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SUMMARY

Leishmania is a genus of unicellular eukaryotic parasites responsible for a wide
range of human diseases, from cutaneous (CL) and mucocutaneous leishmaniasis
(MCL) to life-threatening visceral leishmaniasis (VL). Leishmania tropica is
responsible for significant CL in endemic areas in North and East Africa, the Middle
East, and the Indian subcontinent, and has also been associated with a variant form
of VL called viscerotropic leishmaniasis. Significant heterogeneity has been
observed in L. tropica in both clinical course of disease and in response to treatment,
and published data suggests there is great genetic diversity within this species.
RNA-seq analysis of 12 clinical isolates of Leishmania tropica revealed considerable
intraspecific differences in gene expression. Comparison with whole-genome
sequence data generated from the same 12 isolates using a new reference genome
assembly suggests that most variation in gene expression is explainable by variation
in copy number at the level of individual genes, or at the level of whole
chromosomes. Most field isolates appear to be near diploid, but some degree of
aneuploidy is seen in all isolates. Cloning of single cells from 4 of these isolates
showed variable ploidy within the same clinical isolate, a condition that in
Leishmania has been called mosaic aneuploidy. The most significant differentially
expressed genes in this set of isolates code for membrane-bound transporter
proteins, which are known to be involved in uptake of nutrients and drug
compounds from the extracellular environment. We identify copy number variation

in these genes suggesting that a certain degree of plasticity is observed in natural



populations of Leishmania, creating the conditions necessary for rapid
downregulation or upregulation of different transporter proteins over a limited
number of mitotic generations in the presence of environmental stressors. Such an
evolutionary phenomenon could be important in mediating decreased susceptibility
to drug treatment in endemic areas. To further understand how such large genetic
variation can be generated and the role of genetic exchange in shaping the genomic
landscape in this important pathogen, we have carried out a controlled laboratory
cross between one isolate collected in Israel and one collected in Lebanon. Ten
hybrid lines were recovered from crosses we performed in sand flies. The present
study provides the first in-depth, complete description of structural genome
changes and recombination occurring during hybridization in an artificial cross of
Leishmania tropica. The implications of this structural variation for parasite
evolution in natural populations in response to drug pressure due to increased

elimination efforts will be discussed.
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