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CHAPTER THREE: OPTIMISATION OF MUTATION-CALLING IN ORDER TO OBTAIN A CURATED 

CATALOGUE OF SOMATIC SUBSTITUTIONS FOR DOWNSTREAM ANALYSES 

 

3.1 INTRODUCTION 

 

Obtaining raw sequence data for twenty-one breast cancer genomes was only the beginning of a 

complex process that required multiple iterations of computational processing in order to translate 

raw sequence data into a comprehensive list of somatic variants. In order to excavate the cancer 

genome for patterns in somatic substitutions, insertions/deletions and rearrangements, it was critical 

to obtain a set of high-confidence mutations with high specificity i.e. a low false positive rate. 

 

Calling single nucleotide substitution and insertion/deletion variants from short-read sequencing 

data can be problematic in general but is particularly so in cancer genome sequences. A general issue 

associated with sequencing of short read data includes decline in sequencing qualities at lattermost 

cycles of the sequencing-by-synthesis process. In addition, certain sequencing motifs (for example 

strings of G bases (–GGGG)) have been known to cause an increase in polymerase errors resulting in 

sequencing errors immediately following such motifs (Abnizova et al., 2012). Inaccuracies in base 

assignment following photo-laser capture can also occur. The confidence in a base call made during 

the sequencing process is simply the probability estimate of that base call being a true nucleotide. 

The likelihood of the accuracy of a base call is reflected in the base quality score or Phred score. Base 

qualities can therefore be taken into account when considering variant calls.  Finally, accurate 

mapping of short-read data to the reference genome can be hampered by the large proportion of 

repetitive sequence in the human genome. Errors in mapping can be seen, for example, as excessive 

coverage in certain regions of the genome due to inaccurately assembled reference genome 

sequence given by sites of low complexity. Non-unique mapping is reflected in mapping qualities and 

like base qualities, can be taken into consideration when curating catalogues of variants.  

 

In whole-genome sequencing family-based studies of the germline, relatives enable the efficient 

elimination of errors based on Mendelian inheritance patterns and knowledge of parental haplotype 

blocks. This has, in fact, permitted successful identification of genes underlying a host of inherited 

disorders despite sequencing very few individuals, for example Miller syndrome and Freeman-

Sheldon Syndrome (Ng et al., 2009; Roach et al., 2010). Furthermore, the digital nature of next-

generation sequencing technology provides additional means of supporting variant-calling in the 

germline. For every base in the genome, coverage of 40-fold would mean that sequencing 

information from 40 DNA molecules is available at that particular genomic coordinate. A 

heterozygous mutation in the germline would be expected to be present in approximately 50% of 
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reads for a diploid genome and a homozygous mutation should be present in 100% of reads (Figure 

3.2). Using this reasoning, sequencing artefacts that arise in just a small proportion of reads, for 

example, could be filtered from the variant dataset. 

 

Figure 3.1 

(a) Q = -10 * log(E) 

(b) mE = 10 ^ (-mQ / 10.0) 

Figure 3.1 Phred score and mapping qualities. (a) A base quality score or Phred score is a score of an estimate 
of a base call being the true nucleotide. The probability that a base call is wrong is called an error probability. If 
the error probability of a base call is E, then the Phred base quality score is Q where is as seen in the figure. If 
the quality of a base call is 30, the probability that it is wrong is 0.001. Therefore, on average 1 in every 1000 
base calls with Q=30 is erroneous. (b) A similar principle applies for mapping qualities. Each read alignment is a 
probabilistic estimate of the true alignment. If the mapping quality of a read alignment is mQ, the probability 
mE that the alignment is wrong is as above. Once again, one in every 1000 read alignments with mapping 
quality of 30 will be wrong on average. 
 

 

The approach of using Mendelian-based elimination of errors cannot be applied directly to cancer 

genome sequencing. On top of the general problems associated with the next-generation sequencing 

process and mapping of short-read sequencing data, digital calling of variants in cancers is plagued 

further by issues such as intra-tumour heterogeneity, contamination by normal cells and marked 

abnormalities of ploidy. Unlike calling mutations in the diploid human germline genome, calling of 

variants in cancer requires consideration of these additional parameters in order to maximize the 

likelihood of detection (Figure 3.2). This however, may come at a cost on the specificity or the false 

positive rate of variant-calling.  

 

In the last few years, multiple substitution-calling algorithms have been published although many of 

these result in an extremely large numbers of variants which turn out to be errors or false positive 

calls. Given the high false positive rate in studies utilizing short-read sequencing technology for the 

detection of somatic single-nucleotide variants, independent mid- to large-scale validation 

experiments has been obligatory, (preferably) on an orthogonal platform in order to avoid 

reproducing systematic sequencing artifacts. For instance, more than 500 somatic substitutions in a 

lung cancer were validated using mass spectrometry (Lee et al., 2010) whereas other studies re-

sequenced hundreds of substitution variants using Sanger sequencing (Pleasance et al., 2010a; 

Pleasance et al., 2010b). These validation experiments rapidly become as costly as the initial 

discovery experiment and are labour-intensive. 

 

Across the cancer genomics community, filters have been developed and applied to raw variant-

called datasets in order to reduce the false positive rate. However, there is little consensus on what 
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filters should be used and at what threshold applied. Additionally, the extent to which filters discard 

true variants has not been formally assessed. 

 

To the best of my knowledge, there is only one example of a study which has documented the 

challenges of variant-calling from short-read data and provided some detail on additional processing 

of raw data in order to obtain a set of high-confidence substitutions (Reumers et al., 2012). In that 

study, post-processing filter optimisation was performed on whole genome sequences in the 

germline obtained from a pair of identical twins. The authors reasoned that shared variants were 

more likely to be real whereas discordant variants were more likely to be false positive calls.  Filters 

were optimised to remove as many discordant single nucleotide variants and as few shared ones as 

possible. There were drawbacks with this analysis. First, systematic sequencing artifacts with a 

predilection for certain sequence motifs were precisely the sort of systematic false positives that 

could be shared between twin genomes. Their metric for measuring the effectiveness of filters, 

which was based on the ratio of shared versus discordant variants, was therefore systematically 

overestimated. Second, aggregation of the fraction of the genome removed across the filters meant 

that up to 32% of the genome could be removed. Third, and acknowledged by the authors, calling of 

variants in tumour-normal pairs of ovarian cancer was attempted, and although generally was able to 

call variants, was plagued by difficulties in over-calling mutations at regions of extremes of ploidy 

(zones of amplification and loss-of-heterozygosity). Furthermore, validation of their method 

concentrated on coding regions of these cancer genomes. Coding sequences are generally more 

unique, show more sequence complexity and are less troubled by false positives than 

intronic/intergenic regions, and again this validation step is likely to have overestimated the 

effectiveness of their filters.  

 

In this chapter, the challenge of distinguishing true mutations from errors in whole genome 

sequences is deliberated using substitution-calling as a foremost example, and the solutions that 

have been created, in the form of post-processing filters, are described. 
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Figure 3.2: Differences in calling variants in a germline genome and a tumour genome. (A) Blue and yellow 
reads joined by a dotted line represent forward and reverse reads respectively of a 500bp fragment. (B) A 
higher resolution depiction of (A), which is a germline sample, showing 30-fold coverage of reads in the region 
of interest. The red marks represent a variant allele which is different to the reference genome. This 
heterozygous SNP in the diploid germline genome is seen in approximately 50% of reads or has a variant allele 
fraction of 0.5. (C) This higher resolution schematic of a tumour sample also has 30-fold coverage but has 1/3 
of reads originating from contaminating normal cells. In this region which is diploid in the tumour, the somatic 
variant is a heterozygous mutation and is present at a lower variant allele fraction (when compared to the 
germline genome) of 0.33. However, if the variant allele fraction of a true variant is lower than expected for the 
level of ploidy and normal contamination, then this may be taken as evidence of a somatic mutation in a 
subclonal population (intra-tumoural heterogeneity). In contrast, a polyploid region where a somatic variant is 
present on only 1 of multiple alleles will be present at a much lower variant allele fraction. 
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3.2 THE METRICS USED FOR THIS ANALYSIS 

 

 

In order to track the improvements in the performance of the mutation-calling and post-processing 

procedure, some statistical measures of the performance of a binary classification test (where a 

mutation is called as somatic or not) was required. Sensitivity, or the recall rate, measures the 

proportion of true positives which are correctly identified (e.g. the percentage of affected people 

who are correctly identified as having the condition). Specificity measures the proportion of 

negatives which are correctly identified (e.g. the percentage of healthy people who are correctly 

identified as not having the condition). An alternative metric which is easier to calculate for the 

purposes of this analysis is the positive predictive value (PPV). This metric measures the proportion 

of positives which are correctly identified. Specificity and the positive predictive value are sometimes 

used interchangeably although in theory reflect subtly different concepts.  

 

The two measures of sensitivity and specificity are closely related to the concepts of type I and type II 

errors. The perfect algorithm would have 100% sensitivity and specificity. However, for any test, 

there is usually a trade-off between the measures. In this thesis, it was in theory impossible to 

measure the sensitivity given that a priori knowledge of mutations in any given cancer was not 

known. However, an attempt was made to infer sensitivity from a cross-comparison with a high-

confidence set of mutations produced by an alternative substitution-calling algorithm produced by 

Illumina© as well as a cross-comparison with whole exome sequences for 3 samples. The positive 

predictive value (PPV) was the metric that was used to track the progress and improvements in 

mutation-calling and post-processing. 

 

 

3.3 CaVEMan IS A BESPOKE SUBSTITUTION-CALLING ALGORITHM 

 

An in-house bespoke substitution-calling algorithm, CaVEMan (Cancer Variants Through Expectation 

Maximization) was used for calling somatic substitutions. CaVEMan is a naïve Bayesian probabilistic 

classifier which utilizes the expectation maximization (EM) algorithm and is designed for calling 

substitution variants in new sequencing technology reads. Given prior information regarding 

reference and variant alleles, copy number status or ploidy, fraction of aberrant tumour cells present 

in each cancer sample and quality scores relating to sequencing and mapping, CaVEMan generates a 

probability score for potential genotypes at each genomic position. CaVEMan requires mapped, 

paired-end reads in the form of a sorted and indexed BAM file for the tumour and matched normal 

samples. An indexed reference sequence in FASTA format is also a prerequisite.  

http://en.wikipedia.org/wiki/Binary_classification
http://en.wikipedia.org/wiki/Classification_rule
http://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
http://en.wikipedia.org/wiki/Type_I_and_type_II_errors
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There are two main steps in the core CaVEMan algorithm. The first maximization or M-step 

generates a prior depiction of each genomic position by gathering data from all valid reads (reads 

that are properly paired and not marked as duplicates) that are available at that coordinate. These 

data or covariates include read information (1st or 2nd read of a pair), mapping qualities of the reads, 

lane information, base qualities, the expected reference allele (A, C, G or T), the variant allele (A, C, G 

or T) and the position of the variant in the read. CaVEMan iterates through each genomic position 

generating a multi-dimensional array of information in order to build an “error profile” for each 

coordinate.  

 

The second expectation or E-step uses this profile to generate a probability for each possible 

genotype at this position, again iterating through each position in the genome. A number of 

parameters can be set to enhance the accuracy of the probability estimates in cancer. The degree of 

contamination from normal cells as well as the ploidy of each section of the genome (both obtained 

from SNP6 copy number analysis) can be provided to CaVEMan in order to enhance mutation-calling. 

In order to produce a set of raw variants, other parameters that are factored into this step include 

mutation rate (6e-6), SNP rate (1e-3), reference bias (0.95), a SNP probability cutoff (0.95) and a 

mutation probability cut-off (0.8). At the end of the E-step, a list of potential genotypes at each base 

is obtained. Three output files are generated following this process; a “raw substitutions” output file 

for those variants in which the sum of the genotype probabilities exceeds the mutation probability 

cut-off, a “raw SNPs” file if the sum of the SNP genotype probabilities exceeds the SNP probability 

cut-off and an “uncategorised” file for variants which meet neither of these criteria. 

 

On average, tens of thousands of variants per raw output of breast cancer sample were obtained 

(Table 3.2). However, these variants were unlikely to all be true somatic variants. In the following 

section, the development of filters in order to remove false positive calls (post-processing) will be 

described.  
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Figure 3.3: The CaVEMan workflow. CaVEMan takes a BAM file as an input file and performs two main steps, 
the M-step and E-step before generating three output files, a file of potential somatic substitutions, a file of 
possible SNPs and a file for variants that meet neither of the criteria for the other two files.  
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3.4 A FIRST COMPARISON BETWEEN DATA FROM CaVEMan AND THE ILLUMINA SUBSTITUTION-

CALLING ALGORITHM REVEALED GOOD SENSITIVITY AND ALLOWED IDENTIFICATION OF FALSE 

POSITIVES FOR THE DEVELOPMENT OF EARLY FILTERS 

 

 

The first and only breast cancer sample to be sequenced at Illumina© was PD3890a. 4836 highly-

filtered high-confidence substitution variants were identified using the Illumina© substitution-calling 

algorithm. 201 variants were selected for validation by Sanger sequencing, comprising all coding 

variants and a random selection of non-coding variants.  168 were confirmed as somatic (83.6%) and 

33 were found to be false positive calls (16.4%). The PPV of the Illumina substitution-calling process 

was 83.6%. This PPV was, however, possibly an overestimate of the true PPV of the Illumina © 

substitution-calling algorithm. Variant selection for validation was targeted to the coding exons 

where genomic sequence shows higher complexity. These variants were more likely to be called 

correctly and to therefore be true somatic variants, given the favourable mapping characteristics of 

the coding sequence. 

 

On the first iteration of CaVEMan, 76235 raw variants were called in PD3890a. 100% of the 4836 

variants identified by Illumina were present in this raw list of CaVEMan variants. All of the 168 

confirmed somatic variants were identified demonstrating that the sensitivity or the ability to recall 

true variants was high. However, the total number of variants called by CaVEMan was vastly more 

than Illumina, likely to be overwhelmed by a variety of mis-calls and unlikely to reflect the true 

mutation burden in the cancer. Therefore, some early intrinsic filters were used to remove potential 

false positive variants whilst maintaining the number of true somatic variants.  
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3.5 EARLY POST-PROCESSING FILTERS 

 

The earliest thresholds used were relatively simple. Firstly, only variants with a high likelihood (of 

0.95 and above) were retained (Mutation Probability Threshold). Secondly, it was reasoned that a 

variant reported in the tumour had to be appropriately represented in the tumour. Substitution 

variants were identified as mismatches relative to the reference genome (Figure 3.4). However, true 

substitution variants were usually of a good base quality. In contrast, false positive calls arising from 

sequencing artifacts could also present as mismatches but were frequently at lower base qualities. 

With this knowledge, putative somatic variants were required to be appropriately represented in the 

tumour with at least a third of the reads carrying the variant allele showing a base quality score of 

more than or equal to 25 (Read Depth). Thirdly, it was considered that any putative somatic variant 

should not be present in the matched normal sample as well. A variant present in 5% of reads or 

more in the matched normal sample at base qualities of 15 or more would fail this filter and be 

excluded from further analysis (Matched normal). Using these three main criteria, the total number 

of variants fell to 21659 from 76235 variants. 
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Figure 3.4: Reads in G-browse, the genome browser used to view short read sequences. Blue and yellow reads 
represent next-generation sequencing reads in the forward and reverse directions respectively. Each base in 
the reference genome is re-sequenced many-fold. The intensity of the colour reflects the mapping quality of 
each read. The dotted line joins each read to its read-mate. The reads on top represent reads from the 
matched normal and the reads below represent the tumour sample. Each read represents sequencing 
information from a single DNA molecule. A sequenced base which correctly matches the reference genome is 
not highlighted. In contrast, a base which is different to the reference genome appears (a mismatch) appears 
red. Here, 13 of the 57 reads in the tumour carry a G>C mismatch at the same genomic coordinate whilst no 
reads in the normal carry the same mismatch, corresponding to a somatic heterozygous change at this location. 
Note that 6 other mismatches can be seen within the same screenshot (arrows) in the tumour which represent 
mismatches arising as random sequencing errors or arising from mismapped reads. However, the mutation 
probability estimates of these randomly distributed errors are not sufficient to being called as a somatic 
variant.  
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250 variants were selected for validation by Sanger sequencing at this stage in order to identify the 

true PPV of CaVEMan and to identify the nature of the false positive variants that remained. Of 

these, 58% were confirmed as somatic (Figure 3.5a). 42% showed no evidence of the somatic variant 

by Sanger sequencing and were declared false positives. Of these false positive calls, 3% fell within 

the vicinity of germline indels, 7% were within or immediately adjacent to repeat tracts, 7% were 

germline single-nucleotide polymorphisms (SNPs) and 12% showed a systematic sequencing artifact 

characterised by unidirectionality of reads on which variants were called (Figure 3.5b). The 

identification of false positives and subsequent determination of causes of mis-calls were critical for 

development of more post-processing filters and will be described in more detail in the following 

sections. A further 13% showed no immediately discernible pattern initially, but as the dataset 

improved in its specificity, more subtle patterns emerged and became amenable to post-processing.  

 

 

Figure 3.5: False positive calls revealed. (A) A breakdown of the false positive variants for the first iteration of 
validation of CaVEMan variants. (B) An example of a false positive call appearing in a unidirectional manner 
(only systematically on blue or forward reads) and present in tumour as well as normal reads (not shown). The 
variant was always the same as the preceding base in the reference genome in the direction of sequencing of 
the read. Here, a T>G variant following a string of G’s.  
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3.6 THE PRINCIPLE OF DEVELOPING FURTHER POST-PROCESSING FILTERS 

From the false positive variants identified in the above experiment, it was possible to classify variants 

that showed recurrent patterns. Some false positive variants, for example, occurred near homo-

polymer or microsatellite repeat tracts, in regions of excessively low or high sequence coverage, at 

particular sequence motifs, at particular positions in sequencing reads (at the very ends) or near 

germline indels. 

 

A post-processing filter was developed for each of these reasons and tested individually. For each 

filter, the reason for the filter was decided, a boolean relationship outlined and the code tested. For 

each test, it was necessary to ensure: 

 That the expected false positives were removed 

 That the known true somatic variants remained 

 That there were no other unexpected changes due to errors in writing the code. 

If a filter was deemed to be appropriate, it was implemented and the next filter was introduced. This 

procedure of “training” of filters was also performed on several other genomes in order to not over-

fit filters to one sample (Figure 3.6). 

 

 

Figure 3.6: The principle of developing post-processing filters. 
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3.7 THE DEFINITIONS OF INDIVIDUAL POST-PROCESSING FILTERS FOR SUBSTITUTIONS  

The final list of post-processing filters comprised twelve filters altogether. These could broadly be 

classified into three main categories.  

 

 Filters dependent on intrinsic thresholds of sequencing/mutation-calling 

 Filters for removal of systematic sequencing artifacts caused by the next-generation    

sequencing reaction  

 Filters for genomic features that result in errors of mis-mapping    

 

The table below provides a more detailed description of all of the filters (Table 3.1). Many of the 

filters take base qualities or mapping qualities into account which were described in the introduction 

(Figure 3.1).  
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Table 3.1: The reasons for and the definitions of each post-processing filter used in substitution-calling of the 
twenty-one breast cancer genomes  

 

CATEGORY NAME OF 

FILTER 

DEFINITION RATIONALE 

Intrinsic 

threshold 

Mutation 

probability 

threshold 

The mutant allele probability score 

based on the core algorithm was 

equal to or above 0.95 

Variants with a lower probabilistic score 

were simply less likely to be true somatic 

variants  

Intrinsic 

threshold 

Read depth At least a third of bases in the 

tumour sample reporting the mutant 

allele had to exceed or equal a base 

quality of 25 

  

Randomly erroneous variant bases due to 

the occasional fall in sequencing efficiency 

produced lower base qualities. True 

somatic variant bases had the same base 

qualities as other bases representing the 

reference allele. For a variant allele to be 

considered a true somatic variant, it had to 

be well-represented in the tumour sample, 

with good base qualities on several reads. 

Intrinsic 

threshold 

Average 

mapping 

quality 

The mean mapping quality of reads 

reporting the mutant allele had to 

exceed 20 

Some reads, particularly those where a 

germline SNP was present somewhere in 

the read mate, could map erroneously in 

highly homologous regions. If a read could 

map with equal or almost equivalent 

likelihood in more than one locus in the 

genome, then the mapping quality of the 

read reflected this lack of uniqueness.  In 

essence, these were likely to be a cluster of 

mismapped reads.   

    

Systematic 

sequencing 

artifacts 

Read Position The mutant allele failed this flag if it 

was present in less than 8 reads AND 

only represented on the last third of 

a read or only last third and first 8% 

of any read 

Sequencing qualities and the reliability of 

base calls were known to fall towards the 

ends of reads. As a result, mismatches 

appeared to be more common towards the 

end of reads. This flag was designed to 

detect recurrent mismatches at the very 
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ends of reads. 

Systematic 

sequencing 

artifacts 

Matched 

normal 

The mutant allele failed this flag if it 

was present at base qualities 

exceeding 15 in more than 5% of 

reads in the matched normal sample 

This flag was intended for removing 

remaining germline SNPs which had 

escaped initial exclusion. 

Systematic 

sequencing 

artifacts 

Panel of other 

normals 

The mutant allele failed this flag if it 

was present in at least 5% of reads in 

at least 2 samples from  the panel of 

randomly selected normal samples   

Systematic sequencing artifacts should not 

discriminate between tumour and normal 

samples. However, they may only happen 

in a small fraction of reads. This flag was 

designed to identify those recurrent 

sequencing artifacts that arose 

intermittently in Illumina next-generation 

sequencing. In order to avoid the 

possibility of removing recurrent somatic 

events occurring in a subclonal population 

in a cancer, a randomly selected panel of 

normals was used to screen out recurrent 

sequencing artifacts. 

Systematic 

sequencing 

artefacts 

Pentameric 

motif 

The mutant allele failed this flag if 

all reads carrying the variant but one 

were unidirectional (on forward or 

reverse strands only) 

AND 

the variants were only present in the 

last half of the read  

AND 

The reads carrying the mutant allele 

contained the motif GGC[A/T]G in 

the same sequencing direction as 

the variant  

AND 

the mean base quality for every base 

after the variant was calculated for 

each read and was less than 20 

A systematic sequencing artefact was 

occurring following a specific sequencing 

motif characterised by GGC[A/T]G. 

Furthermore, the base qualities for all the 

bases following the putative variant usually 

fell well below expected. This pattern was 

exploited for the purposes of removing this 

sequencing artifact which was inexplicably 

worse for some tumours than others.  

Systematic Phasing The mutant allele itself was required Systematic sequencing artefacts that 
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sequencing 

artefacts 

to have a mean variant base quality 

of more than or equal to 21 and was 

not unidirectionally represented.  

resulted in next-generation sequencing 

polymerases going out of phase at some 

sequencing cycles. This was particularly 

predisposed at certain sequence motifs (-

GGGG). The result was usually mutant 

alleles represented unidirectionally and of 

the same base as the immediately 

preceding allele in the direction of 

sequencing, in the reference genome. 

These variant alleles were usually of low 

base quality.  

    

Genomic 

features 

Simple repeat The mutant variant call was failed if 

it fell within a simple repeat or 

within the immediate 5bp flanking 

the boundaries of a simple repeat as 

defined by UCSC 

Mismapping of reads frequently occurred 

in and around simple repeats generating 

miscalls within or immediately flanking 

simple repeats. 

Genomic 

features 

Centromeric 

microsatellite 

The mutant variant call was failed if 

it fell within the boundaries of a 

centromeric repeat as defined by 

UCSC. 

Mismapping of reads frequently occurred 

in centromeric microsatellites generating 

miscalls. 

Genomic 

features 

HiSeq 

coverage 

The mutant variant call was failed if 

it fell within a genomic window 

where the coverage in 2 or more 

genomes in a panel of normal 

genomes, exceeded 8 SD of the 

average of the coverage for those 

genomes or if it fell within parts of 

the genome which were consistently 

in the top 5% of coverage of HiSeq 

sequenced genomes as defined by 

UCSC (Pickrell et al., 2011). 

Some repetitive sequences which are 

polymorphic in number of copies have 

been collapsed into a single copy in the 

human reference genome. When individual 

genomes are sequenced and mapped back 

to the collapsed reference genome, this 

results in excessively high coverage, 

increasing the likelihood for the 

accumulation of sequencing artifacts.  

Genomic 

features 

Germline 

indels 

The mutant allele must not fall 

within the boundaries or be within ± 

4bp of a germline indel as detected 

Reads which ended in indels were more 

likely to map the very tip of the read within 

the indel and erroneously call it a 
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by the indel-detecting algorithm. mismatch than to map it correctly with a 

gap. If this occurred in multiple reads, this 

was effectively called as a substitution 

variant. 

    

 

 

 

 

 

 Figure 3.7: A schematic of the number of substitution variants following post-processing. The final curated 
dataset was always a small fraction of the total number of substitutions called. 

 

 

 

 

Because each filter was applied independently for each variant, some variants could fail on multiple 

filters. In fact, the majority of raw substitution variants failed on multiple filters, attesting to the low 

likelihood of these variants being true somatic variants (Table 3.2). The final tally of substitution 

variants was always substantially fewer than the original raw output of the core CaVEMan 

substitution-calling algorithm for each genome (Figure 3.7, Table 3.2).  

 

A revealing analysis of the effectiveness of each filter was seen in the number of variants that were 

removed exclusively by each filter (Figure 3.8). This demonstrated that the Panel of other normals 

was one of the most effective filters, removing the largest number of variants uniquely. This was 

followed by the Matched normal filter and the Read Position filter. 
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Sample Raw calls 

Failed more 

than one 

filter 

Failed one 

filter 

Final number 

of variants 

Fraction of 

somatic 

variants from 

raw output 

PD3851a 67917 58909 7226 1782 0.03 

PD3890a 76235 58649 11462 6124 0.08 

PD3904a 61665 49753 6304 5608 0.09 

PD3905a 100027 82520 12920 4587 0.05 

PD3945a 61668 44899 6461 10308 0.17 

PD4005a 76186 61313 8769 6104 0.08 

PD4006a 89525 69808 10523 9194 0.10 

PD4085a 94504 84875 6956 2673 0.03 

PD4086a 86594 77697 6698 2199 0.03 

PD4088a 46420 41964 2751 1705 0.04 

PD4103a 81750 70576 5814 5360 0.07 

PD4107a 103870 86902 6677 10291 0.10 

PD4109a 81007 65815 5304 9888 0.12 

PD4115a 81136 63866 7316 9954 0.12 

PD4116a 76191 59506 8659 8026 0.11 

PD4192a 100127 85638 10570 3919 0.04 

PD4194a 46466 40507 4475 1484 0.03 

PD4198a 106246 89756 11938 4552 0.04 

PD4199a 85204 68122 10150 6932 0.08 

PD4248a 138435 120443 15456 2536 0.02 

Table 3.2: Summary of substitution variants: From raw output to final datasets. Note that PD4120a, the deep-
sequenced cancer, has not been included in this analysis of samples sequenced to 30-40-fold coverage.  
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Figure 3.8: Variants removed exclusively by each filter. Total number of substitution variants removed by each 
filter exclusively on the vertical axis. Bottom and top of boxes in boxplots represent 25

th
 and 75

th
 percentiles 

with middle thick band at 50
th

 percentile. Whiskers represent lowest and highest datapoints within 1.5 of the 
interquartile range. Small circles are outliers.  
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3.8 THE FRACTION OF THE GENOME WHERE MUTATIONS CAN NEVER BE CALLED 

There were regions in the genome which were filtered out by virtue of being in zones of automatic 

exclusion. The fraction of the genome that was potentially filtered out did not simply represent the 

number of variants removed but was informative for the non-variant sites in the reference genome 

where mutations could never be called. The fraction of the genome affected by the relevant filters is 

documented in Table 3.3. The germline indel flag also contributed a proportion of genome in which 

no variants could be called. However, because germline indels vary between individuals, the 

coordinates involved in this filter was variable between cancer genomes. In general, ~1% of the 

genome was excluded by this filter.  

 

Filter Number of bases removed in 

the genome (bp) 

Proportion of genome 

Simple repeats 82,688,560 2.52 

Centromeric repeats 1,660,347 0.06 

HiSeq coverage 3,073,270 0.11 

 

Table 3.3: Fraction of the genome effectively excluded by relevant filters 
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3.9 FINAL POSITIVE PREDICTIVE VALUE (PPV) OF CAVEMAN FOR THE DATASETS 

 

To evaluate the improvement of the PPV of the substitution-calling process, ~400 substitution 

variants were re-sequenced using an orthogonal sequencing technology, in particular, Roche 454 

pyrsequencing.  

 

The PPV for each cancer genome at the point of having the first three filters and later when all twelve 

filters were in place is shown in Figure 3.9. The average positive predictive value for twenty cancer 

genomes was in the region of 92.1%.  

 

 

 

Figure 3.9: Improvement in positive predictive value for each cancer genome at the start of the experiment 
with three filters in place (Mutation Probability Threshold, Read Depth and Matched Normal filters) and later in 
the experiment with twelve filters in place (PPV is positive predictive value). Only 19 of 20 samples are shown 
here as PD3890a, was used as the sample for training many of the filters and so was excluded. The 21

st
 sample, 

PD4120a, was sequenced to ultra-high depth and was therefore also excluded.   
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The fine-tuning of this large-scale process is expected to result in a trade-off between the gain in 

specificity and the loss in sensitivity. A comparison of these two parameters can be seen in PD3890a, 

which was sequenced at Illumina© and in which substitutions were called by an alternative caller. 

For the marked enhancement of the positive predictive value (56% to 90%), there was a loss of 

sensitivity (97% to 94.7%), at least for PD3890a. 

 

 

 

 

 

Figure 3.10: A comparison of the sensitivity and positive predictive value of PD3890a before and after 
development of all post-processing filters.  
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3.9.1 Positive predictive value does not correlate with sequencing coverage but correlates with 

degree of normal tissue contamination as predicted by the ASCAT (copy number algorithm) 

 

The breast cancer genomes were assessed for whether the final PPV correlated with sequence 

coverage in tumour or normal. Neither of these appeared to show a correlation with the specificity of 

variant calling (Figure 3.11). Instead, the PPV of CaVEMan did appear to correlate with the degree of 

normal tissue contamination as predicted by ASCAT (the copy number algorithm used for this study). 

The general trend was that as aberrant cell fraction increased (and the normal contamination 

decreased), the PPV also increased.  

 

Figure 3.11: (A) No correlation was seen between positive predictive value (PPV) and tumour/normal 
sequencing coverage. Dotted line represents linear trend for tumour coverage (R

2
=0.0002). (B) A correlation 

was appreciable from the comparison between PPV and aberrant cell fraction (R
2
=0.5328). Dark grey = tumour 

coverage, light grey = normal coverage, red = PPV, tan = aberrant cell fraction. Only 20 of the 21 breast cancers 
were included in this analysis as PD4120a was sequenced to ultra-high coverage, and not all the filters designed 
were applied to this cancer. 
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3.10 SENSITIVITY OF DETECTION OF VARIANTS RELATIVE TO EXOMES 

 

Four of the 21 breast cancer genomes were involved in a high-coverage (~100-fold) screen of coding 

sequences (exome screen, see section 2.3.1.2 for description) of 100 breast cancers (PD4103a, 

PD4107a, PD4109a and PD4120a). In order to gauge the sensitivity of mutation-detection in coding 

regions, the intersection between genome variants and exome variants was sought in three of the 

four cancers (PD4120a was an outlier having been whole genome sequenced to ~188-fold coverage 

and thus was not included in this analysis). For the three genomes, on average, 76.6% of variants 

detected through exome sequencing were detected in the whole genome sequences of the same 

cancers (range 68-82%).  

The converse comparison was also performed. In each breast cancer, a proportion of variants in the 

coding sequence were called in the genome and missed in the exome screen. On average 22.3% of 

variants were missed by the exome screen ranging from 11.6-36.2%. Those variants that were missed 

in the exome screen were almost always due to a lack of coverage by the pull-down experiment in 

that region of the exome-sequenced cancer.   

 

 

3.11 COMPARING CAVEMAN TO OTHER AVAILABLE MUTATION CALLERS 

Although several mutation callers are available, none provides the level of (publicly available) post-

processing that has been developed for these 21 breast cancer genomes. Comparing the dataset 

here with the raw output from other mutation callers does not therefore constitute a fair 

comparison. A version of Somatic Sniper was used to call variants in PD4107a but generated an 

enormous number of mutations (~450,000) as no post-processing was available at the time 

(http://gmt.genome.wustl.edu/somatic-sniper/current/). An alternative somatic single nucleotide 

variant caller which did have some post-processing options, MuTect 

(https://confluence.broadinstitute.org/display/CGATools/MuTect) generated an excess of 2.5 to 8 

fold more variants for 3 breast cancers tested (Table 3.4).  This was despite adopting the most 

stringent of post-processing filters available.  

 

 

 

http://gmt.genome.wustl.edu/somatic-sniper/current/
https://confluence.broadinstitute.org/display/CGATools/MuTect
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Table 3.4: Comparison between MuTect and CaVEMan, using three genomes as examples.  

Sample
MuTect 

variants

CaVEMan 

variants

Overlap- 

ping 

variants

Variants 

missed 

by 

MuTect

Proportion of 

variants missed 

by MuTect

Average variant 

allele fraction of 

overlapping 

variants

Average variant 

allele fraction of 

variants missed 

by MuTect

Aberrant 

cell 

fraction

Tumour 

ploidy

Variants 

missed by 

CaVEMan 

which 

appear real

Variants 

missed by 

MuTect 

which 

appear real

PD4192a 20307 3919 3078 841 0.21 0.17 0.16 0.22 4.68 0 0.34

PD4198a 14618 4552 4142 410 0.09 0.21 0.18 0.32 3.05 0 0.48

PD4199a 17499 6932 6542 390 0.06 0.28 0.21 0.56 1.69 0 0.54  

In order to evaluate the performance of MuTect and CaVEMan relative to each the other, a cohort of 

variants were sampled and visually assessed. In an ideal situation, these cohorts would have been 

validated. Of the variants missed by CaVEMan but were present in MuTect, none were real. 

Interestingly, between 17-28% of these were previously seen in CaVEMan but filtered out on the 

Panel of Normals filter alone. It is therefore likely that the vast majority of the excess of variant calls 

made by MuTect are false positive calls.  

Assessing the variants present in CaVEMan and missed by MuTect, between 34-54% of variants 

looked real on visual inspection with many of the true variants being present at a lower variant allele 

fraction both in regions which were diploid as well as regions that were polyploid. This suggests that 

the sensitivity of variant detection by CaVEMan was higher for subclonal variants as well as variants 

which occurred on a single allele in of a multi-allele region in the clonal population. 

 

3.12 INSERTIONS/DELETIONS AND REARRANGEMENTS 

A similar methodical process of elimination of potential false positives was performed on the 

insertions/deletions. However, the indel-calling algorithm, Pindel, worked in a relatively simple way 

in its method of detecting variants. Pindel does not work on a probabilistic model and does not 

perform a comparison between tumour and normal. Therefore, a set of crude filters were designed 

in order to reduce the total number of variants.  

Validation experiments on this filtered dataset revealed that the positive predictive value was still 

relatively low (40%-60%). As a result, only validated indels have been presented for downstream 

investigation, leaving a smaller but purer cohort of variants for analysis. The same principle applied 

to the detection of structural variants.  
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3.13 SUMMARY OF THE ANALYSIS PROCESS USED TO GENERATE THE FINAL DATASET 

 

Following multiple iterations of validation and post-processing, the final analysis process was one 

which showed a high degree of interdependency (Figure 3.12). The final datasets used and described 

in the subsequent chapters therefore comprised: 

- all the filtered substitutions with a subset of variants which were validated (Appendix 1) 

- validated insertions/deletions (Appendix 2) 

- validated rearrangements (Appendix 3) 

 

 

 

 

Figure 3.12: A schematic of the final analysis pipeline used to obtain a list of variants for downstream analysis 
in this thesis 
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3.14 DISCUSSION 

 

This chapter was dedicated towards the development of post-processing filters required to obtain a 

final curated dataset that was essential for the detailed analysis performed later in this thesis, 

particularly for substitutions. Here, a systematic approach of identification of false positives, the 

reasons why they occur and the development of a collection of post-processing filters, were 

described. The positive predictive value (PPV) was used as a measure of the effectiveness of each of 

the post-processing filters. 

In all, twelve post-processing filters were designed, reducing the dataset substantially and increasing 

the positive predictive value remarkably, with a minor cost to sensitivity. These filters could be 

classified into three main categories: those which involved intrinsic thresholds of the algorithm, 

those which were designed to remove systematic sequencing artifacts and those which were 

necessary to remove erroneous calls due to genomic features which caused mapping errors of short-

read data. The final average positive predictive value for this cohort of breast cancers was ~92%.  

 

3.14.1 A fair comparison between different mutation callers would involve comparing datasets 

after post-processing 

 

Although other substitution-callers exist, none are known to consider complicating factors associated 

with the complexity of cancer: tumour heterogeneity, degree of contaminating normal cells and 

abnormalities of ploidy. Inclusion of these additional parameters in probability estimates in CaVEMan 

allowed base-by-base adjustments and in theory, increased the likelihood of calling true somatic 

substitution variants, particularly those which were present in a minor subclone in a cancer or those 

occurring on only one allele in a polyploid region of a cancer. This increased sensitivity is reflected in 

the variants missed by other callers but present by CaVEMan substitution-calling, which were all at a 

low variant allele fraction. Furthermore, depending on the nature of the biological specimen studied 

(e.g. cell lines), these parameters could be tuned in order to maximize the likelihood of detection of 

somatic variants. 

 

Presently, despite application of the highest stringency filters (of which there are very few if any for 

some callers), the total number of mutations called by alternative callers are markedly more than by 

CaVEMan. Given that the curated dataset obtained here had twelve post-processing filters applied, a 

fairer comparison to other substitution-callers would require application of equivalent post-

processing filters. Furthermore, a more comprehensive comparison between the performance of 
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CaVEMan relative to other substitution-callers would possibly require a degree of validation of those 

variants missed by CaVEMan. This has not been performed as part of this thesis due to time 

constraints. 

 

3.14.2 Balance between sensitivity and specificity: two sorts of datasets 

 

The set of mutations obtained from any large-scale genomic experiment will always comprise a set of 

true somatic variants and a larger set of false positive calls. The degree to which a dataset is filtered 

will depend entirely on the question sought. In exome-sequencing experiments of cancers, targeted 

enrichment of the coding sequence and higher sequencing coverage in these protein-coding exons is 

primarily aimed at identification of driver events and demands as high a measure of sensitivity as 

possible. Although this may result in a high number of false positive calls, the total burden of 

mutations is still relatively low and amenable to validation in order to isolate true somatic events. 

The same approach would overwhelm a genome-sequencing experiment. Because the focus in this 

genome-sequencing project was on seeking genome-wide signatures and related less to detection of 

cancer genes, it was imperative for specificity to be set as high as possible in order to reduce the 

likelihood of detection of false positive signatures.  

 

In the near future and for large-scale genome sequencing projects in cancer, it may be necessary for 

some combination of both approaches to be used. Perhaps, the core algorithm could be run with a 

set of “high sensitivity” filters concentrating on the coding sequence in order to detect all important 

coding mutations, as well as “high specificity” filters for the whole genome, in order to obtain a 

complete catalogue of variants from a single sequencing experiment.  

 

3.14.3 Scope for improvement of individual filters 

 

There is likely to be scope for improvement of some filters.  First, there was considerable overlap in 

the variants removed by some filters, particularly between the “Read Position” and “Germline indel” 

filters. However, each also removed a definite and mutually exclusive subset. Hence, it was difficult 

to justify removing either as a filter. Second, more time could have been spent on improving the 

sensitivity lost with each filter. This would have required several more iterations of each filter and for 

this thesis, had to be balanced with the timeline of getting an adequately curated dataset. 

Nevertheless, enhancements to the current set of filters are expected in the near future.  

Furthermore, post-processing filters developed here had been trained to accommodate cancer 

genomes sequenced to 30X-50X coverage of 100bp reads, with equivalent depth in the matched 
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normal. The efficacy of these filters is likely to be affected by genomes with significantly different 

levels of coverage between tumour and normal. The use of proportions was favoured over the use of 

absolute values particularly when defining read depth in the post-processing filters, but this was not 

always possible (e.g. Read Position filter). Therefore, filters which are sensitive to variation in 

coverage may become less effective if the coverage in the tumour is not at 30-50X. Distinctions based 

on proportional distance along each read were also made in some filters and this could be adversely 

affected by shorter read lengths of 50 or 75bp reads. Therefore, subtle differences in experimental 

approach may affect the application of these filters and could possibly be factored into the design of 

each filter, in the future. 

 

3.14.4 The moving target: future optimization will be necessary 

 

Any improvements to the core algorithm will necessitate further optimization of the substitution-

calling process. In addition, changes in sequencing technology and chemistry resulting in vastly 

increased yields per lane of sequencing is likely to give rise to other novel sequencing artifacts and 

will require thoughtful application of new filters, or adaptations to old ones, in order to manage new 

problems. 

 

3.14.5 The performance of callers on indels and rearrangements 

 

This chapter has focused on developing post-processing filters for calling substitutions. The 

performance of the core algorithms and current filters for indels and rearrangements was much less 

desirable, with poorer specificity for both of these mutation classes. As a result, confidence can only 

be placed on validated variants and only these validated indels and rearrangements were used for 

downstream analysis.  

 

Other approaches could be considered for the near future.  Local reassembly is a feature used by the 

Broad Institute (GATK) to improve the mapping of reads overlying indels. This is an approach that has 

not been explored in this thesis. Because suitably stringent post-processing filters are not available 

for GATK, one possibility would be to perform primary indel-calling using Pindel and then perform 

local reassembly across these indels to improve mapping characteristics of the informative reads 

before post-processing. Another approach that is described is to use multiple callers on the same 

dataset and to simply use the variants which are overlapping. 

 

 

 


