UNIVERSITY OF CAMBRIDGE

The role of the CapZ complex in vertebrate sarcomere

integrity

Submitted in accordance with the requirements of the University of Cambridge for the degree of Doctor of Philosophy by

Annabelle Scott

The Wellcome Trust Sanger Institute

Corpus Christi College

Declaration

This thesis describes work undertaken in the laboratory of Dr Derek Stemple, at the Wellcome Trust Sanger Institute, in fulfillment of the requirements for the degree of Doctor of Philosophy, at Corpus Christi College, the University of Cambridge. This dissertation is entirely my own work and contains nothing that is the outcome of work done in collaboration with others, except as specified in the text. The material described here has not been submitted for a degree or diploma or any other qualification at any other University or Institution. I confirm that this thesis does not exceed 300 single sided pages of double spaced text, or 80,000 words.

Annabelle Scott

October 2007

Summary

Summary

Muscle cells provide the contractile force essential for internal organ function and body movement in all complex animals. Skeletal and cardiac muscle are composed of bundles of myofibrils containing highly organized arrays of individual contractile units called sarcomeres. Although many myofibrillar and sarcomeric proteins have been identified, we are only just beginning to elucidate the complex processes and interactions required for muscle formation and function. Mutations in components of the myofibril are responsible for a large proportion of human myopathies, therefore determining how the muscle develops and is maintained will be crucial for understanding the pathology of myopathies and developing treatments for these debilitating disorders.

The analyses of model organisms that carry mutations in sarcomeric and myofibrillar components can assist in our current understanding of muscle development and function. The aim of my project was to positionally clone and characterize the zebrafish (*Danio rerio*) muscle mutant *schnecke*, in order to investigate myofibrillogenesis *in vivo*. I identified a mutation in the *schnecke* locus at the exon 9 donor splice site of *capZa1*. CapZa1 is a subunit of the heterodimer CapZ, which caps the barbed end of polymerizing actin filaments at the sarcomeric Z-line. Characterization of the *schnecke* mutant and morpholino oligonucleotide knockdowns of the other CapZ subunits (CapZa2 and CapZ β) suggests that although loss of CapZ function alone does not affect sarcomere assembly, it is essential for the integrity of the myofibrillar and sarcomeric structure of zebrafish skeletal muscle. Additional double knockdown studies with the other components associated with the actin thin filament (Nebulin and Tropomodulin) indicate that CapZ is required in conjunction with these proteins for maintenance of the Z-line and thin filament assembly. The results presented in this thesis describe an additional role for CapZ in maintaining the stability of the sarcomeric and myofibrillar architecture and provides further insight into muscle integrity and function in vertebrates.

Acknowledgements

Acknowledgements

Firstly, I would like to thank my supervisor Derek Stemple, for allowing me to do a PhD in his lab, and providing me with guidance, encouragement and a fountain of ideas over the past three and a half years. I would also like to convey special thanks to Elisabeth Busch-Nentwich for assisting me in all aspects of the 'muscle' project, teaching me the art of positional cloning and collaborating on the double knockdown experiments. Thanks to past and present members of Team 31 and Team 30: Gareth, Steve, Huw, Yung Yao, Mariella, Christian, Carlos, Richard, Amanda, Fruzsina, John, Kevin, Emma, Kathy H, Kathy J, Evelyn, Ho-Yon, Ross, Colin, Marie, Isabel, Sam, Wei and Matt for help in proof reading this thesis, as well as plenty of experimental advice and lots of laughs over the years. A special mention to Morgan building friends Arun and Song for always cheering me up and sorting me out in computer crises!! Thanks to the staff in the RSF who have done a great job of keeping my lines healthy and happy: Dee, Rory, Davyd, Paul, Carl and Nick. Thanks to my committee members: Jim Smith, Jyoti Choudhary, John McCafferty and Gavin Wright, who have made me a better scientist (I hope!!!) and taught me how to be more organized and focused. I would also like to thank the Wellcome Trust and the Sanger for giving me the opportunity to work in a fantastic environment. Finally, the biggest thank you goes out to my husband Vardhman, who has supported me through all the ups and downs of this project and never lost faith in me.

Contents

Title pag	е	i
Declarati	on	ii
Summary	у	iii
Acknowl	edgements	iv
Contents		v
List of Fi	gures	X
List of Ta	ables	xiii
Abbrevia	tions	XV
		•
CHAPTER		Z
1.1 Gen	eral overview of muscle	3
1.1.1 M	uscle types	
1.1.2 H	uman muscular disorders	5
1.2 The	advantages of using zebrafish to study muscle development and musc	ular
disorders		8
1.3 Skel	etal muscle development in zebrafish	12
1.3.1 M	esoderm induction and formation of the three germ layers	
1.3.2 O	rigin and specification of muscle progenitor tissues	
1.3.2.1	Paraxial mesoderm	17
1.3.2.2	Somitogenesis	19
1.3.2.3	Myogenic regulatory factors: Myf5 and MyoD	
1.3.3 M	uscle differentiation	
1.3.3.1	Slow and fast muscle fibre formation	
1.3.3.2	Hedgehog signalling	
1333	Fast fibre elongation	26
1.3.3.4	Myoblast fusion and terminal differentiation of myofibres	
14 Com	monents of stricted musele	30
1.4 COII 1.4 T	ipolients of striated muscle	
1/11	The actin thin filament and its associated proteins	
1 4 1 2	The myosin thick filament and its associated proteins	
1.4.1.2	7 line	30
1.4.1.3	Z-mic	رو را
1.4.1.4 1 / 2 TI	be Sereelemme	
1.4.2 11	Intermediate filements and microtubules	
1.4.2.1	The Costomeric network	
1.4.2.2	Mustandinous junction	
1.4.2.3	wryotenumous junction	4,
1.5 Myo	fibrillogenesis	49
1.5.1 M	odels for sarcomere assembly	49
1.5.2 A	ctin thin filament dynamics and assembly	
1.6 Obj	ectives and outcomes of this thesis	

CHAP	CHAPTER 2: MATERIALS AND METHODS56	
2.1	Embryo collection	57
2.2	Morpholino oligonucleotide design and injection	57
2.3 2.3. 2.3. 2.3. 2.3. 2.3. 2.3. 2.3.	General molecular biology techniques 1 Purification of DNA using phenol chloroform 2 DNA extraction from agarose gels 3 Restriction digestions 4 Ligation 5 Ligation using TOPO TA® and TOPO Blunt II® vectors 6 Colony PCR 7 Extraction and purification of plasmids	59 59 59 60 60 60 60 61 61
2.4	DNA sequencing of PCR products and plasmids	61
2.5	Bioinformatics	62
2.6 2.6. 2.6. 2.6.	 RNA extraction and RNA <i>in vitro</i> synthesis	
2.7	Whole-mount mRNA <i>in situ</i> hybridizations	64
2.8 2.8. 2.8.	 Extraction of genomic DNA from embryos and adult zebrafish 1 Extraction of DNA from 5 dpf embryos 2 Extraction of DNA from adult zebrafish 	
2.9 2.9. 2.9. 2.9. 2.9. 2.9.	Primer design and PCR. 1 Primer design	66 66 67 67 68
2.10	Construction of the capZα1-GFP expression plasmid	68
2.11 2.11 2.11 2.11 2.11	Immunohistochemistry. 1.1 Phalloidin staining	69 69 70 70
2.12	Image capture of live and fixed embryos	71
2.13	Protein extraction from embryos	

2.14	Western blotting	.72
2.15	Transmission electron microscopy	73

3.1	Summary	
3.2	Introduction	
3.2	2.1 ENU mutagenesis screens	
3.2	2.2 Positional cloning	
3.3	Positional cloning of <i>sne</i>	
3.4	<i>The sne</i> locus is <i>capza1</i>	
3.5	Discussion	

4.1	Summary	92
4.2	Introduction	
4.3	Comparison of CapZ subunit sequences between species	
4.3.1	$1 CapZ\alpha 1 \text{ and } CapZ\alpha 2$	
4.3.2	2 CapZβ	103
4.4	RNA expression patterns of the <i>capz</i> subunits	107
4.4.1	Probe design	107
4.4.2	2 The $cap z \alpha I$ expression pattern	107
4.4.3	³ The capzα2 expression pattern	111
4.4.4	The $capz\beta$ expression pattern	111
4.4.5	Expression of $capz\alpha I$ and $capz\beta$ detected by RT-PCR	115
4.5	Morphology of the <i>sne</i> mutant	115
4.5.1	Gross morphology observed by light microscopy	115
4.5.2	2 Immunostaining of F-actin and α -actinin in <i>sne</i> mutants	117
4.5.3	B The expression levels of $capz\alpha l$ and $capz\beta$ are not reduced in the <i>sne</i> mutant	117
4.5.4	Immunostaining of CapZ α 1 in <i>sne</i> mutants	120
4.5.5	5 Transmission Electron Microscopy (TEM)	120
4.6	The sne phenotype is ameliorated by decreased muscle usage	125
4.7	Discussion	125

CHAP SNE P	TER 5: MO KNOCKDOWN OF CAPZ SUBUNITS AND CONFIRMATION OF OSITIONAL CLONING	.131
5.1	Summary	. 132
5.2	Introduction	. 132
5.3 5.3.1 5.3.2 5.3.3 5.3.4	 MO knockdown of the CapZ subunits	133 133 133 145 149 154
5.4	Rescue of the capZα1 morphant using <i>capzα1</i> -GFP RNA	. 156
5.5	Discussion	159
CHAP MYOF 6.1	TER 6: THE ADDITIONAL ROLES OF CAPZ IN THIN FILAMENT ASSEMBL IBRIL ORGANIZATION AND MOTONEURON PATTERNING	_Y, . 164 165
6.2	Introduction	165
6.3 6.3.1 6.3.2 6.3.3 filan 6.3.4 6.3.5 lines 6.3.6	Combined loss of function studies of thin filament associated proteins Loss of Nebulin affects myofibrillar structure and produces nemaline rods Restriction Studies of thin filament associated proteins Loss of Nebulin affects myofibrillar structure and produces nemaline rods Restriction Studies of Timod4 produces a similar phenotype to the <i>buf</i> mutant Loss of CapZ (by MO knockdown) and Nebulin results in loss of the Z-line and thinkent sne/buf double mutants phenocopy the mutant/morphant knockdown Double MO knockdown of CapZ and Tmod4 completely ablates actin filament and Loss of Tmod4 in <i>buf</i> mutants increases the formation of nemaline bodies	167 167 171 in 173 176 I Z- 179 179
6.4 6.4.1 6.4.2	Desmin Knockdown of Desmin in zebrafish produces wavy myofibres Loss of CapZ and Desmin does not enhance myofibrillar disorganization	180 182 182 182
6.5	Loss of CapZ affects secondary motoneuronal axon growth	187
6.6	Discussion	190

СНА	PTER 7: GENERAL DISCUSSION	193
7.1	The <i>sne</i> locus is <i>capzα1</i>	194
7.2 musc	The mutation in <i>capzα1</i> affects the sarcomere and myofibrillar structure of ske le	letal 194
7.3 7.3 7.3 mu 7.3 imj 7.4	The <i>sne</i> allele is hypomorphic 1.1 The <i>capz</i> α <i>1</i> mis-spliced transcripts are translated in the <i>sne</i> mutant 2.2 Knockdown of CapZ subunits suggests that the <i>sne</i> mutant protein is functional in 1.3 The crystal structure of CapZ indicates that the C-terminal region of CapZ α 1 is 1.3 portant in actin binding and dimerization to the β subunit Potential roles for the α 2 and β subunits of CapZ	197 197 n non- 198 200 202
7.4 7.4	 4.1 CapZα2 4.2 CapZβ 	202 203
7.5	CapZ regulates thin filament assembly and integrity with nebulin and Tmod	206
7.6	CapZ and the intermediate filament protein desmin	214
7.7	CapZ and motoneuron development	215
7.8	Conclusions	216
APP	ENDIX	218
REFI	ERENCES	223

List of Figures

Chapter 1

Fig.	1.1	Illustration of smooth, skeletal and cardiac muscle fibres	4
Fig.	1.2	Schematic of a stereotypical striated muscle fibril	4
Fig.	1.3	Fate map of the three germ layers prior to gastrulation	13
Fig.	1.4	Diagram of the three types of cell movement involved in gastrulation	16
Fig.	1.5	Illustrations depicting the position of muscle precursors during zebrafish embryonic	
		development	18
Fig.	1.6	Transmission electron microscope image of a zebrafish sarcomere	31
Fig.	1.7	Schematic illustration of the sliding filament mechanism for sarcomere contraction	31
Fig.	1.8	Diagram of the sarcomere illustrating the major components	. 33
Fig.	1.9	Illustration of the costameric network and the components that link the myofibrils to t	the
		sarcolemma	45

Chapter 3

Fig. 3.1 Generation of a zebrafish ENU mutant library	77
Fig. 3.2 Example of how the recombination frequency of a linked SSLP polymorphic	
marker is determined by PCR	
Fig. 3.3 SSLP marker map of chromosome 8 between 43.3 and 62.3cM	81
Fig. 3.4 Map of indel markers on chromosome 8	83
Fig. 3.5 Schematic diagram of the genomic region on chromosome 8 containing the three	
candidate genes for the <i>sne</i> locus	
Fig. 3.6 Coding region of $capz\alpha l$ exons illustrating the position of the primer binding sites	used
to amplify this gene	86
Fig. 3.7 Gel of RT-PCR products from pooled <i>sne</i> sibling and mutant cDNA, using primers	s that
amplified the 5' and 3' prime regions of <i>capza1</i>	
Fig. 3.8 . Identification of the mutation in <i>capzα1</i> of the <i>sne</i> mutant	
Fig. 3.9 Position of alternative donor splice sites in intron 9 of <i>capzα1</i>	

Chapter 4

Fig. 4.1 Alignment of zebrafish, chicken, mouse and human CapZa1 protein sequence	
Fig. 4.2 Alignment of zebrafish, chicken, mouse and human CapZ α 2 protein sequence	96
Fig. 4.3 Alignment of CapZ α 1 and CapZ α 2 protein sequence from zebrafish, chicken, mous	e and
human	97
Fig. 4.4A Phylogenetic tree of CapZα subunits from various species	99
Fig. 4.4B Phylogenetic tree of CapZ β subunits from various species	99
Fig. 4.5 Phylogenetic tree using DNA sequence of the α subunits of <i>capz</i> from various	
species	100
Fig. 4.6 Syntenic regions surrounding <i>capz</i> α <i>1</i> and <i>capz</i> α <i>2</i> in zebrafish, mouse and human	102
Fig. 4.7 Illustration of $cap z \beta$ exons spliced to form isoforms 1 and 2	104
Fig. 4.8 Multiple alignments of $CapZ\beta$ isoforms 1 and 2 of chicken, mouse and human with	the
zebrafish CapZβ protein sequence	105
Fig. 4.9 Gel of CapZβ products from a gradient RT-PCR using 18 somite DNA	1.06
Fig. 4.10 Alignment of <i>capzα1</i> and <i>capzα2</i> zebrafish cDNA sequence	<u>1</u> 08
Fig. 4.11 <i>capzαl</i> RNA <i>in situ</i> expression pattern at different stages of zebrafish embryonic	
development	110
Fig. 4.12 <i>capz</i> α2 RNA <i>in situ</i> expression pattern at different stages of zebrafish development	ıt112
Fig. 4.13 $capz\beta$ RNA <i>in situ</i> expression pattern at different stages of zebrafish development.	113
Fig. 4.14 Gel of <i>capz</i> α <i>l</i> and <i>capz</i> β RT-PCR products	114
Fig. 4.15 Live images of <i>sne</i> mutant and wild-type sibling 5 dpf embryos	116
Fig. 4.16 Phalloidin and α -actinin staining of <i>sne</i> wild-type sibling and mutant at 5 dpf	<u>1</u> 18
Fig. 4.17 Phallodin staining of 2 dpf <i>sne</i> wild-type sibling and mutant embryos	119
Fig. 4.18 RNA <i>in situ</i> expression pattern of $capz\alpha l$ and $capz\beta$ in 24hpf <i>sne</i> mutant	
and wild-type sibling embryos	120
Fig. 4.19 Co-immunostaining of CapZ α 1 and α -actinin on <i>sne</i> wild-type sibling and mutant	
skeletal muscle	<u>1</u> 21
Fig. 4.20 TEM of skeletal muscle in <i>sne</i> wild-type sibling and mutant 5 dpf embryos	1.22
Fig. 4.21 Box and whisker plot of 5 dpf sne wild-type sibling and mutant sarcomere lengths	124
Fig. 4.22 Phalloidin staining of 5dpf sne wild-type sibling and mutant embryos grown	
in methyl cellulose (0.6%) or tricaine (0.005%)	126

Chapter 5

Fig. 5.1 Schematic diagram of MO target sites for $capz\alpha l$, $cap\alpha 2$ and $capz\beta$	134
Fig. 5.2 48 hpf embryos injected with a capZα1 ATG and splice 1 MO	135
Fig. 5.3 Phalloidin and α -actinin immunostaining of 48 hpf embryos injected with capZ α 1 A	TG
and splice 1 MQ	135
Fig. 5.4 Live images of 5 dpf embryos injected with $capZ\alpha 1$ ATG and splice 1 MO	137
Fig. 5.5 Phalloidin and α -actinin staining of 5 dpf embryos injected with capZ α 1 ATG and sp	olice
1 MO	.138
Fig. 5.6 Gel of <i>capzα1</i> RT-PCR products from cDNA of capZα1 splice 1 morphants	138
Fig. 5.7 Morphology of 2 dpf capZα1 splice 2 morphants	140
Fig. 5.8 Morphology of a 5 dpf capZα1 splice 2 morphant	141
Fig. 5.9 Gel of <i>capzα1</i> RT-PCR products from cDNA of capZα1 splice 2 morphants	.142
Fig. 5.10 CapZα1 antibody staining of capZα1 morphants at 5 dpf.	
Fig. 5.11 Day 2 and day 5 live images of capZ α 2 ATG and splice morphants	146
Fig. 5.12 Phalloidin and α -actinin staining of day 2 capZ α 2 ATG and splice morphants	<u>1</u> 46
Fig. 5.13 Phalloidin, α -actinin and CapZ α 1 staining on 5 dpf capZ α 2 splice morphants	147
Fig. 5.14 Twenty hpf embryos that were co-injected with $capz\alpha l$ -GFP RNA and capZ\alpha2 splic	ce
MO at the 1-2 cell stage.	.148
Fig. 5.15 CapZβ ATG and splice morphants at 2 dpf	<u>1</u> 50
Fig. 5.16 Phalloidin and α -actinin staining of capZ β ATG and splice morphants at 2 dpf	150
Fig. 5.17 CapZβ ATG and splice morphants at 5dpf	152
Fig. 5.18 Phalloidin, α -actinin and CapZ α 1 staining of capZ β ATG and splice morphants	
at 5 dpf,	152
Fig. 5.19 Live images at 5 dpf of capZ α 2 ATG morphant and the capZ β ATG morphant	153
Fig. 5.20 Western blots on protein isolated from <i>sne</i> mutant and capZ morphants	
using the mouse monoclonal CapZa antibody	155
Fig. 5.21 Live images of embryos co-injected with capZ α 1 ATG MO and <i>capzα1</i> -GFP RNA	157
Fig. 5.22 Skeletal muscle confocal images of capZ α 1 ATG morphants rescued with	
<i>capzα1</i> -GFP RNA	

Chapter 6

Fig. 6.1 Live images of 5 dpf buf and Tmod4 MO injected embryos	
Fig. 6.2 Phalloidin and α -actinin immunostaining of skeletal muscle in addition to TEM	M images
of day 5 <i>buf</i> mutant, <i>sne</i> mutant and Tmod4 morphant embryos	
Fig. 6.3 Phalloidin staining of 3 dpf double loss of function embryos	
Fig. 6.4 Phalloidin and α -actinin immunostaining of skeletal muscle, in addition to TE	M images
of day 5 double loss of function embryos	
Fig. 6.5 Live images of 5 dpf <i>sne/buf</i> mutant embryos.	<u>177</u>
Fig. 6.6 Phalloidin and α-actinin staining of 5 dpf <i>sne/buf</i> mutant embryos	
Fig. 6.7 Live images of 2 dpf desmin morphants.	<u>1</u> 81
Fig. 6.8 Phalloidin staining of 2 dpf desmin morphants	
Fig. 6.9 Live images of 2 dpf embryos co-injected with desmin and capZa1 MO	
Fig. 6.10 Phalloidin and α -actinin immunostaining of embryos co-injected with desmin	n and capZ
α1 MQ	
Fig. 6.11 Desmin antibody staining of 5 dpf sne mutant and wild-type sibling embryos	
Fig. 6.12 3 dpf live images of the cranial region of Islet-1 GFP embryos injected with	capZa1
ATG or splice 2 MO	<u>188</u>
Fig. 6.13 Fluorescent live images of the tail region of Islet-1 GFP embryos injected wi	th capZα1
ATG or splice 1 MO at 3 dpf and 4 dpf	188
Fig. 6.14 Confocal images of motorneurons from Islet-1 GFP embryos injected with C	apZa1
ATG or splice 1 MO at 5 dpf	189

Appendix

Fig. 1	Plasmid map of	capZα1-GI	FP pCS2+							.220
Fig. 2	Comparison of p	redicted Ca	pZα1 sne	mutant	protein	products	with	wild type	e CapZα1	221

List of Tables

Table. 1.1 List of zebrafish muscle motility mutants	10
Table. 2.1 Sequence of MOs used in this thesis	<u>.</u> 58
Table. 2.2 In situ probes generated to detect the expression of the zebrafish capz subunits	.64
Table. 2.3 Table of primers used in generation of the capZ α 1-GFP fusion construct	69

Table. 3.1 Table of polymorphic SSLP and indel markers used to define the	e region of the sne
locus	
Table. 4.1 Percentage identities of zebrafish $capz\alpha l$ and $capz\alpha 2$ 3' UTRs ag	gainst chicken, mouse
and human <i>capza1</i> and <i>capza2</i> 3' UTRs	

Appendix

Table. 1. Sequences of indel primers used in the positional cloning of the sne mutant	
Table. 2 Sequences of primers used in amplification of $capz\alpha I$ and $capz\beta$ genomic and	
cDNA	
Table. 3 Sequences of primers used to generate the template for the $capz\alpha 1$, $capz\alpha 2$ and	$capz\beta$ in
<i>situ</i> probes	
Table. 4. Number of experiments performed for all MOs used in this thesis	222
Table. 5 List of phenotypes observed from capZβ ATG and splice MOs	222