all interactions between all proteins in an

organism by means of automated high-throughput approaches. Two techniques have

proven most suitable for this purpose: Affinity Purification and Yeast-Two-Hybrid.

Each of these methods has its own advantages and drawbacks, which have to be taken

into consideration when handling the resulting data. It is therefore instructive to review

the fundamental principles of the most common techniques.

1.1.1.1 Affinity purification based methods

Several methods for the detection of protein interactions are based on affinity purifi-

cation (AP) (Bergg̊ard et al., 2007). In all AP methods, a bait protein is fused to

a retrievable tag. The tag should be alien to the host cell into which the construct

is transfected, and not interfere with the function of the tagged protein. The cells
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1.1 Protein Interactions

are eventually lysed and the tagged protein is retrieved using column chromatography

against the tag. Interactors bound to the bait protein will be eluted with the bait.

After washing, all purified components are identified by e.g. mass-spectrometry.

Figure 1.3 outlines the popular Tandem-Affinity-Purification (TAP)-tagging method

(Rigaut et al., 1999). In this protocol, the bait protein is fused to a construct of two

affinity tags, spaced by a short sequence that can be cleaved by tobacco etch virus

(TEV) protease. The TEV protease recognition sequence is very rare in mammalian

cells, which minimises the risk of cleaving the bait or a target protein. The advantage

of TAP-tagging is the use of two subsequent chromatography steps which substantially

reduces the false positive rate. After expression of the bait-tag construct in a suitable

cell line, the bait will associate with its target proteins in the cell. After lysis, the first

chromatography extracts the entire bait-target complex via the first part of the con-

struct, e.g. Protein A. After rinsing, TEV protease is added to release the bait-target

complex from the beads. In a subsequent purification step, the second part of the

construct, commonly calmodulin binding peptide, is recognised by calmodulin-coated

beads. After elution, the components bound to the bait protein are usually identified

via mass-spectrometry. The combination of two purification steps greatly reduces the

number of false-positive results, at the slight expense of sensitivity. Weak transient

interactions and interactions involving low abundance proteins are particularly prone

to be lost during the consecutive washes. Therefore, new techniques have been devised

which improve the sensitivity and concentration requirements of AP methods in mam-

malian cells (GS-TAP, strep-tag III and others) (Burckstummer et al., 2006; Junttila

et al., 2005).

AP methods can be sensitive and specific and provide a robust system to detect pro-

tein interactions. Nevertheless, there are a number of inherent problems with certain

types of interactions (Bergg̊ard et al., 2007). Firstly, weak and transient interactions

with low binding affinity are prone to be lost during the washing stages. Therefore, AP
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Figure 1.3: Tandem affinity purification with mass spectrometry: A bait protein is fused
to calmodulin binding protein, which is in turn connected to a protein anchor (originally
Staphylococcus aureus Protein A) with a TEV cleavable linker. Complex formation
occurs in vivo. The first purification step involves a column of IgG beads against
the protein A anchor. Subsequently, the protein anchor is removed by TEV protease
cleavage and the bait-target complex is recovered in a second column of calmodulin
beads. Identification of complex components is performed via mass spectrometry, after
fractions were separated with electrophoresis. Illustration adapted from Huber (2003)
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methods are biased towards stable, high-affinity interactions. Secondly, AP methods

are biased towards proteins with high abundance. This is mainly a result of the detec-

tion stage: low concentrations of a protein are likely to be missed in the electrophoresis

step, and might not yield enough peptide to be confidently detected with a mass spec-

trometer. Other issues can also arise by introducing a foreign peptide into the host

cell, as well as through unwanted interactions between the bait protein and the tag.

1.1.1.2 The yeast-two-hybrid approach

The yeast-two-hybrid analysis was first described by Fields and Song (1989). It has

since become one of the most widely used methods to detect protein interactions. Due

to its simplicity and cost-effectiveness, it was also the method of choice for the first

whole-genome interaction assays.

The method is based on the fact that some transcription factors, such as the yeast

enhancer Gal4, are composed of two independent domains: a promoter domain, which

binds a promoter region upstream of the transcription start site, and a separate activa-

tor domain which is required for the assembly of the transcriptional machinery. Neither

of the two domains can act independently, as the activator domain needs to be directed

to the correct transcription site by the promoter domain. Therefore, transcription of

the downstream gene is disrupted if the two domains are physically separated.

Figure 1.4 shows an outline of the yeast-two-hybrid method. The promoter domain

(BD) and activator domain (AD) are separated into two plasmids and each fused to a

bait and a target protein, respectively. In case the bait and target proteins interact, the

BD and AD domain are brought into sufficient spacial proximity to initiate transcription

of the reporter gene. Initially, lacZ was used as a reporter, but today nutritional

selectors such as HIS3 are often used because they accelerate the screening of large

libraries on fewer plates (Bartel and Fields, 1997).

Intuitively, the Y2H method was first applied to study interactions between yeast
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Figure 1.4: Schematic outline of Yeast-two-Hybrid analysis. Two proteins (bait and
target) are fused to two separated components of a S. cerevisiae transcription factor,
e.g. Gal4. Both components, the activator domain (AD) as well as the promoter domain
(BD) are required in close spacial proximity to activate transcription of the reporter
gene. When a library of target vectors is screened against a collection of baits, a
matrix is derived where the presence of colonies denotes the successful binding of bait
and target.
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proteins. However, the system can also be applied to identify interactions between pro-

teins of other species. Viral and prokaryotic genes are more easily cloned and inserted

into the yeast system. For higher eukaryotes, un-spliced open-reading frames (ORFs)

are required to generate the hybrid constructs. Since large cDNA libraries for sev-

eral eukaryotic model organisms have been created, it is possible to use recombination

cloning technology to create the required hybrid constructs for Y2H screening (Koegl

and Uetz, 2007).

The Y2H system allows detection of interactions at lower concentrations than AP.

Another advantage (as well as a disadvantage) of the system is that it resolves binary

interactions. On the one hand, this allows the exact identification of physical inter-

actors, but on the other hand renders it difficult to define which proteins belong to

complexes. On the downside, the Y2H system cannot deal with proteins which require

post-translational modifications, or interactions which depend on certain host-specific

physiological conditions. This is the case, for example, with extracellular proteins or

integral membrane proteins, both of which will not fold correctly in the yeast nucleus.

Some proteins, such as active tyrosine kinases, can actually be toxic to yeast if ex-

pressed at too high concentrations, and are therefore unsuitable to be used as baits

(Bergg̊ard et al., 2007).

1.1.1.3 Literature Curation

Scanning the existing literature for reports of interactions between proteins is not, in a

literal sense, a method to detect protein interactions. Nevertheless, a large fraction of

the known protein interaction networks have been extracted from thousands of individ-

ual publications, rather than being identified by high-throughput methods. Literature

curation has the advantage that obvious annotation errors can be detected and removed

by human curators. Furthermore, a number of literature curation efforts are based on

publications which are focused on a small number of genes and as such are likely to
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adhere to higher standards of positive and negative controls than high-throughput

methods can do (Mewes et al., 2008; Reguly et al., 2006). As a consequence, curated

protein interaction datasets are generally thought to be more reliable than data from

single high-throughput experiments. This increase in quality requires a large number

of human annotators and is therefore slow and costly. Furthermore, human annotators

will almost inevitably introduce a bias, depending on their understanding of the subject

matter. Several groups1 have tried to address these issues by

• distributing the annotation of new publications between different groups to reduce

redundancy

• agreeing to strict guidelines for annotators in order to harmonise rules for accep-

tance of identified interactions.

To my knowledge, there has been no comparative assessment of the quality of literature

curated data, so the reputation of literature-curated data to be a “gold-standard” for

protein-interaction data cannot be verified. However, in this thesis I do follow the

notion that literature curated data is of high quality and contains few false positive

interactions.

1.1.1.4 X-ray crystallography

The determination of protein structure has a long history, dating back to the pioneering

work of Kendrew and Perutz in the 1950s and 60s (Kendrew et al., 1958; Perutz et al.,

1960). Since then, more than 50000 structures have been deposited in the Protein

Data Bank (PDB) (Kouranov et al., 2006), see Figure 1.5. It cannot be the aim of this

section to give a comprehensive overview of the field of structural biology. Rather, I

want to introduce basic facts about protein structures of interacting proteins that are

relevant to various parts of this thesis.
1Currently, the IMEx consortium consists of the IntAct, DIP, MINT, MPact and MatrixDB

databases. Details can be found in Section 1.1.3.
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Figure 1.5: Growth of the PDB from its inception in 1972 to 2006. Several landmark
structures are shown above the year they were deposited. Figure reproduced with
permission from Berman (2008).
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X-ray crystallography requires that the protein under investigation can be grown

into crystals of sufficient size and purity to diffract X-rays. This is a difficult and time-

consuming process which usually requires many attempts to determine the optimal

crystallisation conditions. This is the reason why the PDB contains a biased repre-

sentation of the protein universe: some proteins are significantly easier to crystallise,

especially if suitable parameters have already been determined for a similar molecule,

whereas other proteins, most notably membrane-associated proteins, are difficult, and

sometimes impossible, to grow into a crystal without substantially interfering with their

natural structure (Branden and Tooze, 1991).

Once a suitable crystal has been grown, it can be used to create diffraction pat-

terns which are characteristic of the arrangement and properties of the atoms in the

structure. Without going into too much detail, it should be noted here that the object

of observation in a crystallisation experiment is not necessarily a single molecule, but

rather the smallest unit that, when repeated in all three dimensions, forms the crystal.

This is called the asymmetric unit (ASU) and is a fundamental property of the crystal.

The ASU does not necessarily correspond to a biological unit: it might contain a single

protein, which is nevertheless biologically able to bind to itself. It can also show two

proteins in contact, however the contact is a non-physiological interaction which only

occurs under the conditions of crystal formation. The latter case is often referred to

as crystal packing or crystal contacts and is the major potential source of error when

inferring protein interactions from crystal structures (Krissinel and Henrick, 2007).

The desired result of a crystallisation experiment is an electron density map which

reflects the three-dimensional landscape of the molecule. While the intensities and the

diffractions of the X-rays by the crystal can be immediately observed, a third parameter,

the phase of the rays, is lost in the experiment. However, phase information is needed

in order to perform a Fourier-transformation and calculate the electron density map.

Several methods exist to infer the phase for larger molecules: Isomorphous replacement,
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pioneered by Kendrew et al. (1958), uses heavy atoms which are introduced into the

crystal through soaking as a marker to infer the phase from the differences between

the diffraction patterns of the original and multiple “soaked” crystals. Today, the

most popular method is multi-wavelength anomalous diffraction (MAD) which requires

synchrotron radiation and the presence of metal ions or sulphur atoms which cause

anomalous scattering (Jhoti, 2001). If sulphur is not naturally present in the protein,

methionine can be replaced by selenomethionine to artificially introduce sulphur atoms

into the structure.

After an electron density map has been mathematically derived from the observed

diffraction patterns using Fourier transformation, a structure model is fitted into the

map. This step usually relies on previous knowledge about the molecule under in-

vestigation, such as its amino-acid sequence. Model-building and refinement are not

absolutely deterministic steps, so errors can be introduced by the crystallographer, even

though nowadays there are many computer programs which attempt to detect badly

fitted regions or non-biological arrangements in a structure model (Kleywegt, 2000).

The great utility of protein structures stems from the fact that sequence similarity

almost always implies structural similarity. This means that a single structure can

provide valuable information not only for the particular protein and species the crys-

tallised proteins were derived from, but also for many other related proteins within the

same species and, importantly, also for proteins in other evolutionarily distant species

(Chothia and Lesk, 1986). There is now evidence that this conservation of structure

also extends to the geometry of binding sites (Aloy et al., 2003). As I will discuss

in subsequent chapters, protein structures of molecular complexes therefore provide a

template for the mode of interaction of other related proteins.
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1.1.1.5 Other methods

AP and Y2H are without doubt the most widely used methods for high-throughput

interaction detection. There are, however, a range of other methods which are used

either individually on a small scale or in order to validate interactions derived in a high-

throughput fashion. These methods encompass co-immunoprecipitation (Markham

et al., 2007), protein arrays (MacBeath and Schreiber, 2000), phage display (Sidhu

et al., 2003), surface plasmon resonance (Smith and Corn, 2003) and others. Some

methods are also specifically designed to deal with certain types of proteins: For exam-

ple, I was involved in evaluating the performance of a technique specifically targeted

towards extracellular interactions which are not typically well detected with other meth-

ods (Bushell et al., 2008). Many publications which were collected by literature curation

efforts are based on such slower and less easily automated methods.

Furthermore, there are methods that detect genetic interactions rather than phys-

ical interaction between proteins. A genetic interaction is a functional relationship,

stating that two proteins have a combined phenotypic effect (epistasis) (Mani et al.,

2008). Genetic interaction between proteins can sometimes be detected from indirect

evidence, for example correlated gene expression. It is intuitive and could also be

shown experimentally that interacting proteins have to be expressed at similar times

and appropriate rates in order to be able to interact. Therefore, gene expression pro-

files derived under different physiological conditions allow the identification of sets of

genes whose expression changes are correlated, hinting towards a functional relation-

ship. Similarly, co-localization is a requirement for an interaction to occur, allowing for

the verification of a suspected interaction by means of e.g. confocal microscopy.

A direct way to detect genetic interactions are so-called synthetic lethal screens

which have so far been performed systematically in S. cerevisiae and C. elegans (Lehner

et al., 2006; Tong et al., 2004). A synthetic lethal denotes a combined deletion of

two genes which is fatal, whereas each individual deletion is viable. Screening genetic
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interactions with synthetic lethals is a powerful way to identify genes that act in related

processes, but it cannot be inferred that they also physically interact.

1.1.2 Error rate and coverage

After the first large automated screens for protein interaction in yeast had been pub-

lished (Ito et al., 2001; Uetz et al., 2000), criticism was voiced regarding what seemed to

be a soaring error rate of the high-throuhput methods (Deane et al., 2002; von Mering

et al., 2002; Sprinzak et al., 2003). Some estimates of the false positive rate are as high

as 50% for the early Y2H experiments. The error rate of interaction detection methods

has since become both a hotly debated issue in the protein interaction community and

an intensely investigated area of research.

As a response to the criticism surrounding both AP and Y2H sceens, the methods

were improved to include more positive and negative controls as well as repeat experi-

ments in order to reduce noise. In modern screens, the error rate is usually evaluated

as part of the experiment and a reliability index is provided with the resulting data.

For example, in the yeast proteome survey performed by Gavin et al. (2006), the error

rate was estimated by repeat experiments and a confidence score for all detected inter-

actions was derived. Similarly, Rual et al. (2005) performed a Y2H screen where they

tested both reproducibility of the Y2H experiments themselves and the reproducibility

of the interactions in a separate AP screen, while also taking into account several other

sources of error such as auto-activating constructs.

The other important question that was raised shortly after the first high-throughput

experiments were published is: how large are the interactomes of different species? This

is relevant because it defines the search space for future experiments. It was noted that

many experimental screens for protein interactions show low overlap (von Mering et al.,

2002), but without knowledge of the expected size of the interactome, it is impossible

to say whether this lack of overlap is due to the vast number of interactions or a result
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of the large error rate of the experimental method.

Estimates for the size of the interactomes of different species vary substantially.

Sprinzak et al. (2003) estimated no more than ≈ 16000 interactions make up the entire

S. cerevisiae interactome. In contrast, Hart et al. (2006) predict up to 75500 interac-

tions for S. cerevisiae. For human, the numbers range from 154000 to 650000 (Stumpf

et al., 2008).

1.1.3 Protein Interaction Databases

The large volume of interaction data generated by high-throughput experiments and

literature curation efforts has necessitated the inception of public databases for storage

and accessibility. Several groups around the world have created resources for this

purpose:

IntAct The interaction database provided by the European Bioinformatics Institute

has a broad focus and contains both actively curated data as well as high-

throughput datasets. IntAct is not restricted to model organisms but tries to

capture all available interaction data. Recently, a small number of negative data

have been added to the database (Kerrien et al., 2007).

The BioGRID BioGRID focuses on a selection of model organisms and human. They

have performed a thorough manual evaluation of the literature to identify inter-

actions in both budding (S. cerevisiae) and fission yeast (S. pombe). The data

also comprise genetic interactions, i.e. interactions inferred from synthetic lethal

screens (Breitkreutz et al., 2008).

MPact The MIPS protein interaction resource on yeast is a collection of interactions

of high confidence, including the widely used set of complexes usually referred to

as the “MIPS complexes”. (Mewes et al., 2008).
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DIP The Database of Interacting Proteins has been one of the earliest efforts to catalog

protein interactions from various sources in a single database. It contains inter-

action data of varying quality for numerous organisms (Salwinski et al., 2004).

Mint The Molecular INTeraction database, hosted by the University of Rome, fo-

cuses on manually searching the scientific literature to find reports of interactions

between proteins (Chatr-aryamontri et al., 2007).

HPRD The Human Protein Reference Database aims to collect annotations for all

human proteins, including an extensive collection of literature derived interac-

tions (Mishra et al., 2006).

Table 1.1: Overlap between different interaction databases. The numbers in the upper
right part of the table denote the number of protein pairs (excluding self-interactions)
that are shared between two databases. The lower left part of the matrix lists the
fraction of protein pairs of the smaller of the two databases that are shared. The
“matrix model” was applied to convert complexes into pairwise interactions. The last
row of the table lists the fraction of the respective database that is shared with any
other database.
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Total

MPact 29283 16515 8771 8101 0 51455
IntAct 56.9% 39260 38021 51782 9523 797431
DIP 32.1% 36.6% 24610 22137 316 107396
BioGRID 17.0% 47.5% 30.8% 32113 6194 79999
MINT 15.7% 62.5% 26.7% 40.1% 6708 82800
HPRD 0.0% 24.1% 0.8% 15.7% 17.0% 39545

Total 61.9% 11.9% 45.4% 67.6% 73.2% 41.6% 968084

Table 1.1 lists the size and overlap between the different databases. It clearly shows

that no single resource is comprehensive. Even between a small database like MPact

and IntAct, the largest resource, there is only a 56.9% overlap (relative to the size of

MPact). In the bottom row of Table 1.1, the total fraction of shared interactions is
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listed. Again, it emerges that all databases contain a substantial number of unique

interactions that are not found in any other database.

In order to gradually overcome these inconsistencies, a number of the listed databases

(IntAct, MINT, DIP and MPact) have recently agreed to collaborate in curating and

sharing the data. The IMEx initiative (http://imex.sourceforge.net/) aims to dis-

tribute the curation effort by assigning specific journals to just one group, and then

exchange the extracted data. However, at the time of writing, the exchange of records

was still in progress and thus incomplete. It is therefore still necessary to merge the

data acquired from several databases in order to create the most complete available

interaction network for any one species.

1.1.4 Interactomics - The science of networks

The technological advances described in the previous section have resulted in a deluge

of molecular interaction information. In the same way that genome-related science was

referred to as genomics, the term interactomics was coined (Sanchez et al., 1999). The

interactome is the sum of all physical protein interactions in an organism. The first

attempts to elucidate the complete interactome of an organism were performed by Uetz

et al. (2000) and Ito et al. (2001). Using a systematic, automated Y2H approach, they

were able to identify several thousand protein interactions in S. cerevisiae.

As more and more interaction network information became available, the structure

and global properties of these networks became the subject of great interest. Barabasi

and Albert (1999) suggested that a wide variety of systems, from social interactions to

the world-wide web, had similar topological properties and were governed by the same

principles. It was observed that most nodes are only sparsely connected, while a small

number of nodes accumulates the majority of connections (often called hub proteins).

This so-called “scale-free” distribution of edges per node (the degree distribution) fol-

lows a Power law of the form P (k) ∼ c · k−γ , where c and γ are constants.
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The “Power-law” and “scale-free network” concepts attracted a lot of interest by

the scientific community (Luscombe et al., 2002), because they were thought to lead

to several corollaries. It was noted that the overall low number of connections per

node leads to greater robustness towards random node deletions (Albert and Barabási,

2002). Robustness in this context is defined as the impact of node deletions on the

connectedness of the network. The other important inference that was made from

the network topology concerns the mechanism by which the network evolved. Power

laws are thought to emerge through a process called preferential attachment, whereby

whenever a node is added to the network, it is likely to connect to a node that already

has many connections. Translated into biology, preferential attachment was argued to

be a result of evolution through gene duplication. Under the assumption that there

is no bias as to which gene is duplicated and the rate of gene loss is low, older genes

will gradually accumulate connections. Karev et al. (2002) extended this concept and

described how a simple model of domain duplication, loss and de-novo creation can

explain the observed size distribution of protein domain families. They argue that the

same model should also be applicable to other evolving networks.

Jeong et al. (2001) applied the principles of network analysis to protein interaction

networks. They did not only show that the yeast interactome, to the extent it was avail-

able at the time, is a scale free network, they also claimed that there is a correlation

between the degree of a protein and its essentiality. This was remarkable as it seemed

to prove that the network-theoretical concept of robustness could be extrapolated to

biological systems. Subsequently, it was also claimed that the principle of preferen-

tial attachment underlies the evolution of protein interaction networks (Barabasi and

Oltvai, 2004; Eisenberg and Levanon, 2003).

The interpretation of protein interaction networks under the paradigm of scale-

free networks has since attracted criticism. It was shown by Khanin and Wit (2006)

that other distributions than power-laws better fit the observed degree distributions in
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various protein interaction and metabolic networks. It is also important to consider

that the available protein interaction data is just a sampling from the actual biological

network. Stumpf et al. (2005) and Han et al. (2005) showed both theoretically and

by examples that subnetworks sampled from a larger scale-free network are not them-

selves scale free, and that the degree distribution of a sampled subnetwork does not

reliably predict the distribution of the global network. The real mechanisms by which

interaction networks have evolved are thus still not satisfactorily explained.

1.2 Genetic variation

A simple but fundamental principle of Darwin’s theory of natural selection is that there

is no evolution without variation. In the plant and animal kingdom, such variation can

be observed in abundance. Darwin himself was inspired by the variability in birds that

he witnessed during his journey on board H.M.S. Beagle (Darwin, 1859). Similarly,

differences in shape and colour of flowers and seeds of pea plants lead Mendel to deduce

the first systematic description of a link between observable phenotypes and a then-

unknown genetic substance that induces such phenotypes (Mendel, 1865). Today, we

know that the main carrier of genetic information is DNA. The consequential next

questions are: what are the sources of variation, and how is phenotypic diversity related

to genetic variation?

1.2.1 Types and causes of mutations

In sexually reproducing organisms, individuals carry two versions of the genetic infor-

mation that is passed on from the parent generation1, each version called an allele,

grouped together on two homologous chromosomes. Variation between individuals is

to a large degree the result of the combinatorial shuffling of alleles, where for every
1Notwithstanding exceptions such as e.g. sex chromosomes or mitochondrial DNA, where only one

copy is inherited from one parent.
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corresponding gene there are four possible allele pairs an individual can inherit. This

alone does not explain the existence of differing alleles itself. Variation between alleles

is a result of mutations that change their genetic sequence. There are four broad types

of mutations: Point mutations, insertions/deletions, translocations and inversions1. In

this thesis, I consider only the first two types of mutations.

For each type of mutation, there can be numerous causes. Point mutations are the

most frequent mutation event to occur. They are randomly introduced in the genetic

code mostly via mistakes during replication and as a result of mutagens. It is often

assumed that point mutations occur by chance with a constant frequency uniformly

across the genome, which makes it possible to use the mutation rate as a kind of

molecular clock (Zuckerkandl and Pauling, 1962).

Not all mutations lead to a phenotypic effect. This is partly a result of the fact that

the majority of eukaryotic genomes are composed of long regions of non-coding DNA

which is insensitive to mutations. Furthermore, even point mutations inside coding

regions do not necessarily alter the encoded protein. The genetic code is degenerate,

i.e. some nucleotide changes will not affect the encoded protein sequence because there

are multiple codons encoding for the same amino-acid. This redundancy in the genetic

code can be used to quantify the selective pressure on a gene. This is done by calculating

the ratio of active (non-synonymous) to silent mutations (synonymous mutations) for a

gene, where a mutation is defined by comparing the DNA sequence to the sequence of

an orthologous gene from another species (Kafatos et al., 1977). The resulting measure

is referred to as the dN/dS ratio2. dN/dS values below 1 indicate negative selection,

whereas values above 1 are taken as a sign of positive selection (Hughes and Nei, 1988).

Apart from point mutations, larger chromosomal rearrangements can be caused

by errors during homologous recombination. Usually, homologous recombination is a
1For the sake of simplicity, I subsume chromosomal deletions and duplications into the “inser-

tion/deletion” category.
2Sometimes also denoted as Ka/Ks ratio.
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controlled process which allows the swapping of genetic information between the two

homologous chromosomes during meiosis. However, there are numerous errors that can

occur. Most notably, non-allelic homologous recombination is a process in which re-

combination occurs not between the corresponding allelic regions on the chromosomes,

but between homologous regions within the same chromosome, causing a deletion. Such

regions can be low copy repeats (LCRs) or segmental duplications. Beyond that, there

are numerous other less frequent causes of mutations such as viruses or transposable

elements, e.g. Alu repeats, which can cause insertions, deletions and other genomic

rearrangements (Batzer and Deininger, 2002).

1.2.2 Human variation

H. sapiens is subject to mutations, natural selection and thus evolution the same as

any other species. However, history has shown that this fact is easily misinterpreted or

even deliberately misused to justify arbitrary discrimination1 . It is for these ethical

reasons that it is difficult to discuss variation in humans in quite the same way as

we discuss variations in animals: concepts such as race or ethnicity predate modern

population genetics and are as such hard to define for a scientific purpose (Feldman

et al., 2003; Sankar and Cho, 2002). In fact, it has been suggested that variation on

the DNA level is larger amongst individuals thought to belong to the same “race” as

between different “races” (Barbujani et al., 1997; Disotell, 2000). The sequencing of

genomes of individuals which is currently underway (Siva, 2008) will hopefully shed

new light on the question whether “race” has a clearly detectable genetic footprint or

whether we have to redefine our concepts of “race”. For the remainder of this thesis,

I will try to focus not on differences between populations but on differences between

individuals.
1As an example, I refer to the insightful documentary on biology and medicine in fascist Ger-

many provided by the United States Holocaust Memorial Museum: http://www.ushmm.org/museum/

exhibit/online/deadlymedicine/
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1.2.3 Variation in healthy individuals

One of the first types of human variation that were used to study genetics in entire

populations were the blood groups. Since Landsteiner’s initial description of the AB0

system at the beginning of the 20th century, numerous other blood type systems have

been defined. The key property of blood types is that they constitute distinct classes

with a simple Mendelian pattern of inheritance, hence they must be determined by

individual genetic loci. In the 1950s and 60s, studies on haemoglobin variants offered

a first glimpse at the molecular mechanisms as well as the distribution of genetic vari-

ation in humans (Boyd, 1963; Livingstone, 1958). Together, these data allowed a first

assessment of genetic diversity between individuals and populations (Lewontin, 1972).

DNA technology has since greatly accelerated the identification of genomic vari-

ants. The human genome is now known to contain millions of single-nucleotide poly-

morphisms (SNPs). Understanding the distribution, frequency and linkage between

these variants holds great promise for the analysis of human evolution as well as for

the understanding of complex diseases. Therefore, a concerted effort was undertaken

to identify up to one million tagSNPs across the entire human genome of individuals of

European, Asian and African descent (The International HapMap Consortium, 2003).

The key property of tagSNPs is that they occur at a frequency of > 0.1% in the popu-

lation and they are linked to a haplotype block, i.e. a region of the chromosome which

is relatively stable to recombination.

Recently, it has also been discovered that there are frequent insertion and deletion

polymorphisms, so-called copy-number variations (CNVs) that are abundant in the

human genome. They are defined as regions of > 1kb which are deleted or duplicated

in the genome of an individual (Freeman et al., 2006). They seem to be closely related to

segmental duplications, i.e. regions larger than 1kb and > 90% sequence identity which

occur multiple times in the genome. The main distinction between CNVs and segmental

duplications is that a region which is duplicated in all members of a population is called
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a segmental duplications but not a CNV. There have been numerous reports of CNVs

in individuals sampled from different populations (Conrad et al., 2006; Iafrate et al.,

2004; Redon et al., 2006; Sebat et al., 2004). Interestingly, these initial results were

derived from seemingly healthy individuals, even though many CNVs seem to overlap

protein coding genes. This indicates that many genes are robust against changes in

copy number. In Chapter 4, I will discuss the issue of dosage sensitivity in the context

of protein interactions in more detail.

Many studies regarding CNVs were performed using a technique called array-based

comparative genomic hybridisation (array CGH) (Shinawi and Cheung, 2008). Samples

of genomic DNA of two individuals, one reference and one target, are labelled with

different fluorescent dyes. Upon hybridisation to an array containing > 25000 large

insert clones reflecting most of the human genome as probes, regions with uneven

hybridisation can be detected by the shift in colour. The start and end position of

putative CNVs are then calculated from the overlaps between the clones. Given the

length of the clones (≈ 200kb), the resolution of the CNV coordinates is coarse, but

new methodologies with substantially higher resolution are currently being developed.

1.2.3.1 Genetic diseases

Another form of variation that has been studied extensively are genetic diseases. A

wealth of investigations have been undertaken to identify loci responsible for Mendelian

diseases. Botstein and Risch (2003) give an insightful historical perspective into the

development of the field. Since the late 1980s, the prevalent method to identify genes

responsible for a disease phenotype has been positional cloning, preceded by linkage

analysis of affected individuals and their families. This approach works best if the phe-

notype is unambiguous and the genotype-to-phenotype relationship is simple. Before

a physical map of the human genome was available, positional cloning relied on the

genetic map, often using polymorphic repeats as a marker. The effectiveness of this
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method is evident from the fact that almost all known Mendelian disease loci were

mapped in this way.

Today, the Online Mendelian Inheritance In Man (OMIM) database (Hamosh et al.,

2005) contains over 14000 disease associated genetic variants in more than 1800 genes.

Studying these variants, it could be shown that genes carrying dominant mutations are

slower evolving than recessive genes (Blekhman et al., 2008). Interestingly, the same

study also found that only 45% of genes in OMIM carry recessive mutations. According

to the classic explanation of dominance provided by Wright (1934), most mutations

were expected to be recessive: Wright argued that dominance of the wild type allele is

a result of the fact that most metabolic pathways can maintain their function even if one

step has reduced capacity. In other words, not all components of a metabolic pathway

are rate-limiting steps, hence the pathway is robust against a reduction in the amount

of one particular catalyst. However, it is emerging now that this theory does not in

the same way apply to proteins other than enzymes. Kondrashov and Koonin (2004)

described that recessive mutations are in fact most common in enzymes, but mutations

in transcription factors or structural proteins are more often dominant. This shows

that the genetics of diseases and their underlying molecular mechanisms are tightly

linked. Currently, there are few mechanistic explanations for the disease-causing effects

of the majority of mutations. Identifying such molecular mechanisms hence presents

an interesting field for further development.

This becomes even more striking if one considers that Mendelian diseases only reflect

a subset of human genetic disorders. Many disease, from diabetes over schizophrenia

to susceptibility to infectious diseases such as tuberculosis, have been shown to have a

genetic component, however unlike Mendelian diseases, the contribution of individual

loci is small, i.e. an unknown number of individual mutations contribute to the dis-

ease. Genome-wide association studies have been used to identify such loci which are

significantly but weakly associated with a disease (Risch and Merikangas, 1996). In
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such a study, large cohorts of case and control individuals are tested for the presence

of one or several diseases, before each individual is genotyped. Recent studies used

array-based methods to query known SNPs along the entire genome (Wellcome Trust

Case Control Consortium, 2007). In the future, it will likely be possible to re-sequence

entire genomes in order to detect all sequence variants. Finally, statistical analyses of

the data provide putative associations between certain SNPs and the disease status of

an individual. The problem is that the identified SNPs only point towards genes that

are likely to be relevant for a disease, however little is known about the mechanism by

which a polymorphism induces disease susceptibility. In such cases, using information

on biochemical pathways and protein interactions can help to uncover connections be-

tween target genes or provide a ranking which SNPs are most worthwhile to be studied

in more depth.

1.3 Protein Domains and the Pfam database

In structural biology, it has long been known that proteins are to a large extent com-

posed of conserved modular building blocks commonly called domains. It was also

quickly noted that structures with even just remotely related sequences usually shared

stronger structural similarity (Chothia, 1992). As a consequence, methods for detect-

ing remote sequence homology were being developed. Initially, most methods employed

scoring functions that incorporated manually defined weights, in an attempt to capture

“expert knowledge” about a particular family of proteins.

A major leap towards a more generalised concept of homology detection was the

use of a probabilistic framework called Hidden Markov Models (HMMs) (Krogh et al.,

1994). HMMs are a way to model stochastic processes. Their great advantage is

the fact that efficient algorithms exist to calculate the probability that an observed

phenomenon was produced by the stochastic model. In the case of sequence homology,
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the model describes the composition of the representative parts of a sequence family.

A hypothesis test can then be performed on a query sequence, comparing the chance

that the query was created by the predefined model. The model itself does not have

to be manually created, but can be automatically generated from a multiple sequence

alignment containing typical members of the family. This short description cannot

do justice to the complexity and power of HMMs and their applications. More detail

can however be found elsewhere (Durbin et al., 1998; Schuster-Böckler and Bateman,

2007a).

One of the key features of HMMs is that any sequence family is modelled using

a common framework. It is hence possible to create a collection of many sequence

families and search a new sequence against a range of such family descriptions in order

to identify putative evolutionary relationships. The Pfam database (Finn et al., 2008) is

one of the largest resources for domain annotation. In the Pfam terminology, a domain

denotes any conserved sequence region, rather than just referring to an independent

structural element in a protein. The Pfam database today contains over 10000 protein

families and is still constantly growing (Sammut et al., 2008). For every release, the

entire UniProt database (Wu et al., 2006) is searched for occurrences of any domain

in Pfam. The Pfam database to date covers ≈ 75% of all sequences, i.e. 75% of all

sequences in UniProt contain at least one region that matches an HMM listed in Pfam.

For proteins in the PDB, the coverage is substantially higher (currently ≈ 95%).

Thus, by projecting the protein universe, i.e. all known protein sequences1, down

to the domain universe, one can achieve a reduction in complexity of several orders of

magnitude. At the level of conserved domains, the traces of evolutionary history can

be observed more clearly. This has been exploited e.g. in inferring the evolutionary

history of nematodes with respect to chordates and insects, see Wolf et al. (2004).

In this thesis, Pfam was used extensively to investigate the function and evolution of
1Currently, UniProt contains over 3 million sequences, not including the expected deluge of metage-

nomics derived sequences
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interacting proteins.

1.3.1 iPfam

I have so far described how protein interactions can be identified biochemically as well

as by crystallography. I have also introduced the relationship between sequence and

structure conservation. As the function of a protein, including its interaction preference,

is dependent on its three-dimensional structure, it is an obvious next step to describe

the interactions between proteins in terms of conserved sequence regions such as Pfam

families. Several recent studies have indeed found that protein domains can mediate

protein interactions. There seems to be a limited set of domain interactions that is

being reused in proteins of different backgrounds (Aloy and Russell, 2004).

Figure 1.6 shows a typical example of a protein structure of an interacting protein,

in this case the E. coli Oxidoreductase, where a specific domain mediates the interac-

tion. The asymmetric unit of the structure only contains two of the four subunits that

make up the functional macromolecule. The two subunits bind each other through a

large interface (shown as a surface representation in the figure) which matches the Pfam

family 2-Hacid dh [Pfam-id: PF00389]. The interface exhibits structural complemen-

tarity, thus excluding solvent and creating the necessary binding energy to maintain a

stable interaction.

Pfam domains are defined solely through sequence, but a conserved structure is

very often associated with them. In order to find structures that match a certain

Pfam domain, one could search the raw sequences stored in the PDB entries against

the library of Pfam HMMs. However, a complete search of the UniProt database is

performed at every release of Pfam. Rather than searching the complete Pfam database

again, it is more efficient to map every residue in the PDB structures to a residue

in a UniProt sequence. Such a mapping is conveniently provided by the Molecular

Structure Database (MSD) at the EBI (Velankar et al., 2005). Identifying regions in
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PDB structures that match a Pfam domain thus becomes a simple database query

which joins the two co-ordinate systems.

iPfam is a database of physically interacting protein domains that was derived

by gathering all interactions between distinct Pfam domains in asymmetric units as

deposited in the PDB (Finn et al., 2005). Figure 1.7 illustrates the steps that comprise

the generation of iPfam. For each pair of regions that match a domain within a

sequence, it is evaluated whether the backbone atoms are in sufficient proximity (<

20 Å) to each other to allow a contact between the sidechains. This initial filtering

step substantially reduces the search space. Subsequently, all atoms in one domain are

tested for their exact distance to all other atoms in the adjacent domain. Depending

on the observed distance, geometry and type of atoms, a bond type is assigned to the

pair. The maximum distance between any two atoms still considered as a contact is

6 Å. There is currently no lower limit to how many atom contacts are required for a

domain pair to be recorded. It is also important to note that the version if iPfam used

throughout this thesis is based solely on interactions in the asymmetric units of PDB

entries. Therefore, interfaces involved in the assembly of large repetitive structures

such as virus capsids as well as other interactions between repeated individual units

are missing from iPfam.

As illustrated in Figure 1.6, not only interactions between two distinct proteins are

considered, but also the residue contacts between two domains within one protein. The

rationale behind this is that many domains are structurally independent units which

can, over the course of evolution, be combined with other protein sequences. In such

cases, an intrachain interface can become a potential new interchain recognition site,

as described by Enright et al. (1999).
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Pfam 
Database

Molecular 
Structure 
Database

PDB

PDB files

calculate_domain_domain_interactions.pl

The Pfam database 
already contains pre-
calculated domain 
location information for 
every UniProt 
sequences. The MSD 
data links residues in 
PDB structures to the 
corresponding UniProt 
entry

First, sequences in the structure are 
mapped to UniProt via MSD. All Pfam 
domains per sequence are then selected.

In a first pass, the distances between all 
backbone atoms of all pairs of domains 
are calculated. These can be both domains 
on different proteins or on the same 
protein. 

20Å 

6Å 

In a second pass, the distances between 
all atoms of a residue in one domain and 
all atoms of all residues in the opposite 
domain within 20Å of the backbone are 
calculated. Depending on the distance of 
the atoms and the type of amino-acid, the 
following types of interaction are 
assigned:
• Covalent bond
• Electrostatic interaction
• Hydrogen Bond (backbone or sidechain)
• Van-der-Waals interaction

The maximum distance between two 
atoms still considered to be interacting is 
6Å.

Figure 1.7: Outline of iPfam creation process. Structure data and PDB to UniProt
mappings are downloaded from the MSD and PDB, respectively. A single script (calcu-
late domain domain interactions.pl) then performs a sequence of calculations on each
structure to identify all atoms in every pair of Pfam domains in the structure that are
in contact.
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1.4 Outline of this thesis

The remaining chapters of this thesis consist of three separate investigations. I first

analyse the coverage of iPfam in order to assess the power of the structural domain

annotations to explain existing protein interactions. This also allows me to make in-

ferences on the level of conservation and reusability of domain interactions amongst

different proteins and between species. This work lays the foundations for applying do-

main interaction information to human disease data. In the second chapter, I estimate

the impact of protein interaction defects on human genetic diseases and show how the

structural information can be practically applied to gain insights into the function of

a related protein complex. Finally, I follow up on an interesting observation related

to the evolution of protein interactions, namely the tendency of interacting proteins to

be more dosage sensitive. I use the newly available human population copy-number

variation data to investigate whether protein complexes are under stronger selective

pressure to maintain their abundance in the cell.

Parts of the results described in this thesis have been published (Schuster-Böckler

and Bateman, 2007b, 2008). The respective articles can be found in the Appendix.

In addition to that, I have published a paper on the visualisation of profile–profile

comparisons (Schuster-Böckler and Bateman, 2005) which is outside the focus of this

thesis. I was also involved in several collaborations which resulted in two publications

(Bushell et al., 2008; Finn et al., 2006).
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