
Chapter 4

Protein complexes, dosage

sensitivity and copy-number

variations

4.1 Introduction

In the previous chapter, I described the bias towards dominant mutations amongst

mutations in protein interaction interfaces. As I mentioned there, dominance can be

explained by haploinsufficiency or dominant negative effects. In either case, a 0.5 fold

change in gene dosage of the functional (or mis-functional) protein causes a visible phe-

notype. It has been estimated that at least 20% of the entries in the OMIM database

cause a phenotype as a heterozygous mutation (Kondrashov and Koonin, 2004). In con-

trast, the popular hypothesis explaining gene dominance formulated by Wright (1934)

states that dominance is caused by “bottlenecks” in metabolic pathways and should

generally be rare (Orr, 1991). Apparently, there are far more proteins that are dosage

sensitive than can be explained by perturbations of biochemical pathways alone.
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Papp et al. (2003) attempted to explain a similar observation made by Steinmetz

et al. (2002) in S. cerevisiae. The latter had systematically created heterozygous dele-

tion mutants for a range of genes orthologous to human disease-related genes. Papp

et al. found that many haploinsufficient genes were members of protein complexes.

They postulated that multi-protein complexes need to maintain the stoichiometry of

their subunits to perform their biological function (the balance hypothesis). If this bal-

ance is disturbed, the function of the entire complex is disrupted. This conveniently

explains the enrichment of haploinsufficiency amongst members of protein complexes.

A range of other experiments also lend support to the balance hypothesis. It has been

noted that expression levels of interacting proteins are highly co-ordinated (Jansen

et al., 2002), hinting that proportionality of subunit abundances is important. It has

also been argued that tolerance towards polyploidization, compared to the sometimes

severe effects of smaller duplications can be explained by conservation of stoichiometry

(Aury et al., 2006). The proposition in this case is that single gene duplications or dele-

tions will cause a stronger negative fitness effect than copying all components of the

complex, maintaining stoichiometric balance. Finally, it has been noted that highly-

interacting proteins in higher organisms belong to small gene families (Yang et al.,

2003), which could be conveniently explained by a bias against duplication acting on

multi-protein complexes.

There have been, however, several conflicting reports. Deutschbauer et al. (2005)

performed a heterozygous deletion screen in S. cerevisiae that incorporated all open

reading frames (ORFs) available for cloning at the time. They reported only 3% of

genes to be haploinsufficient. While these genes were enriched for members of protein

complexes, their subsequent overexpression did not cause a similar phenotype as their

deletion. Unfortunately, it is not clear from the publication how the well described

whole genome duplication that is characteristic for the S. cerevisiae lineage (Kellis

et al., 2004) affects these results. Subsequently, Sopko et al. (2006) systematically
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induced gene overexpression for all ORFs in S. cerevisiae. The genes found to be

toxic when overexpressed did not overlap with the haploinsufficient genes described by

Deutschbauer et al., and were not significantly enriched for protein complexes. This is

in conflict with the dosage hypothesis in so far as it shows that deletion and duplication

of the same gene do not usually lead to loss-of-function of the entire complex, as was

initially suggested by Papp et al.. One important issue that has to be noted about

the study by Sopko et al. is related to their experimental set-up. To assure that

overexpression of the gene is controllable, they used an inducible promoter. They

found that duplication sensitive genes were highly enriched for cell cycle proteins. A

likely explanation for this bias is that the untimely expression of the proteins due to the

non-physiological promoter is responsible for the negative fitness effect, rather than the

actual dosage. The second important fact to consider is that single-cellular eukaryotes

such as S. cerevisiae which are able to sustain both a haploid and diploid life-cycle, are

likely to have different regulatory and dosage-compensatory mechanisms than multi-

cellular organisms. One hint towards this difference is the increasing constraint on the

number of paralogs of highly-interacting proteins in higher organisms, as described by

Yang et al. (2003).

In light of the above points, Birchler et al. (2007) argued for a more elaborate

concept to explain dosage sensitivity that they refer to as regulatory balance. Experi-

ments in plants and later in D. melanogaster showed that duplications or deletions of

some chromosomal regions cause no change in gene expression (Birchler, 1981; Devlin

et al., 1982), while variations of other genes causes up- or downregulation of various

distal genes (Birchler et al., 2001). One example referred to by Birchler et al. is D.

melanogaster white eye colour controlled by the single gene white. Over the years, du-

plications of some and deletions of other genes (47 in total so far) have all been found

to affect the expression of white. The majority of modulators of white act as negative

regulators, i.e. a duplication of the regulator leads to lower expression of white. Birchler
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4.1 Introduction

et al. suggest that these regulators form a complex regulatory network where informa-

tion transfer happens mostly through protein interactions, see for example Figure 4.1.

Considering these findings, it appears that there are multiple possible causes of

dosage sensitivity, whereby deletion and duplication of the same gene do not necessarily

lead to the same outcome:

• A limited number of enzymes are sensitive to low dosage because they are the

rate limiting factor in a biochemical reaction.

• A range of proteins are likely to cause non-physiological binding or even agglomer-

ation as a result of overexpression, as exemplified by susceptibility to early-onset

Alzheimer’s disease as a result of duplication of the APP locus (Lee and Lupski,

2006).

• Haploinsufficiency as well as duplication sensitivity are likely to affect the reg-

ulators controlling the balanced expression of a range of other proteins. As I

described above, these proteins are in fact often complexes.

Dosage sensitivity and the concept of regulatory balance have important implica-

tions for gene duplicability and thus for the understanding of gene evolution. The widely

accepted paradigm states that gene duplications can either create a non-functional pseu-

dogene (nonfunctionalization) or relax selection constraints on one of the paralogous

sequences, allowing it to diverge into related (subfunctionalization) or, in rare cases,

new functions (neofunctionalization) (Prince and Pickett, 2002). Historically, it was as-

sumed in this context that most genes can be duplicated without substantial negative

fitness effects. It has been shown, however, that there are distinct differences between

genes as to their duplicability (Veitia, 2005; Yang et al., 2003) and that duplicated

genes are in many cases still under negative selection (Kondrashov et al., 2002; Lynch

and Conery, 2000). How exactly these pressures on gene evolution are linked to dosage

sensitivity and thereby to protein complexes is the focus of this chapter.
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4.1 Introduction

It has been estimated that at least 2% of the human genome is affected by struc-

tural variations (Cooper et al., 2007), such as inversions, small insertions/deletions or

large copy-number variants (CNVs) (Conrad and Hurles, 2007). These sometimes large

rearrangements may be seen as an important driving force of genome evolution. As a

consequence, theories on gene evolution have to be re-evaluated in the context of such

rapid and widespread large scale variation. Previous studies have already shown that

the locations of CNVs and the function of genes inside CNV regions are biased (Cooper

et al., 2007; Nguyen et al., 2006). CNVs are found more often in pericentromeric and

subtelomeric regions, they overlap significantly with regions of segmental duplications

and are more gene dense than the average for the genome. Genes within CNV regions

are frequently involved in sensory perception and immune system activity, to a lesser

extent in cell adhesion and in a number of cases signal transduction (Cooper et al.,

2007). Two theories have been postulated to explain this non-random distribution of

CNVs. The mutational hypothesis states that most CNVs are in effect phenotypically

neutral, but are carried by flanking genomic elements like ALU repeats which cause the

bias in CNV distribution. The opposing theory could be called the selection hypothesis,

stating that negative and positive selection shape the distribution of CNVs through the

functional elements they encompass.

In this work, I use gene expression and copy-number variation data to study the

relationship between protein complexes, dosage sensitivity and recent gene evolution in

the human population. Firstly, I show that changes in gene copy number have a weak

but measurable effect on gene expression. Next, I describe how genes involved in pro-

tein complexes are enriched for known dosage sensitive genes and exhibit substantially

lower expressional noise than other genes. Consequentially, I observe that dosage sen-

sitive genes tend to be underrepresented in CNV regions. Given these functional and

positional biases on genes in CNV regions, I hypothesise that the regulatory balance

of dosage sensitive genes exerts negative selective pressure on chromosomal structural
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variations.

4.2 Methods

A wide range of diverse sources of data were combined in order to perform the analyses

in this chapter. In the following paragraphs, I describe the provenance and composition

of these different datasets. When no web URL is given, the data was extracted from

supplementary materials files provided with the referenced publication.

4.2.1 Gene identifiers

A common problem when combining several independent data sets is inconsistencies

in naming conventions. To assure that all gene identifiers were consistent, all data

sets were mapped to the most recent HUGO Gene Nomenclature Committee (HGNC)

identifiers in March 2008 (Bruford et al., 2008). In case a gene name did not correspond

to a primary gene symbol in HGNC, the HGNC previous symbols column was searched

for an exact match, followed by a search in aliases. If no exact match could be found,

the gene was removed from the set and not included in any further analysis.

4.2.2 Mammalian protein complexes

The CORUM database (Ruepp et al., 2008) is a manually annotated resource, contain-

ing, at the time of writing, 1679 protein complexes from 10 mammalian species, with a

strong focus on human. Entries are based on individual publications, not including high-

throughput experiments. Table 4.1 lists Gene Ontology annotations for which CORUM

deviates significantly from the rest of the genome. CORUM is enriched for nuclear pro-

teins and contains a large number of transcriptional regulators. Conversely, extracel-

lular and membrane proteins are underrepresented in the dataset. Figure 4.2 visually

conveys an idea of the size distribution of this network of human complexes, as well
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as reflecting its highly interconnected nature. Relationships for 2080 proteins in 1109

human complexes were downloaded from http://mips.gsf.de/genre/proj/corum on

the 29th January 2008. 2028 proteins could be mapped to 1975 HGNC identifiers.

Genomic coordinates for these gene identifiers were retrieved from Ensembl (v49)

(http://www.ensembl.org) via BioMart.

Figure 4.2: A network representation of the CORUM database. Nodes represent com-
plexes and are ordered by number of unique components (shown as number next to
groups). Edges denote shared components between complexes. The number of shared
components is reflected in the colour (from yellow (few) to red (many) shared com-
ponents) as well as in the line width. The large, highly overlapping complexes in the
first row are mainly modules of the ribosome (6 out of 12) and spliceosome (3 out of
12). Other large complexes include RNA polymerase, respiratory chain complex and
the proteasome. The group of complexes with only one member are homo-multimers.
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Table 4.1: Composition of the CORUM database. Underrepresented terms are set in
bold font. P-Values were calculated using Fisher’s Exact Test, see Methods.

GO-Slim Term Number of
CORUM genes

P-Value

protein binding 1348 1.78 · 10−210

nucleus 1058 3.73 · 10−207

macromolecule metabolic pro-
cess

1321 1.59 · 10−205

nucleobase, nucleoside, nu-
cleotide and nucleic acid
metabolic process

852 4.52 · 10−148

nucleic acid binding 708 5.73 · 10−86

cytoplasm 933 2.72 · 10−62

regulation of biological pro-
cess

722 1.24 · 10−51

chromosome 168 7.95 · 10−46

structural molecule activity 227 5.51 · 10−38

transcription regulator activ-
ity

301 1.63 · 10−30

biosynthetic process 279 5.37 · 10−26

helicase activity 53 1.14 · 10−15

cell death 146 1.12 · 10−12

protein transporter activity 45 3.32 · 10−11

response to stimulus 378 3.42 · 10−08

translation regulator activity 34 2.29 · 10−06

cell differentiation 232 1.54 · 10−05

extracellular region 77 1.94 · 10−06

membrane 532 3.35 · 10−15

4.2.3 Interaction and complex data

As an alternative to the manually compiled set of complexes in CORUM, an inde-

pendent set of putative complexes was computationally derived from high-throughput

protein interaction experiments by identifying highly connected clusters of proteins in

an extended network of human protein interactions (Krogan et al., 2006). Interaction

data for three recent high-throughput studies (Ewing et al., 2007; Rual et al., 2005;

Stelzl et al., 2005) were retrieved from IntAct (Kerrien et al., 2007) and subsequently
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merged into a single network. As for CORUM, UniProt identifiers were mapped to

HGNC identifiers to ensure consistency. This was achieved by extracting the HGNC

annotations in the “cross-references” section of the UniProt flat-files. Clustering analy-

sis was performed using the Markov clustering tool mcl (van Dongen, 2000) (parameter

I = 3.0). The “alternative complex set” was defined as containing all clusters with

more than three components (2325 unique genes).

4.2.4 Set of dosage sensitive genes

Dosage sensitive genes were extracted from the annotations of the Baylor College of

Medicine Medical Genetics Laboratory 105k diagnostic Chromosomal Microarray (ver-

sion 7), available at http://www.bcm.edu/geneticlabs/cma/. This post-natal screen-

ing tool comprises a manually compiled set of 146 genes (after mapping to HGNC)

known to be sensitive to chromosomal imbalances (Cheung et al., 2005). A complete

list of the genes and the associated diseases can be found in Table H.1.

A separate set of genes overexpressed in cancer tissue was also used (Axelsen et al.,

2007). The dataset contains 2362 genes which are at least 4-fold overexpressed in brain

(astrocytoma and glioblastoma), breast, colon, endometrium, kidney, liver, lung, ovary,

prostate, skin, and thyroid cancers compared to healthy tissue of the same type.

4.2.5 Expression profiles

Gene expression can be measured on a large scale using expression arrays. Stranger

et al. (2007) performed gene expression analysis on Eppstein-Barr virus transformed

lymphoblast cell lines from each of the HapMap individuals. Gene expression was

quantified using high-throughput human whole-genome expression arrays designed by

Illumina (Kuhn et al., 2004). These arrays consist of ≈ 48000 bead types, where

each bead consists of several hundred thousand copies of a gene specific oligonucleotide

probe. After RNA was extracted from the cell lines, it was carefully amplified and
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labelled with Biotin-16-UTP. After hybridisation to the array, Cy3-streptavidin was

applied to the array which binds to Biotin and subsequently allows the measurement of

luminescence intensities for each bead type in a specially designed scanner. Kuhn et al.

showed in a benchmark experiment that luminescence intensities are directly propor-

tional to the expression strength within a defined dynamic range (Limit of Detection:

≈ 0.13pM, dynamic range: ≈ 3.2-fold). Each bead type is also replicated several times

on the array, thus providing robustness and redundancy for quality control. Subsequent

to data readout, the raw intensities for each redundant bead type were summarised by

proprietary software provided by Illumina. Stranger et al. performed 4 replicate hy-

bridisations per cell line, the results of which were summarised on a log scale using a

quantile normalisation method across replicates of a single individual, followed by a

median normalisation method across all 270 individuals. The resulting data, consist-

ing of a matrix of gene expression values of 47293 probes over 270 individuals, were

downloaded from http://www.sanger.ac.uk/humgen/genevar/.

Due to the sensitivity and dynamic range limitations of the Illumina WG6 expression

arrays used by Stranger et al., there is a correlation between detectable expression

variation and total expression strength for genes with low overall expression, or no

expression at all. Notably, there is a cluster of genes with both low detected expression

and markedly lower coefficients of variation (CV, defined as the standard deviation of

expression between individuals per gene, normalised to the mean absolute expression

level) than the majority of genes, plotted in grey in Figure 4.3. These genes may be

distinguished from the remaining genes by their lower absolute variation, that is the

standard deviation between individuals before normalisation to the expression mean.

In total, 6440 genes with an absolute population standard deviation ≤ 7 were removed

from the dataset, as they are likely to be expressed below the confident detection

threshold or not to be expressed at all.

A second set of expression data for 44760 probes applied to samples from 79 different
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Relationship between total expression and relative variation

CV

0.01

0.1

1

10

Expression mean
100 1e+04

absolute deviation > 7
absolute deviation ≤ 7
CORUM genes

Figure 4.3: Coefficients of gene expression variation (CV) relative to absolute expression
level. The measurable variation in gene expression is limited by the sensitivity of the
employed array technology. Genes which are expressed at extremely low levels, or not
expressed at all, cluster in the low expression/low CV region. Shown in grey are genes
which were excluded from further calculations (standard deviation ≤ 7).
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tissue types were provided by GNF SymAtlas (Su et al., 2004) (http://symatlas.gnf.

org). For the latter, different Affymetrix expression arrays were employed, raw results

of which were normalised using global median scaling.

Probe identifiers for both data sets were mapped to HGNC gene names through

Ensembl BioMart. Probes which could not be mapped to a gene name were exluded

from further analysis. The resulting matrices contained expression data for 17122 genes

(HapMap set) and 15012 genes (tissue set), respectively.

4.2.6 Correlation computation

As a measure of correlation between expression levels of two genes in different tis-

sues/individuals, the Pearson product-moment correlation coefficient was employed.

For two vectors x and y representing genes with n expression levels, the correlation rxy

is given by

rxy =
∑n

i=1(xi − x)(yi − y)
(n− 1)sxsy

(4.1)

where x and y are the means and sx and sy are the standard deviations of x and y,

respectively. For complexes with more than 2 components, correlations for all n(n−1)/2

combinations of gene pairs were averaged.

4.2.7 Copy-number variations

Chromosomal locations of variations relative to the NCBI36 human genome assembly

were downloaded from the Database of Genomic Variants (DGV) (Iafrate et al., 2004):

http://projects.tcag.ca/variation/. This data also contains information on num-

ber of individuals and gain/loss annotation per CNV. CNV locations and whole genome

tiling-path (WGTP) array hybridisation values for each HapMap individual were down-

loaded from http://www.sanger.ac.uk/humgen/cnv/data. The distribution of CNVs

on selected human chromosomes is shown in Figure 4.4.
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4.2.8 Segmental duplications

Human segmental duplications of ≥ 90% sequence identity and ≥ 1 kilobase length

were provided by the segmental duplication database (She et al., 2004) (http://

humanparalogy.gs.washington.edu).

4.2.9 Gene Ontology analysis

181651 Gene Ontology (GO) annotations for 34591 human UniProt entries were pro-

vided by the GOA project (Camon et al., 2004), available at http://www.ebi.ac.uk/

GOA/. UniProt enries were mapped to HGNC identifiers through BioMart, resulting

in 16213 annotated HGNC gene identifiers. There were 6775 unique GO terms in the

full GOA dataset. The complexity of this hierarchical data structure was reduced by

mapping GO terms to 64 GO-slim categories as defined by the GOA project themselves

(ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/goslim/).

4.2.10 Identification of paralogs

In-species paralogs for 10755 HGNC gene identifiers were downloaded from Ensembl

Compara via BioMart. The paralog prediction uses automatically generated phyloge-

netic trees of all species in the Ensembl database. According to the Ensembl compara

help website (http://www.ensembl.org/info/about/docs/compara/homology method.

html), the algorithm to identify orthologs comprises the following steps:

1. Align all pairs of full-length protein sequences of the longest transcript of two

genes from two species using WUBlastp and subsequent Smith-Waterman.

2. Cluster genes by single-linkage clustering according to Best Reciprocal Hits and

Best Score Ratio.

3. Create a multiple sequence alignment (MSA) for each cluster using MUSCLE

(Edgar, 2004).
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4. For each MSA, calculate a phylogenetic tree using TreeBeST (http://treesoft.

sourceforge.net/treebest.shtml) and infer orthology and paralogy. TreeBeST

in this case combines 5 tree building methods (maximum likelihood on protein and

codon sequences via phyml (Guindon and Gascuel, 2003) and neighbour-joining

on p-distance as well as dN and dS distances) and calculates a consensus tree.

4.2.11 Analysis of selection pressure

dN/dS values for human genes relative to mouse orthologs were acquired from Ensembl

via BioMart. The calculation of dN/dS values is part of the automatic gene tree gener-

ation described above: dN/dS values are generated by codeml (model=0, NSsites=0)

from the PAML package (Yang, 1997) for all genes from closely related species after

the initial tree generation. In this analysis, only genes with a single unique ortholog in

mouse were used in the analyses.

4.2.12 P-Values

Statistical significance of overlaps between gene sets was computed with Fisher’s exact

test (FET). The Mann-Whitney-U test (MWU) was employed to determine significance

of differences between two distributions. In cases of multiple testing, Bonferroni cor-

rection was applied. All calculations were performed in R (R Development Core Team,

2006). Significance of differences in dN/dS ratios was calculated by random resam-

pling: For the null hypothesis, 1000 sets of genes with identical size as the test set were

each created by randomly drawing without replacement from the complete gene set.

P-Values were calculated as the probability of observing a result at least as extreme,

given the normally distributed null model derived from the resampling.
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4.3 Results

In order to investigate the relationship between copy-number state, protein complexes

and dosage, I need to assert several preconditions. Firstly, I investigate the impact of

copy-number change on gene expression. Secondly, I analyse the relationship between

protein interactions and dosage sensitivity. Finally, I combine these points to describe

the effects of dosage sensitivity of protein complexes on the evolution of chromosomal

structural variations.

4.3.1 Effects of CNVs on gene expression

Association studies (Stranger et al., 2007) have shown both cis and trans effects of

copy-number variations (CNVs) on genes. Stranger et al. also measured the relative

contribution of single-nucleotide polymorphisms (SNPs) and CNVs on the observed

variation in gene expression. They report that 83.6% of variation can be attributed

to SNPs, whereas 17.7% of variation is associated with CNVs. However, the study

was designed to identify associations between all genes and CNVs within a 2 million

base-pair (MB) window simultaneously and thus had to use stringent multiple-testing

correction. While Stranger et al. report 238 genes to be associated with a CNV within

a 2MB window, it is not immediately clear what immediate effects CNVs have on

contained genes, and whether there is a distinguishable effect between deletion and

duplication polymorphisms.

I therefore focused my attention on the relationship between copy-number variations

and gene dosage. I combined gene expression data derived from lymphoblast cell lines

of 270 HapMap individuals (Stranger et al., 2007) with the CNV dataset of Redon et al.

(2006) on the same individuals.

I find that duplications and deletions have distinguishable profiles of expression

ratios, see Figure 4.5. The expression ratio is defined as the average expression of a gene
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in individuals with a CNV phenotype, divided by the average expression in unaffected

individuals. Assuming a simple linear relationship between copy-number and expression

level, one would expect a distribution with peaks at 0.5, 1 and 1.5, corresponding to a

heterozygous deletion, balanced expression and heterozygous duplication, respectively.

The observed distribution shown in Figure 4.5 reflects a more complex relationship.

Expression change for genes in CNV regions
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Figure 4.5: Difference between deletion (white) and duplication (black) variations in
HapMap individuals. The histograms show the ratio of average expression levels be-
tween affected and unaffected individuals for all genes inside a copy number varied
region. The shift between the two distributions is significantly larger than would be
expected by chance (MWU: P = 1.22 · 10−11).

The magnitude of the expression difference between CNV and wild type individuals

is smaller and more continuous than expected. However, the location shift between

the two distributions is highly significant (MWU: P = 1.22 · 10−11). This indicates

that deletions reduce gene expression, while duplications tend to increase expression.
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As mentioned in the Methods, sensitivity and dynamic range of the expression arrays

could partly account for the observed noise, but I did not find a correlation between

absolute gene expression level and ratio of expression difference for genes overlapping

CNV regions (Figure 4.6).

Relationship between expression ratio and absolute gene expression
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Figure 4.6: Relationship between effect of CNV on gene expression and absolute expres-
sion levels. The horizontal distribution suggests that there is no discernible correlation
between absolute gene expression and expression ratio. A positive or negative correla-
tion between absolute detection level and the fold expression change between affected
and unaffected individuals could indicate a measurement-sensitivity induced bias, but
within the analysed data no such relationship is detected.

The expression ratio distribution reflects a summary over a wide range of individ-

uals. To elucidate the effects of CNVs on gene expression on a per-individual basis, I

plotted the logarithm of hybridisation strength on the genomic hybridization arrays rel-

ative to the reference individual (logH
2 ) against the logarithm of expression, relative to

the reference individual (logE
2 ). As a positive control, I compared two X-chromosomal
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genes, one being inactivated (L1CAM, Figure 4.7a), the other being known to escape

X-inactivation (UTX, Figure 4.7b). The latter exhibits a marked increase in expression

in female individuals relative to the (male) reference individual. In contrast, L1CAM

maintains equivalent expression in males and females levels due to inactivation of one

gene copy in females.

I found 94 gene duplications and 98 gene deletions where the average logH
2 and

logE
2 are at least one standard deviation below (deletions) or above (duplications) the

mean of the unaffected individuals. Figures 4.7c and 4.7d show two examples of genes

inside frequent CNVs exhibiting induced dosage effects. Deletions and duplications

have clearly distinguishable expression levels. Notably, though, the expression ratios

of the deletion/duplication individuals overlap with the expression ratios of unaffected

individuals. In other words, CNVs only partly account for the differences in expression

between individuals, while a large portion of the variance must stem from other sources.

Figures 4.7e and 4.7f show two examples of rarer CNVs which also show a clear deviation

of logH
2 and logE

2 relative to the majority of unaffected individuals.

Notably, several individuals were not called as CNVs, despite similar logH
2 and logE

2

ratios in the analysed region as the identified CNV individuals. These putative false

negatives will reduce the magnitude of expression ratios between CNV and unaffected

individuals. Summarising these individual effects leads to the conclusion that duplica-

tions and deletions have a measurable effect on gene expression, even though they are

just one source of expression variation amongst others.

4.3.2 Limited expressional noise of protein-complex genes

It has previously been reported that expression levels of proteins within a complex

are significantly more correlated across tissue types than would be expected by chance

(Hahn et al., 2005; Jansen et al., 2002). Using both the expression from HapMap

individuals mentioned above as well as a tissue-specific gene expression dataset, I verify
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Figure 4.7: Ratio of WGTP array hybridisation intensity over relative expression level
for four example genes. (a) L1CAM and (b) UTX. The increase in expression as a
result of the copy-number increase in females is clearly visible for UTX which is known
to escape X-inactivation. (c) and (d) Examples of autosomal genes with common
CNV polymorphisms. Red crosses denote individuals in which a deletion phenotype
has been called by Redon et al., red triangles denote duplications. The plot highlights
several potential false negatives with similar expression and hybridisation strength as
the called deletions/duplications. Non-CNV related expression variation is substantial.
(e) and (f) Examples of rare CNV genotypes with significant expression change.
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that members of complexes from the CORUM database exhibit increased expression

correlation (Figure 4.8).

(a) (b)
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Figure 4.8: Distribution of average Pearson correlation coefficients between all members
of known protein complexes as defined in CORUM (black), and randomly sampled
proteins (white, N=100). (a) Expression intensities from 79 tissue types of different
individuals. (b) Expression intensities from lymphoblast cell lines of 270 HapMap
individuals.

In addition to that, the HapMap expression data allow me to perform a direct com-

parison of expression levels between individuals. I calculated coefficients of variation

(CV), defined as the standard deviation of expression between individuals per gene,

normalised to the mean absolute expression level. These values represent a dimension-

less magnitude of variation for each gene. The CVs are significantly lower for CORUM

genes than for the rest of the genome (MWU: P = 2.67 · 10−10), see Figure 4.9a/b.

Interestingly, the average CV of genes within one complex decreases with the size of the

complex, as shown in Figure 4.9c. This is independent of the mean absolute expression

per gene, as shown in Figure 4.9d. I asserted that this effect is not a sampling arte-

fact: When splitting all CORUM genes into sets with complexes of size ≥ 10 and size

< 10 and comparing the distribution of CVs, it emerges that small complexes possess

higher CVs (MWU: P < 2.2 · 10−16). These results indicate that members of protein

complexes are not just more likely to maintain relative expression levels between tis-

sue types, but they are also more restricted as to their expression variation between
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individuals within the same tissue.

Influence of complex size on expression variation
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Figure 4.9: Coefficients of gene expression variation (CV) vary between CORUM and
non-CORUM genes. (a) CORUM genes have significantly lower CVs than random sets
of genes. (b) CORUM genes have significantly lower CVs than non-CORUM genes.
Outliers beyond 1.4 are not shown. (c) Large CORUM complexes exhibit lower average
CVs of their members. (d) Low absolute expression is not the reason for the lower noise
in large complexes: mean absolute expression of large complexes is above average.

CORUM is a manually curated data source and thus prone to ascertainment bias.

To ensure that these results are not biased by the composition of CORUM, I generated a

separate dataset of putative protein complexes extracted from several high-throughput

protein interaction detection experiments (see Section 4.2.3). The clusters represent

an alternative set of “complexes” composed of 2325 proteins, 505 of which are also

contained in CORUM. The CV distribution difference between these highly interacting

proteins and the rest of the genome is also skewed towards lower CVs (P = 7.0 · 10−3).
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This suggests that highly connected proteins in general avoid imbalances in protein

expression.

Is there evidence that tight control of gene expression is actually relevant for human

disease? Axelsen et al. (2007) compiled a list of 2362 genes which are overexpressed in

various cancer tissues (see Section 4.2.4). I tested whether these cancer related genes are

enriched for dosage sensitive genes, under the assumption that dosage sensitive genes

are more likely to be causal in these diseases. In fact, I find that CORUM genes are

overrepresented in these cancer related genes (356 genes, FET: P = 6.56 · 10−13). The

fact that the tight regulation of expression of CORUM genes is disturbed in cancer tissue

provides an interesting link between cancer, protein complexes and dosage sensitivity.

4.3.3 Dosage sensitive genes and CNVs

I have so far assembled evidence that protein complexes seem to be under constraint to

maintain their relative expression levels and show limited expression variability between

individuals. For the further analysis of dosage sensitivity, I also used an independently

assembled set of 146 genes with known dosage-related disease phenotypes (see Sec-

tion 4.2.4). There is a significant overlap between CORUM and this set of dosage

sensitive genes (32 genes, FET: P = 1.2 · 10−5), further supporting the link between

dosage sensitivity and protein complexes.

As previously stated, I found that CNVs can affect the expression levels of genes

they contain. I therefore hypothesised that a CNV that encompasses a gene which is

part of a protein complex will be more likely to have a negative effect on fitness. As

the Redon et al. CNV data were derived from healthy individuals, I expect that genes

encoding protein complexes will be underrepresented in CNV regions.

Out of 18534 protein coding genes for which both genomic locations and a unique

gene name could be retrieved, 2311 genes are fully inside a CNV region. From 1975

proteins in the CORUM database, only 165 are found in a CNV region, significantly
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fewer than one would expect by chance (FET: P = 3.5·10−10). The set of automatically

clustered complexes were also underrepresented in CNV regions (256 out of 2325 genes,

P = 0.012). Lastly, both the set of 146 dosage sensitive genes (8 genes inside CNV,

P = 4.7 · 10−3) as well as the 2362 genes overexpressed in cancer (246 genes inside

CNV, P = 5.82 · 10−4) are unlikely to be contained in CNV regions.

Nguyen et al. as well as Cooper et al. reported a highly significant depletion

of genes with the Gene Ontology (GO) category “binding” within CNV regions, but

they do not comment further on this fact. I verified independently that “binding” is

the second most underrepresented GO category after “intracellular” amongst genes in

CNV regions. This lends further support to the hypothesis that dosage sensitivity due

to protein complex membership has an influence of the composition of CNV regions.

I speculated that a negative fitness effect due to a copy-number variation will in-

crease the likelihood of subsequent removal of that CNV from the gene pool. The

CNVs that contain CORUM genes occur in significantly fewer individuals (MWU:

P = 1.6 · 10−4) than non-CORUM genes, indicating that purifying selection may have

acted on some of the genes.

I also tested whether CORUM genes are underrepresented in gains compared to

losses. Out of the 167 CORUM genes that overlap a CNV, 18.5% occur in a gain,

compared to 29.8% of non-CORUM genes. This significant difference in ratios (FET:

P = 9.6 · 10−4) suggests that amongst copy-number varied genes, there is indeed a

bias against duplications for genes in protein complexes, supporting the notion that

stoichiometric imbalance has a negative effect on protein complexes.

4.3.4 Compositional bias of copy-number varied genes

Various compositional biases on genes in CNV regions have been described (Cooper

et al., 2007; Nguyen et al., 2006). Most notably, it has been reported that genes within

CNV regions exhibit higher dN/dS than the rest of the genome. Is the observed low
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frequency of CORUM and other dosage sensitive genes in CNV regions merely a result

of a bias against slower evolving genes? I verified that dN/dS ratios of genes within

CNV regions were elevated compared to their mouse orthologs (Median: 0.131, P-

Value by resampling: P = 3.2 · 10−7). Conversely, CORUM genes exhibit lower than

expected dN/dS (Median: 0.070, P < 10−40). In contrast to non-complex genes, there

is no significant difference in dN/dS between CORUM genes that overlap CNVs and

those that do not. I therefore tested whether there is a causal relationship between

complex membership, low dN/dS and CNV overlap.

Like CORUM genes, the automatically clustered complexes also exhibited low

dN/dS (Median 0.08, P = 1.9 · 10−30). It has been argued that proteins with ob-

ligate interactions are under stronger selective pressure (Mintseris and Weng, 2005),

which could explain the low dN/dS in both CORUM and the automatically clustered

complexes. Interestingly, Cooper et al. showed that CNVs and segmental duplications

(SDs) are of fundamentally similar nature and frequently overlap. I thus hypothesised

that the reduction in negative selection within CNVs is related to the higher copy

number of some genes which have been recently duplicated in a fixed SD. If I split the

genes in CNV regions into those that overlap a SD and those that do not, it can be

measured that dN/dS ratios are highly significantly elevated in the genes that overlap

SDs (MWU: P < 2.2 · 10−16), but not in the group outside SDs (P = 0.017).

Subsequently, I analysed the distribution of numbers of paralogs for human genes.

I found that genes in CNV regions have significantly more paralogs than would be

expected by chance (MWU, P = 1.45 · 10−9),whereas genes from CORUM have signif-

icantly fewer (P < 2.2 · 10−16). As with the evolutionary rate, the increase in numbers

of paralogs is largely driven by CNVs that overlap SDs. Removing all genes inside

SDs reduced the number of paralogs substantially (P-value reduced from 1.45 · 10−9

to 0.0033). Conversely, the genes that are in both CNVs and SDs have significantly

more paralogs than genes only found in CNV regions (P = 4.3 ·10−11). I conclude that
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the increase in dN/dS in CNV regions is driven by an increase in gene copy number

and thus does not explain the underrepresentation of dosage sensitive genes in CNV

regions.

If SDs are largely responsible for the increased dN/dS within CNVs and the increase

in number of paralogs, can I still detect the underrepresentation of CORUM genes in

CNVs that do not overlap a SD? After removing all genes that overlap a SD, CORUM

genes were still significantly underrepresented (P = 3.3 · 10−4) in CNV regions, indi-

cating that negative selective pressure not only affects regions of segmental duplication

but also other types of CNVs.

4.4 Discussion

4.4.1 Protein complexes are sensitive to alterations in gene expression

Correlated gene expression of interacting proteins is a well known phenomenon, to the

extent that correlation analysis is used to validate high-throughput protein interaction

experiments (Hahn et al., 2005). Usually, expression data is gathered under diverse

physiological conditions, e.g. at different stages of the cell cycle. In this analysis, I

have compared data from 79 different human tissue types. As expected, I observe

strong correlation between the changes in gene expression for members of the same

protein complex in different tissues. This observation hints at the importance of tightly

regulated gene expression for the correct functioning of protein complexes.

However, it does not directly verify if the stoichiometry of complexes is under the

same strong regulation. I therefore measured the variation in expression levels for

interacting proteins in different HapMap individuals. Expressional noise of protein

complexes has been analysed in S. cerevisiae and D. melanogaster(Lemos et al., 2004),

but the HapMap gene expression data allow the first systematic evaluation of pro-

tein complex expression in human. I find that genes in CORUM exhibit significantly
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lower variation in expression than the rest of the genome. This is direct evidence that

expression of complex genes is under tighter regulation than the rest of the genome.

Furthermore, I find that genes in large complexes maintain particularly low expression

variation. While I cannot rule out that this observation is due to functional constraints

on the particular complexes, it does suggest that sensitivity to expressional noise is

related to the number of subunits a complex maintains.

When I analysed the composition of genes in CNV regions, I made the curious

observation that the small number of CORUM genes that overlap a CNV (165 genes in

total) are biased towards deletions rather than duplications. If I assume that negative

selection is acting on CNVs, the intuitive biological explanation for this phenomenon

would be that CORUM genes are at least as sensitive to duplication as to deletion,

which in turn supports the concept that members of protein complexes are sensitive

not just to under- but also to overexpression.

I made another observation that supports this hypothesis. When comparing a

manually curated set of dosage sensitive genes derived from the scientific literature, I

found that a significantly larger than expected proportion of these genes were members

of a protein complex as defined by the CORUM database. Taken together, these

findings indicate that stoichiometric fluctuations negatively affect protein complexes.

4.4.2 CNVs affect expression levels of contained genes

A key proposition that underpins our understanding of dosage sensitivity is that du-

plication or deletion of the genomic region containing a gene will result in a significant

up- or downregulation of expression of the gene. There have been previous reports of

widespread expressional silencing of chromosomal amplifications (Platzer et al., 2002).

In contrast, I observed lower average gene expression in deletion CNVs compared to

duplication CNVs (Figure 4.5). It has to be noted, though, that these differences in

expression are small for the majority of genes within a CNV. Furthermore, there are
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numerous cases where deletions seemingly result in increased expression and vice versa.

Figures 4.7c and 4.7d exemplify how noisy the expression data for a gene can be, despite

a visible expression difference between deletion and duplication genotypes. Sensitivity

to detect expression differences at low concentration is not the main source of this vari-

ability in gene expression. Rather, I suspect there to be inherent fluctuations between

the different cell lines used in the analysis (Blake et al., 2003). Expressional noise alone

does not explain that some CNVs seem not to affect gene expression at all. Rather,

the inaccurate prediction of start and end coordinates of CNVs is likely to be largely

responsible for the lack of correlation between CNVs and gene expression. Individuals

with a CNV genotype falsely labelled as unaffected, or a gene erroneously placed inside

a CNV, will skew the distribution of expression ratios.

I speculate, however, that there could also be a physiological explanation for the

unexpectedly low change in gene expression upon copy-number variation. It is conceiv-

able that the cell attempts to compensate changes in copy number on gene expression

by e.g. increasing or decreasing transcription or modulating mRNA degradation. Such

autosomal dosage compensation was first observed in D. melanogaster (Devlin et al.,

1982) and a general mechanism for dosage regulation has been proposed (Birchler et al.,

2005). According to this theory, dosage balance is achieved through a network of regula-

tory genes which themselves are therefore dosage sensitive. The enrichment of CORUM

for regulatory and transcription related functions might thus explain its sensitivity to

copy-number variation and the low effect of CNVs on gene expression at the same time.

Interestingly, Kind et al. (2008) recently described the formation and binding properties

of a dosage-regulatory complex in D. melanogaster. They note that the components

of the complex are not only conserved in mammals, but there is also autosomal activ-

ity of the respective proteins which is not fully understood. With the arrival of new

CNV datasets featuring improved breakpoint accuracy, it should become possible to

better distinguish between false positive predictions and genes that are actually sub-
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ject to dosage compensation. Subsequently, this will make it possible to determine the

frequency of autosomal dosage compensation of copy-number varied genes.

4.4.3 CNVs as the source of recent duplications

It has been noted (Nguyen et al., 2006) that genes within CNV regions exhibit higher

than expected dN/dS ratios, suggesting a relaxation of selective pressure. On the

contrary, complex genes, dosage sensitive genes and highly connected genes in general,

show very low dN/dS ratios, irrespective of whether they overlap CNVs or not. Stronger

selective constraints in highly connected proteins have previously been attributed to

functional constraints on the protein surface in order to maintain multiple binding sites

(Mintseris and Weng, 2005).

Interestingly, I also show that genes in CNV regions have significantly more paralogs

than expected by chance, while genes in protein complexes possess, on average, fewer

paralogs (Yang et al., 2003). This suggests that CNV regions have been hot-spots of

large scale variation for a prolonged period of time, as it has also been shown that gene-

rich CNV regions correspond well with regions of segmental duplications (Cooper et al.,

2007). In fact, I found that those CNV regions that overlap segmental duplications are

primarily (though not exclusively) responsible for the high number of paralogs.

Conversely, the reason for the increase in dN/dS in many genes within CNV regions

could be attributed to their higher number of paralogous sequences: Even a partial

relaxation of selection pressure due to an additional gene copy is likely to increase the

observed dN/dS ratios. In fact, genes in CNVs overlapping segmental duplications are

again primarily, but not exclusively, responsible for the elevated dN/dS ratios. These

observations underline that CNV regions are a frequent source of gene duplicates which

occasionally get fixed over the course of evolution and thus drive evolution of some gene

families.
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4.4.4 Dosage sensitivity and negative selection on CNVs

I observed that CNV regions are less likely to contain genes encoding protein complexes,

as well as other dosage sensitive genes. Furthermore, CNVs which occur in multiple

individuals and can thus be assumed to be older than unique CNVs are particularly

depleted of CORUM genes. Hence, it appears that pressures on correct dosage limit

the set of genes which can sustain variation in copy-number, even though the effect of

CNVs on gene expression is not straightforward.

Dang et al. (2008) reported that haploinsufficient genes are seldom found between

two regions of segmental duplication. These results shed new light on this finding: It

seems that dosage sensitive genes in general are biased against regions in which they

are prone to suffer from copy-number variation. Segmental duplications are the most

common source of such rearrangements, however I show that other CNVs not related

to segmental duplications are also depleted of dosage sensitive genes. This indicates

that rearrangements due to CNVs are subject to negative selection.

These findings offer a partial but consistent explanation for the biased composition

of CNV regions. In addition to that, the correlation between dosage sensitivity and

protein complex membership provides a convenient way to predict which genes are likely

to be important in diseases which involve genomic rearrangements. The enrichment of

CORUM for genes upregulated in cancer clearly hints towards this possibility. Future

investigations should focus on the involvement of CNVs of putative dosage sensitive

genes in cancer and complex diseases.
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