
Chapter 3

Validation of methods

3.1 Introduction

In the previous chapter I have introduced the Battenberg algorithm for calling (subclonal)
copy number from whole genome sequencing data, an approach to estimate the CCF values
for SNVs and indels, and the DPClust method to infer the subclonal architecture from the
distribution of CCF values measured in a single cancer. In this chapter, I will focus on
validating the performance of these methods in silico. To this end, I have developed a
subclonal architecture simulator called SimClone and metrics are introduced to evaluate
the performance of a subclonal architecture caller. These metrics have a theoretical lower
bound of performance, but a realistic upper bound does not exist (apart from the worst
possible score). To set a realistic upper bound for a subclonal architecture caller, I introduce
a series of simple, naive methods (termed RandomClone) that produce random subclonal
architectures. An edited version of the text and figures describing SimClone, it’s simulated
data set and RandomClone will appear in the supplement of the PCAWG consensus subclonal
architecture calling paper (Yu et al. 2017, manuscript in preparation). The simulated data
set will be further used in Chapter 6 to compare the performance of subclonal architecture
callers. Figure 3.6 is created by Maxime Tarabichi and is used with permission.

3.2 Simulating subclonality with SimClone

3.2.1 Introduction

SimClone was developed to evaluate the performance of DPClust. It can be used to generate
subclonal architectures with underlying data that can test specific scenarios, or to build a
set of random samples that can be used to evaluate overall performance. For it to be a

50 Validation of methods

true evaluation it is important for the simulator to generate problems that are as realistic
as possible. I have therefore aimed to build SimClone such that it can take high level
characteristics of real data as input.

A typical workflow goes as follows: (1) A subclonal architecture is generated in the
form of a phylogenetic tree with subclones and their locations. Relationships between nodes
(mutation clusters) are created, where each node has a parent and sits at a particular level
in the tree (the level of a node is determined as the minimum number of steps required to
"walk" from the root of the tree to the node). (2) Each node on the tree is assigned a number
of mutations. (3) Then a genome wide copy number profile is simulated, after which (4)
mutations are simulated separately for each node, which requires the user to also specify
a tumour purity value that is used for all mutation clusters. The user can provide input for
steps 1, 2 and 3 to have full control over the solution to be simulated.

3.2.2 Assumptions

Both the mutation and wild type alleles are supported by a number of reads. I assume that
the distribution of the number of mutation-supporting-reads takes on the shape of a binomial
distribution. To model variation on the total number of reads covering the locus where the
mutation has occurred, I assume that the depth can be modelled as a Poisson distribution.
The mutation is carried by a number of chromosome copies (multiplicity). The shape of
this distribution is partly determined by the copy number profile, that bounds the possible
multiplicity states, and by cancer type specific development, i.e. if gains occur late there
will be many SNVs on multiple copies, while if gains occur early there will be few. I model
multiplicity through a Poisson, and learn the parameter that determines the shape of the
distribution from real data. Finally, as a simplification, subclonal mutations cannot be carried
by more or less than 1 chromosome copy.

3.2.3 Simulating a tree

A tree consists of nodes and edges, and each node has a parent that is either another node or the
root. The tree simulation step generates a tree independently of other sample characteristics
such as coverage, cluster sizes, etc. The procedure is provided with a number of nodes to
place on the tree and the number of tries allowed to place each node.

The procedure starts by placing a root node, that represents mutations that are clonal.
Then, iteratively, new nodes are placed until the required number is reached. Before a new
node can be inserted SimClone first selects the new nodes parent, that resides in the tree at a
level and in a branch. The level is selected by a draw from a uniform distribution that covers

3.2 Simulating subclonality with SimClone 51

all levels below the root in the current tree and a node at that level is selected to determine
the parent with uniform probability.

For the new node to fit on the tree it must be assigned a CCF value such that the total
CCF at the level of insertion does not exceed the CCF of the parent. The possible CCF space
is therefore constrained. A further constraint can be placed (this is a user setting) in requiring
that the new node position must be at least a minimum CCF away from its parent because
clusters that are too close cannot be separated during clustering.

A CCF is then selected for the node between the max possible value and 0 as the CCF of
the new node and the node is placed if it doesn’t violate any of the constraints. The addition
is retried with a new sampling of parameters if no suitable location is found, but the insertion
is aborted if no location can be found after a specified maximum number of tries, resulting in
one fewer node on the tree. This particular scenario is more likely when large numbers of
clusters are requested as placed nodes will constrain the allowed space for new nodes. The
user can then opt to either work with fewer nodes, rerun the procedure for an alternative tree
or manually add extra nodes afterwards. Alternatively, a function is provided where a custom
tree can be created.

3.2.4 Determining cluster sizes

The cluster size determination procedure takes the minimum and maximum total number
of mutations in the tumour as input and an optional proportion of those mutations that
are clonal. The total number of mutations is drawn from a uniform distribution between
the minimum and maximum. I then determine cluster sizes by applying a stick breaking
procedure where iteratively a randomly sized chunk is broken of the remaining stick. Each
chunk then represents the proportion of total mutations that belong to a cluster. If a minimum
proportion of clonal mutations is specified, then the first chunk will be constrained to be at
least that specified size.

3.2.5 Simulating mutations

With node locations and sizes determined or provided as input SimClone now simulates the
mutations per node. Further input is required in a copy number profile (the copy number
simulation procedure is explained in the next section), a tumour purity value, coverage
and a multiplicity λ parameter (also explained in the next section). These parameters are
sample specific and clusters are therefore simulated independently per sample. Mutations are
generated by calculating the expected number of reads reporting the mutation and wild-type
alleles. But the multiplicity must first be determined before those can be calculated.

52 Validation of methods

The multiplicity (mm) is drawn from a Poisson distribution with the provided λ parameter
as input.

mm ∼ Pois(λ) (3.1)

The mutations are randomly assigned to a copy number segment in the provided profile.
If the multiplicity is not possible given the major and minor allele of the selected segment I
adjust it to the copy number of the major allele.

Then the number of reads per chromosome copy for the tumour (ct) and normal (cn) cells
are calculated from the total coverage (C), tumour purity (ρ) and tumour ploidy (ψt). The
total copy number of the normal cells is assumed to be 2:

ct =C
ρ

ρψt +2(1−ρ)
(3.2)

cn =C
1−ρ

ρψt +2(1−ρ)
(3.3)

Then expected number of mutant alleles rm is determined by the multiplicity of the
mutation, the mutations fraction of tumour cells (f) and the number of reads per tumour
chromosome copy (ct):

E(rm) = mm f ct (3.4)

The expected number of wild type alleles rw consists of three components: (1) Reads
from normal cells (can be zero when the sample is pure and does not contain normal cells),
(2) reads from whole chromosome copies from tumour cells that are not carrying the mutation
(can also be zero when the copy number is 1+0) and (3) if the mutation is subclonal, an
additional number of reads from cells that are not part of the subclone that carries the
mutation:

E(rw) = 2cn +mwct +mm(1− f)ct (3.5)

The total number of observed reads are then drawn from a Poisson distribution:

3.2 Simulating subclonality with SimClone 53

rd ∼ Pois(E(rm)+E(rw)) (3.6)

And the final mutant and wild type alleles are determined by a draw from a binomial
distribution:

rm ∼ Bin(rd,
E(rm)

E(rm)+E(rw)
) (3.7)

3.2.6 Extension to simulating multi-sample cases

The above procedure is already extended to simulate multi-sample cases. During my Ph.D. I
have mostly worked with single-sample cases and this thesis contains results on that type of
data only. I have therefore opted not to include any multi-sample simulations and validations.

The tree building step can be provided with an additional parameter that specifies the
number of samples a multi-sample case should contain. It then simulates mutation clusters
with (potentially different) CCF values in all the samples. However, it does require one
single node that is clonal in all, but that node does not need to contain any mutations (i.e. to
simulate multi-focal tumours). The procedure to simulate mutations for each cluster can take
a multi-sample tree as input and it then simulates the mutations belonging to that cluster with
CCF values for all the requested samples.

It is currently not possible to simulate multi-sample copy number profiles. One could use
the same copy number profile or run the copy number simulator a number of times on the
same input data. The method can be adapted in the future to simulate copy number profiles
for multi-sample cases where the samples share a number of common alterations.

3.2.7 Simulating copy number

A copy number profile consists of segments and a certain number of copies are available for
every segment. SimClone simulates copy number in three steps: (1) it selects a segmentation
from a catalogue, (2) then it models the total copy number profile and (3) it breaks down the
total copy number into allele specific contributions. Fig. 3.1 shows an example of a real copy
number profile (top) and a simulation inspired by it (bottom). The described approach is
simulating clonal copy number only.

A segmentation is selected either randomly from a catalogue of real segmentations, or can
be chosen as containing only whole chromosome or whole chromosome arm segments. The

54 Validation of methods

total copy number is then modelled through a Poisson distribution, where the λ parameter is
learned from a real copy number profile. Before learning the λ parameter I first subtract 1
from the total copy number and after drawing from the learned distribution I add one to the
simulated total copy number because the Poisson distribution often draws many zeroes. This
means SimClone does not simulate homozygous deletions.

ntot ∼ Pois(λ) (3.8)

Total copy number is drawn from the learned distribution and assigned to randomly
selected copy number segments, until the fraction of the genome covered by total copy
number distribution looks similar to that of the real tumour (Fig. 3.2 shows the total copy
number distributions of the real and simulated profiles shown in Fig. 3.1). Often there is a
minor discrepancy between the distribution from real and simulated data inspired by the real
sample due to the random assignment of total copy number to segments. The real distribution
can often only be obtained by recreating the real profile exactly, which is what SimClone
aims to avoid.

The total copy number is then broken down into separate contributions from two alleles to
obtain allele specific copy number by using the multiplicity distribution of the SNVs from the
real sample. Multiplicity values are drawn from a Poisson distribution with its λ parameter

Fig. 3.1 Genome wide overview of a real copy number profile (top) and a simulation that is
inspired by the real profile (bottom).

3.2 Simulating subclonality with SimClone 55

Fig. 3.2 Comparison of real distributions (left) with distributions of simulated data. The
figures on the top row show that the copy number states distribution of the simulated data
follows that of the real data, but there is a noticeable discrepancy. The algorithm aims
to approximate the total copy number states distribution in the real tumour as closely as
possible by iterating over the observed copy number states and assigning the state to a
randomly selected segment until similar proportions of the genome are covered. But due
to the variability in segment lengths it is not always possible to exactly match the real
distribution. The multiplicity distribution (bottom) closely resembles that of the real sample.

learned from the real data (Fig. 3.2). A multiplicity value is drawn for each SNV and SNVs
are assigned to segments (this assignment is purely for establishing copy number) where
the total copy number is greater than or equal to the multiplicity of the SNV. The maximum
multiplicity, mi, assigned to segment i is then used to determine the one allele, nA,i.

nA,i = max(mi) (3.9)

The other allele, nB,i, is then determined by subtracting the copy number of nA,i from the
total copy number ntot,i:

56 Validation of methods

nB,i = ntot,i −nA,i (3.10)

Finally, the major allele for each segment is established as the allele with the highest
copy number state, the minor allele is the allele with the lowest copy number state.

This procedure ensures that if many SNVs have a high multiplicity state, then many
segments will be created with an allele specific copy number configuration that can support
them. If, for example, the multiplicity and total copy number distributions are very similar,
then the profile will have many major alleles that closely follow the multiplicity, leading to a
profile with much loss of heterozygosity (Fig. 3.3). By randomly distributing copy number
states across the genome it becomes possible to create very difficult and truly chaotic profiles
to test a methods’ limits (Fig. 3.4)

The procedure however doesn’t restrict particular copy number states to particular chro-
mosomal areas. That means the actual copy number profile will most likely not resemble the
profile used as inspiration. But it should be covered by the same allele specific copy number
state combinations in similar proportions, if the same segmentation is used.

A different choice in segmentation can cause a bigger discrepancy between the real
and simulated distributions of total copy number and multiplicity. Fig. 3.5 shows three
simulations inspired by the same real profile, but with segmentations that are restricted to
whole chromosome arms (middle) or whole chromosomes (bottom). The real tumour consists
for large parts of normal copy number with a few large and small scale alterations. When
restricting segments to whole chromosomes, many segments are too large for a reasonable
approximation of the proportion of the genome covered by total copy number. SimClone
therefore tends to pick small segments, that reside on the small chromosomes.

In the future it could be interesting to experiment with an additional catalogue of cancer
type specific common events to create more biologically accurate copy number profiles.
However, currently the aim is to simulate the effect of copy number on the VAF of SNVs, for
which it does not matter where on the genome the alterations are placed.

3.2 Simulating subclonality with SimClone 57

Fig. 3.3 A copy number profile simulation that is inspired by a real tumour with loss of
heterozygosity and a whole genome duplication.

Fig. 3.4 Example of a simulation based on a very fragmented and messy real copy number
profile. The random assignment of copy number to segments creates a chaotic simulated
profile.

58 Validation of methods

(a) Segments from reference profile

(b) Chromosome arm segments

(c) Whole chromosome segments

Fig. 3.5 Simulations using the same real sample as inspiration, but with different segmenta-
tions: (a) The segmentation of the real sample (b) segmentation where each segment is a full
chromosome arm and (c) segmentation where each segment is a whole chromosome. The
simulator aims to approximate the proportion of the genome covered by certain copy number
states. The real tumour (shown in figure 3.1) contains a few large scale and a few small scale
alterations, but consists mostly of normal copy number. Due to the large segment sizes in (b)
and (c) it therefore tends to place alterations in the smaller segments that reside on smaller
chromosomes.

3.3 SimClone1000, a validation data set for PCAWG 59

Fig. 3.6 The simulated data set was created as a grid with four axis. Each axis represents a
type of measurement that can be obtained from real data. This figure shows the histogram of
these four measurements from the PCAWG data and the colours represent bins along each
grid axis. A simulated tumour falls somewhere on the grid, which amounts to a combination
of 4 bins (one on each axis). The parameters for this sample are then generated by sampling
a single value from each of the 4 bins.

3.3 SimClone1000, a validation data set for PCAWG

SimClone was used to simulate 1000 tumours with the aim to evaluate the performance of
subclonal architecure callers within PCAWG. The data set consists of 700 unique subclonal
architecture simulations and 300 cases where the exact subclonal architecture was simulated
a second time on a copy number profile without any alterations. The 300 paired cases allow
us to investigate whether subclonal architecture callers perform better without having to
adjust for copy number alterations. We created a grid with four key parameters by which
tumours vary when considering their subclonal architectures: Purity, the fraction of clonal
SNVs, the number of clonal SNVs and the number of subclones. Of the 1000 tumours 36
yielded too few mutations (less than 20) or did not complete the simulation process due to
time constraints. The data set therefore contains 964 tumours.

The axis of the grid were determined based on the distribution of each of these values
in the PCAWG data set, shown in Fig. 3.6. By applying k-means clustering we obtained 6

60 Validation of methods

purity clusters, 5 clusters for the number of clonal mutations (with one cluster fixed at 105 to
represent hypermutators) and 5 clusters for the fraction of clonal mutations (one cluster was
fixed at 0.995 to represent a typical hypermutator). The grid axis for the number of subclones
was determined by creating 4 classes corresponding to 0, 1, 2 and 3+ subclones, where the 3+
category contains tumours with 3 to 7 subclones. A single tumour is then assigned a purity
drawn from a bin on the purity axis, a number of clonal mutations from a bin on the clonal
mutations axis, etc. This results in combinations of real parameters, but they may not have
been observed as a combination. The 6-by-5-by-5-by-4 grid yields 600 unique combinations
of parameters, which we extended by sampling another 100 combinations to reach 700.

Copy number profiles were chosen at random from the PCAWG data set. Once a real
purity is selected for a particular simulation we also assigned it the copy number profile of
the real tumour. We simulated 300 tumours a second time without copy number alterations
and therefore only allowed tumours with at least 10% of their genome altered to be included
in the grid to not inflate the number of quiet diploid tumours. From the 700 simulations we
selected 300 at random for another simulation with normal diploid copy number. A change in
ploidy affects the number of reads per chromosome copy, when purity and coverage remain
equal, potentially altering the CCF space of the simulation substantially and making the
envisaged comparison difficult.

In the regular simulation we, for example, do not have sufficient power to simulate SNVs
at a CCF below 0.3. This means that a the distributions of mutations belonging to a subclone
at 0.4 CCF will be truncated as some of its mutations cannot be represented by a number
of supporting reads greater than 0. When the number of reads per chromosome copy is
increased we gain power to simulate subclonal mutations, resulting in a lower CCF cutoff
point. That means we can simulate more mutations of the 0.4 CCF subclone, making it
potentially easier to correctly identify it by subclonal architecture callers, and rendering a
comparison between the diploid and non-diploid simutations uninformative.

We therefore opted to adjust the purity of the non-diploid copy number profile (ρn) to
correct for the reads per chromosome copy shift when changing the ploidy from the real
sample (ψn) to create a purity for the diploid simulation ρd:

ρd = ρn
2

ψn
(3.11)

Subclone positions and sizes were determined as described in the previous section about
SimClone. And coverage was fixed to the PCAWG average of 48.46621.

3.4 Metrics to evaluate a subclonal reconstruction 61

3.4 Metrics to evaluate a subclonal reconstruction

To aid the large scale performance evaluation of tumours on simulated data we developed
three metrics around two key descriptions of a subclonal architecture: Clusters (location and
size) and assignments of mutations to clusters. The metrics compare a provided subclonal
architecture against a known truth. It’s also possible to use these metrics to measure how
similar a pair of solutions are, which is used later in this thesis to compare performance of
subclonal architecture callers.

The overall subclonal architecture can be roughly described by the number of subclones
(π) and the proportion of clonal mutations (θ). Eqs. 3.12 and 3.13 capture the absolute
difference between solutions k and l. For both metrics, the lower the score, the better.

|πk −πl|
πk +πl

(3.12)

2|θk −θl|
θk +θl

(3.13)

Comparing the cluster locations is more complicated, because the solutions to be com-
pared may not contain the same number of clusters. Instead, we use the mutation assignments.
Each mutation is hard-assigned to a cluster, and each cluster has a location. For each mutation
i we compare the CP of the assigned cluster between solutions k and l. A small distance
across all mutations reflects a good concordance between the solutions. Eq. 3.14 calculates
the average difference in CP (ϕi,k is the cellular prevalence assigned to mutation i by method
k), where a lower value is better. The score is divided by the tumour purity (ρ) to correct for
purity differences between tumours.√

1
N ∑

N
i=1(ϕi,k −ϕi,l)2

ρ
(3.14)

3.5 A lower bound generated by RandomClone

3.5.1 Introduction

The metrics described above can be used to assess the performance of a subclonal architecture
caller, where low scores mean a method is performing well. Often methods will not get the
perfect solution and therefore their scores will deviate from the perfect score. What is not
clear however is when performance can be described as poor. I reasoned that a caller should
be able to outperform a simple random method. Running a random method on the same

62 Validation of methods

data as the caller would then provide an upper bound of what can be considered reasonable
performance. To this end I have developed three simple methods that generate random
subclonal reconstructions and one method that returns only clonal tumours.

3.5.2 RC – Stick breaking

The stick breaking method starts with drawing a random number between 0 and 6 to determine
the number of clusters. It then orders the mutations by their CCF and iteratively breaks a
randomly sized chunk of the ordered mutations. Each of these chunks represents a mutation
cluster and its location is obtained by taking the mean CCF of the mutations in the chunk.
Mutations are automatically assigned by belonging to a particular chunk. The advantage of
this approach is that it is more likely to place a cluster where there are large real clusters, but
it does also tend to place multiple clusters within large real clusters.

3.5.3 RC – Informed

The downside of the stick breaking approach described above is that it performs a single
series of breaks and returns that as a solution. I wondered whether the method could be
improved by selecting the best solution from a series of random models. The informed
method runs the stick breaking implementation described above 100 times. Contrary to the
above approach, the informed method records the size and locations of clusters, but does not
record the assignments. It runs the MutationTimer approach (used in Gerstung et al. (2017)
to assign mutations), which models each mutation cluster as a beta-binomial and takes into
account the size of the cluster. MutationTimer then calculates the proportion of mutations
that are poorly explained (i.e. fall in the outermost 5% of the beta-binomial distributions).
This proportion is calculated for all 100 runs, after which the run that yields the lowest value
is selected as the returned subclonal architecture.

3.5.4 RC – Uniform

The uniform approach is an alternative to stick breaking. It starts with drawing a random
number between 0 and 6 to determine the number of clusters to be found. Then that number
of draws are made from a uniform distribution that has as minimum the lowest 5% of the
mutation CCF space and as maximum the highest 5%. That means cluster locations are
drawn from within the CCF space that is occupied by mutations. Mutations are then assigned
to clusters by calculating the binomial likelihood per mutation and cluster, and assign to the
most likely cluster. This approach does not utilise the shape of the CCF space and therefore

3.6 Validation of multiplicity calls 63

usually places clusters in unexpected locations. As it is nearly always outperformed by the
stick breaking approach I omit results from this method.

3.5.5 RC – Single cluster

This approach places a single cluster to explain the data. It can obtain the single cluster by
taking the mean mutation CCF, or it can be forced to place a clonal cluster at a CCF of 1. All
mutations are assigned to the single cluster.

3.6 Validation of multiplicity calls

DPClust takes as input a fixed multiplicity value for every mutation. That value is obtained
during pre-processing using the equations from the previous chapter. Incorrect multiplicity
values could artificially alter the CCF space, which DPClust may explain through extra
mutation clusters. I therefore used the over 42 million mutations from the 964 simulations to
validate the performance of this pre-processing step. Table 3.1 contains the proportion of
mutations with a correct multiplicity for four different splits of the data and shows that over
99% of mutations are assigned the correct multiplicity.

The subset of mutations that are gained (i.e. have a multiplicity greater than one) has a
lower success rate at just over 93%. For most of these mutations there is not much ambiguity
about their multiplicity, but some will fall between two multiplicity states. The addition
of binomial noise to the reads supporting the mutation and reference alleles can cause the
mutation to shift away from the correct multiplicity. The DPClust pre-processing considers
the evidence provided and assigns the most likely multiplicity, which, due to the noise, can
be incorrect.

3.7 Assesment of a subclonal architecture through resimu-
lations

In addition to the metrics described earlier I have developed a measurement that aims to
capture how well a subclonal architecture explains the raw CCF space it is provided as input.
The idea is that if the subclonal architecture called by a method is the true architecture, then
their corresponding CCF spaces should be very similar. A distance metric can then be used
to calculate the difference, where a small deviation would serve as a good score because the
called subclonal architecture describes the observed input data very well.

64 Validation of methods

Evaluation of multiplicity calls across 964 simulations
Type Total 1st Qu. Median Mean 3rd Qu. S.D.
All 42,536,567 0.9915 0.9992 0.9917 1.0000 0.0186
Gained 2,125,495 0.9195 0.9808 0.9336 0.9987 0.1071
CNA 11,869,768 0.9800 0.9946 0.9840 1.0000 0.0277
CNA & Gained 1,756,994 0.9121 0.9762 0.9311 0.9973 0.1014

Table 3.1 Multiplicity values are compared between the truth and the DPClust calls. Propor-
tions of mutations correct (1st quartile, median, mean and 3rd quartile) are shown for four
different splits of the data: All mutations, mutations on more than one chromosome copy
(Gained), mutations in regions of aberrant copy number (CNA) and mutations that are in a
region of aberrant copy number and are gained (CNA & Gained). The table shows that over
99% of mutations are assigned a correct multiplicity value. Most mistakes are made with
gained mutations. This pertains to mutations that fall exactly between two multiplicity values
and the binomial noise pushes the mutation away from the correct multiplicity. Even in that
scenario over 93% of mutations are assigned the correct value.

Fig. 3.7 (a) SimClone generates a true subclonal architecture and its associated CCF space.
(b) The mutations that make up the true CCF space are provided as input to DPClust, which
returns a subclonal reconstruction. (c) That reconstruction serves as input to SimClone for
resimulations, which returns a number of CCF spaces. (d) The EMD is calculated between
each resimulation and the true CCF space that measures how well the DPClust subclonal
reconstruction is explaining the true CCF space. The EMD distribution is summarised by
the median, resulting in a single similarity value per sample. This similarity value can be
compared across methods and across samples.

3.7 Assesment of a subclonal architecture through resimulations 65

The approach is illustrated in Fig. 3.7. For a single tumour SimClone returns (among
other things) a subclonal architecture with cluster locations and sizes, and the simulated
mutations form a CCF space. DPClust takes the CCF space as input and returns a subclonal
architecture. That obtained architecture is then fed back into SimClone a 100 times (this
process is referred to as resimulation), yielding 100 CCF spaces. The earth movers distance
(EMD) is then calculcated between each resimulated CCF space and the true CCF space. A
summary of the resulting histogram can then be used as a metric of performance.

When provided with a subclonal architecture SimClone simulates mutations with binomial
noise on the number of supporting reads and Poisson noise on the coverage. It is therefore
expected that a pair of resimulations also differ, hence 100 resimulations are performed for
every called subclonal architecture by DPClust, the RandomClone methods and for the truth.
The distribution of EMDs obtained from resimulating the truth can then be compared with
the EMDs from the DPClust and RandomClone solutions.

Figure 3.8 shows the EMD distributions for a selected simulated tumour for the truth,
DPClust and the three RandomClone methods, while table 3.2 contains the raw results and
scores. It shows that the stick variant of RandomClone comes closest to the expected number
of subclones and DPClust does best on the fraction of clonal mutations. The RMSE scores
are very close, suggesting the CCFs of the clusters to which mutations are assigned in general
are close to the expected value. The median EMD (dashed horizontal line) tells us that
DPClust explains the CCF space best, followed by the informed RandomClone variant.

To summarise the EMDs (for a whole data set comparison in the next section), relative to
the variation obtained from resimulating the truth, I then calculate the following score:

1− 1
n

n

∑
i=1

I(et ,em) (3.15)

This score is obtained by sampling n pairs of values with replacement from the truth and from
one of the methods’ EMD distributions and determining whether the EMD of the method
(em) is greater than the EMD from the truth (et). The index function in eq. 3.15 returns a 1
when em is greater than et . n is set to 1000.

If the method has returned a subclonal architecture that explains the CCF space very well,
then a score of 0.5 is returned. A value greater than 0.5 means the method has not perfectly
described the true CCF space, with a higher value meaning a bigger discrepancy. Finally, a
lower value means the method is better at explaining the true CCF space than resimulations
of the truth do (i.e. the method is overfitting on the input data).

66 Validation of methods

Fig. 3.8 Earth movers distance (EMD) of the CCF space between the truth and resimulations
of solutions found by DPClust and the randomclone methods. Resimulating the truth provides
a lower bound of what is obtainable, while the random methods provide an upper bound. The
similar median (dashed lines) EMD that of the truth suggests DPClust has found a solution
that explains the true CCF space quite well.

Evaluation of performance on sample simslclmg
Method Calls Scores

Num. subcl. Frac. clonal Num. subcl. Frac. clonal RMSE EMD
Truth 4 0.196 0.030
DPClust 2 0.235 0.491 0.197 0.007 0.036
RC single 0 0.000 0.999 1.000 0.011 0.199
RC stick 3 0.000 0.221 0.931 0.006 0.175
RC informed 1 0.312 0.822 0.592 0.008 0.065

Table 3.2 A comparison of the scores on simulated tumour simslclmg reveals that the scores
capture different characteristics of the reported solutions. RandomClone-stick, for example,
comes closest to the true number of subclones and therefore receives the best score in that
category. However, it assigns very few mutations to the clonal cluster and therefore attains a
poor fraction of clonal mutations score.

3.8 Validation of DPClust

Figure 3.9 shows the outcome for DPClust and the RandomClone methods for the three
PCAWG scores and the resimulation metric on the SimClone1000 data set. For the three

3.8 Validation of DPClust 67

PCAWG metrics a lower score means better, with zero being perfect. DPClust comfortably
outperforms the three random methods on number of subclones, fraction of clonal mutations
and mutation assignments. The resimulation score is expected to be 0.5 when DPClust finds
a perfect solution. A value higher than 0.5 represents a drop in performance, while values
below 0.5 can be considered overfitting. DPClust also outperforms the random methods on
the resimulation score. DPClust is evaluated on the three PCAWG scores against 10 other
subclonal architecture callers in Chapter 6.

The scores indicate that DPClust performs well. However, it does not always find the
exact true subclonal architecture. Figure 3.10 is an attempt to explore where the differences
lie. In nearly half the tumours DPClust calls the correct number of subclones and in those
cases the proportion of clonal mutations is close to the truth, indicating cluster locations
have been called in roughly the correct locations. For the other cases DPClust nearly always
undercalls the number of subclones. Where undercalling occurs, DPClust often calls a larger
proportion of mutations clonal. This suggests it merges a nearby subclone into the clone.

Fig. 3.9 General overview of the four scores obtained on the SimClone1000 comparing
DPClust against the the truth and performance by a random method. The best score is 0 in the
first three metrics and 0.5 in the fourth. All four scores show that DPClust easily outperforms
the random callers and does well on calling the fraction of clonal mutations (top right), the
mutation assignments (bottom right) and explaining the true CCF space (bottom left). The
discrepancy in the number of called subclones is further explored in figures 3.10 and 3.11.

68 Validation of methods

Fig. 3.10 The trend across the 964 simulated tumours is that DPClust calls the correct number
of subclones in nearly half of the cases, in the other half it nearly always undercalls by
one or more subclones (left). Undercalling occurs in two major scenarios: Cases where in
reality there are two subclones, but DPClust calls a single subclone and cases where the
true number of subclones is 3 or more (middle). This affects estimates of the fraction of
clonal mutations, where in cases where DPClust undercalls it often overestimates the fraction
of clonal mutations (right). Combined these results suggest DPClust can be considered
conservative in its statements about the amount of subclonality found in a data set. An
explanation where the number of subclones discrepancy comes from is explored in Fig. 3.11.

Fig. 3.11 The results in Fig. 3.10 suggest that subclones are merged in about half of the cases
within the SimClone1000 data set. This figure compares the distance between the closest
pair of clusters (x-axis) and the size of the smallest subclone within that pair (y-axis) for
cases where DPClust finds the correct number of subclones (left, clonal tumours omitted)
and where it finds a single subclone where two are expected. The data show that merging of
clusters occurs when a pair of clusters are within 0.25 CCF of each other, regardless of their
size.

3.9 Validation of assignments of gained mutations 69

Figure 3.11 shows this phenomenon, with on the x-axis the CCF difference of the two
closest mutation clusters and on the y-axis the number of mutations that belong to the smallest
cluster of the selected pair of clusters. When comparing these data between cases where
DPClust finds the correct number of subclones (clonal tumours are excluded) and cases
where it finds a one subclone where two are expected, it is clearly visible that in the latter
category merging occurs frequently when the distance between a pair of clusters goes below
0.25 CCF. The size of the cluster (and the size difference, data not shown) plays little to no
role in the separability of clusters.

DPClust assumes each of these clusters is its own statistical distribution influenced by
binomial noise. In this merging scenario a pair of clusters are significantly overlapping
and DPClust cannot find sufficient evidence of there being two clusters. It therefore takes
the conservative approach and calls one fewer subclones, protecting against overstating the
amount of heterogeneity.

These analysis explain that discrepancy between the truth and the DPClust solutions can
be explained by clusters that are too close to separate. It shows that tumour heterogeneity
estimates based on DPClust are reliable, yet a conservative underestimate of the true amount
of heterogeneity.

3.9 Validation of assignments of gained mutations

A gained mutation (i.e. a mutation on more than 1 one chromosome copy) is assumed to
be clonal by the described procedure to establish a mutation’s multiplicity in the previous
chapter. It is the maximum parsimony explanation when, for example, a mutation appears to
be reliably carried by two chromosome copies, and the local copy number allows for this to
occur (there are two copies of at least one of the two alleles). In such a scenario one would
expect DPClust to assign this mutation to the clonal cluster, but DPClust is not constrained
and can assign a gained mutation to a subclone. I therefore set out to investigate how often
this occurs.

Across the SimClone1000 data set an average 10% of mutations are gained (Fig. 3.12,
top and middle). Nearly all these gained mutations are correctly assigned, with an average
of 94% of mutations assigned to the clone (Fig. 3.12, bottom). However, in some samples
this percentage is much higher, in some cases nearly all gained mutations are incorrectly
assigned. Furthermore, samples in which a very high proportion of gained mutations are
assigned incorrectly contain a large number of mutations overall.

Investigation revealed that in many cases clearly clonal mutations (i.e. mutations with
a CCF near or greater than 1) were assigned to a subclone (sample sim01bxzd is provided

70 Validation of methods

Fig. 3.12 The figure shows the total number of mutations (x1,000) at the top, the number
of gained mutations (x1,000) in the middle and the fraction of those gained mutations that
are correctly assigned to the clone at the bottom. A high proportion of incorrectly assigned
mutations is concentrated in the samples with a high number of mutations, which lead to the
exploration of a number of DPClust runs with different parameters.

as an example in Fig. 3.13), often forming a clear cluster around the location of the clone.
Combined with the observation that samples with poor performance often contain many
mutations, I postulated that these represent cases where the MCMC chain had not yet
converged. At each MCMC iteration a mutation is assigned to the most likely cluster and
after all iterations are complete these assignments are amalgamated into the most likely call.
If the chain has not yet converged it is still in a state of flux, where mutation assignments can
be volatile, leading to an increased likelihood of assignment to an incorrect cluster.

I therefore performed additional runs on a number of samples that show a poor assignment
performance. I increased the total number of iterations and also altered the number of
iterations that are discarded as burn-in, leading to the following combinations: 1,250 iterations
with 250 burn-in (default), 2,000 iterations with 1,000 burn-in, and to runs of 5,000 with 4000

3.10 Validation of Battenberg 71

burn-in and 10,000 with 9,000 burn-in. The proportion of incorrectly assigned mutations
for sample sim01bxzd (Fig. 3.13) directly decreases from 16% to 0.4% when increasing to
2,000 iterations and 1,000 discarded as burn-in. This behaviour is consistent across nearly all
selected samples (Fig. 3.14), highlighting that the number of iterations the MCMC chain is
run for by default is too short and should be increased to at least 2,000 and 1,000 iterations
should be used for burn-in.

More iterations did not have the desired effect on all samples. Figure 3.15 shows one
such cases, sample sim6zrlr0 as an example. It contains a vast subclone, that is truncated on
one side, while it engulfs the clonal cluster on the other side (top row). In such an extreme
case it becomes difficult to separate a pair of clusters, which causes a good number of clonal
mutations to be assigned to the subclone (middle and bottom). in a scenario where clusters are
within each others space it will be difficult to reliably assign mutations. A further adjustment
should be made that prohibits gained mutations to be assigned a subclone.

3.10 Validation of Battenberg

The SimClone1000 data set cannot be used to assess the performance of Battenberg, because
SimClone simulates just the final copy number profile and not the underlying data. For this
validation I therefore introduce a separate data set that contains manually created subclonal
architectures and copy number profiles that have subsequently been embedded into a BAM
file using BAMsurgeon (Ewing et al., 2015). These tumours have been created for the Somatic
Mutation Calling - heterogeneity (SMC-het) project that aimed to evaluate performance of
subclonal reconstruction algorithms, where Battenberg copy number profiles were provided
to all participants. The organisers of SMC-het used the high coverage NA12878 (Zook et al.,
2016) and the previously sequenced parents of NA12878 (NA12891 and NA12892) as part
of the 1000 Genomes project (1000 Genomes Consortium, 2012) to obtain the maternal
and paternal genome that make up the genome of NA12878, which allows for creation of
haplotype correct copy number profiles (details will be available in Salcedo et al. (2017,
manuscript in preparation)).

In total 50 tumours were designed by the SMC-het team, inspired by real tumours reported
in literature and from PCAWG. The copy number profiles were limited to whole chromosome
alterations, as this is a requirement for BAMsurgeon, and subsequently 50 BAMs were
generated. For the purposes of this validation I have excluded 8 cases that were designed as
subclonal architecture corner cases as these all have the exact same copy number profile.

Figure 3.16 shows a comparison of the expected and measured raw data (BAF and logR,
top panels), total estimated copy number and the cancer cell fraction estimates of subclonal

72 Validation of methods

Fig. 3.13 Overview of the truth (top) and the output of multiple DPClust runs (middle and
bottom rows) with varying numbers of MCMC iterations and burn-in. The top row shows the
full true CCF space where bars are coloured to represent clonal and subclonal mutations, the
black dashed lines represent the true cluster locations. The middle and bottom rows show all
gained mutations that are clonal and offers a breakdown of these mutations into whether they
are correctly assigned to the clone in green or incorrectly assigned to the subclone in red,
while the dashed lines represent the found cluster locations. The figure shows that increasing
the parameters to 2,000 iterations and 1,000 burn-in yields a reduction in the number of
incorrectly assigned mutations.

copy number segments, where each dot represents a segment. Both BAF and logR show
very high R2 values, with only a few segments just of the diagonal. This means that the

3.10 Validation of Battenberg 73

Fig. 3.14 The fraction of incorrectly assigned gained mutations across a number of selected
samples showing poor performance. Three additional DPClust runs were performed beyond
the original (1,250 iterations and 250 burn-in): 2,000 iterations and 1,000 burn-in, 5,000
iterations and 4,000 burn-in and 10,000 iterations with 9,000 burn-in. The results show that
increasing the number of iterations yields considerable improvement, therefore the number
of iterations should be increased.

Battenberg phasing and logR creation and correction steps are performing well and are able
to adequately recreate the data that goes into copy number calling.

The total copy number estimates for these segments also show a very high correlation
with the expected values (bottom left in Fig. 3.16), albeit slightly lower than the correlations
obtained on the BAF and logR. One major source of discrepancy is caused by Battenberg
calling clonal copy number, where subclonal copy number was expected. This occurs because
Battenberg performs a t-test on the BAF and calls subclonal copy number only when the
observed BAF is significantly different from the expected BAF of a clonal copy number state.
A comparison of the CCFs (bottom right in Fig. 3.16) of the subclonal segments reveals that
this affects a low proportion of all subclonal segments and most of these have low expected
CCF values, which means the BAF is very similar to that of the closest clonal state.

A comparison of the CCF values reveals a strong correspondence between the observed
and expected output (bottom right in Fig. 3.16). There is however a larger discrepancy
than observed on the other three measures. In part this is caused by the aforementioned
segments that are fit with clonal copy number. The data appears on a slightly discrepant
diagonal, where the observed CCF is consistently higher than the expected. This effect is
most likely explained by deviations in the purity estimate. The correlation between observed

74 Validation of methods

Fig. 3.15 Overview of a sample for which increasing the DPClust parameters had no effect
on the number of incorrectly assigned mutations. This particular sample contains a very
large and very broad subclone that contains the clone in its tail (top). In this scenario the
mutations within the two clusters are split incorrectly, leading to a consistent number of
gained mutations assigned to the subclone. A post-hoc step to reassign these mutations would
resolve the issue, as there always is considerable uncertainty for mutations in between two
subclones.

and expected CCF values is still strong however, but this result shows the CCF estimates of
subclonal copy number are under the influence of some variation.

Finally, the bottom panels of Fig. 3.16 suggest that the Battenberg purity estimate may
play a role in whether estimates of total copy number and CCF deviate from the diagonal. Fig.
3.17 contains the purity estimates for all samples and shows that Battenberg systematically

3.10 Validation of Battenberg 75

Fig. 3.16 The correlations between observed and expected BAF and logR per segment (each
dot represents a segment) are very high, suggesting the Battenberg pipeline does well at
obtaining the raw data required for copy number fitting (top panels). These correct raw values
result in high correlations on the total copy number estimates per segment (bottom left) and
strong correlations on the CCFs of subclonal copy number segments (bottom right). One
source of discrepancy are cases where Battenberg calls clonal copy number, where subclonal
was expected, due to the BAF not being significantly different from the closest clonal state.
The slight bias in the bottom right panel is most likely explained by the deviations observed
in purity estimates.

underestimates the purity (left panel). However, when the simulated BAF is replaced by
the true BAF (while keeping the simulated logR), Battenberg calls the correct purity (right
panel). This shows that the fitting algorithm works correctly and the small deviations of the
BAF (the simulated BAF is on average 0.003 lower than it should be) are responsible for the
purity discrepancy.

76 Validation of methods

Fig. 3.17 A comparison of Battenberg purity calls (y-axis) from the simulated data with the
true purity (x-axis) shows that Battenberg systematic underestimates (left). A run of the
Battenberg fitting using the true BAF and simulated logR however shows that the fitting
algorithm works as expected and yields the almost exact purity values (right). This means
the very small deviations of the simulated BAF are responsible for the offset and shows how
sensitive Battenberg is to correct BAF data.

