Understanding neurodegenerative diseases in human iPS cell models by genome editing with CRISPR-Cas9

Thesis dissertation submitted for the degree of Master of Philosophy

Shamma Qarin Supervisor: William C. Skarnes, PhD Wellcome Trust Sanger Institute Homerton College University of Cambridge

Contents

	Page 3	
Declaration		
Acknowledgements Abbreviations	4 5	
Abstract	6	
Abstract	0	
Chapter 1: Introduction	7 8	
Neurodegenerative disorders		
AAAS (Achalasia-Addisonianism-Alacrima syndrome)	10	
Manifestations of AAAS	10	
Genetics of AAAS	11	
AAAS mutations	13	
ALADIN	14	
Huntington's disease (HD)	17	
Manifestations of HD	18	
Genetics of HTT	19	
Genotype-phenotype correlation	19	
Gene-environment interactions	19 20	
Huntingtin	20	
Disease models	23	
Animal models	23	
Human pluripotent stem cells (hPSC)	24	
Human iPS cells as disease models	25	
Genome editing	26	
Zinc Finger Nuclease (ZFN)	27	
Transcription activator-like effector nucleases (TALEN) CRISPR-Cas9	28 28	
	28 32	
Study outline	32	
Chapter 2: Methods & Materials	33	
Induced pluripotent stem cells	34	
Bioinformatics	34	
Synthetic DNA nucleotides, recombinant proteins, and services		
Molecular biology techniques	34	
Extraction of genomic DNA	34	
Transformation of chemically competent DH5 α and plasmid isolation	35	
Sequencing and ethanol precipitation of samples	35	
Construction of CRISPR gRNA expression plasmids	36	
InFusion cloning	37	
Construction of targeting donor vector for knockout of exon 2 of AAAS gene	38	
Construction of targeting donor vector for inserting extended Q-repeat in HTT gene	42	
In vitro Cas9 nuclease assay	44	
T7 Endonuclease (T7E1) assay	44	
PCR genotyping of human iPS cell lysates	44	
Western blot	46	
Tissue culture techniques	50	
Plasmid-based nuclease-assisted gene targeting of human iPS cells	50	

Protein-based nuclease-assisted gene targeting of hiPS cells		
Culture and passaging of human iPS cells		
Colony picking of human iPS cells		
Colony archiving of human iPS cells into a 96-well matrix plate		
Expanding hiPS cells from 96-well matrix plate cryovials into 6-well plate	55	
Archiving human iPS cells into 1ml cryotubes	55	
Expanding hiPS cells from 1ml cryotubes into 6-well plate		
Subcloning mixed clones	55	
Chapter 3: Triple-A syndrome	56	
3.1 Knockout of AAAS exon 2	57	
3.2 AAAS exon 1 point mutation		
3.3 Expression of ALADIN protein by AAAS mutant clones	70	
Chapter 4: Huntington's disease		
Insertion of extended Q-repeat (Q_{67}) fragment in HTT exon 1 (HTT1)	73	
Chapter 5: Conclusions & Future studies		
Conclusions	80	
Future studies	82	
Appendices	84	
List of figures and tables		
References	101	

Declaration

In accordance with the policies and guidelines of the University of Cambridge, the following declarations are made:

I hereby declare that this thesis, conducted at the Wellcome Trust Sanger Institute from January to September 2016, is my own work on the research conducted by me and contains no material which has been submitted for the award of any other degree at any university or equivalent institution. This thesis, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference and acknowledgement is made in the text.

Signature:	
Signature	

Date: _____

Acknowledgements

I am grateful to The Almighty who has blessed and guided me in all my goals and aspirations that I have attempted for so far.

I would like to express my sincere gratitude and deepest appreciation towards my supervisor, Dr William Skarnes, for providing me with all the expert advice and guidance throughout my work. I am eternally grateful to him for all his support, inspiration, and encouragement, be it academically, professionally, or personally. Without him, this project would never have been possible. I would also like to sincerely thank my thesis advisory committee, consisting of Professor Roger barker and Dr Kosuke Yusa, for providing me with the expert advice to further improve my work.

I would also take the opportunity to express my sincere thanks to Dr Melanie Keene, my Graduate Tutor, and Mr Dhiru Karia, Finance Tutor, who have been very supportive and cooperative during times of difficulty and played integral roles in holding up my confidence and motivation. I would like to thank Homerton College for providing me with all the academic and pastoral support and well-being during my entire stay at Cambridge.

I place on record, my earnest thankfulness to my Graduate Administrators at the Sanger Institute, Dr Christina Hedberg-Delouka and Dr Annabel Smith, for cooperating and providing me with all the necessary technical and academic support.

I would like to express my earnest thankfulness to Dr Peri Tate who, without an exception, has always been there whenever needed and to my colleagues for always encouraging and motivating me during times of frustration!

Last but not the least, outside my workplace, I would express my earnest gratitude and heartfelt appreciation to my parents, Dr Sharif Ashrafuzzaman and Mrs Syeda Rawnak Ara, for their constant moral and financial support in every step of my life which words cannot justify, and to my late grandmother, Salma Khatun, who laid the first stone of the path leading to where I am today.

I place on record, my sense of gratitude to everyone who, directly or indirectly, have lent their helping hand in this venture.

Abbreviations

AAAS	Achalasia-Addisonianism-Alacrima syndrome
ALADIN	ALacrima-Achalasia-aDrenal Insufficiency Neurologic
	disorder
amp	ampicillin
BCA	bicinchoninic acid
BSA	bovin serum albumin
Cas9-RNP	Cas9-ribonucleoprotein
CRISPR	clustered regularly interspaced short palindromic repeats
crRNA	CRISPR RNA
DMSO	dimethyl sulfoxide
DNTP	deoxynucleoside triphosphate
DSB	double-stranded break
EDTA	ethylene diamine tetraacetic acid
FTH1	ferritin heavy chain
gRNA	guide RNA
HD	Huntington's disease
HDR	homology-directed repair
hESC	human embryonic stem cells
hiPSC	human induced pluripotent stem cells
HR	homologous recombination
HTT	huntingtin
kan	kanamycin
KSR	knock-out serum replacement
NHEJ	non-homologous end joining
NII	neuronal intranuclear inclusions
NPC	nuclear pore complex
OTS	off-target site
PAM	protospacer adjacent motif
PBS	phosphate buffered saline
pheS	phenylalanyl tRNA synthetase
polyQ	poly-glutamine
puro	puromycin
Ri	ROCK inhibitor
ROS	reactive oxygen species
RT	room temperature
SDS	sodium dodecyl sulphate
ssODN	single-stranded oligodeoxynucleotide
TALEN	transcription activator-like effector nucleases
TBS	tris buffered saline
TBS-T	TBS-Tween
tet	tetracycline
TE	tris-EDTA buffer
TENS	tris-EDTA-NaCl-SDS buffer
tracrRNA	trans-activating crRNA
WD-repeat	tryptophan-aspartic acid repeat
zeo	zeocin
ZFN	zinc finger nuclease

Abstract

Genetic neurodegenerative disorders are inherited diseases of the brain and nervous system, many of which are poorly understood. Human induced pluripotent stem (hiPS) cells, upon introduction of disease relevant mutations by genome editing, can be used to model diseases, gain insights into the pathophysiology of such diseases, and develop therapies. In this study, CRISPR-Cas9 system was used to edit the hiPS cell genome to generate models for two diseases – Achalasia-Addisonianism-Alacrima syndrome (AAAS) and Huntington's disease.

AAAS is a progressive neurodegenerative disorder mainly characterized by oesophageal muscle disorders, adrenal insufficiency, and tear production failure. Multiple mutations in the AAAS gene encoding the ubiquitously expressed ALADIN (ALacrima-Achalasia-aDrenal Insufficiency Neurologic) protein are responsible for this autosomal recessive disorder. Using two different strategies, I generated human iPS cells homozygous for a common allele of AAAS, a C>A point mutation in exon 1 that creates a novel splice-donor site, and for comparison, a biallelic knockout of AAAS exon 2. The biallelic knockout relied on replacing one allele with a puromycin selection cassette by homologous recombination (HR) and simultaneously damaging the other allele by non-homologous end-joining (NHEJ). Sequencing the non-targeted allele demonstrated frameshift indels with a biallelic targeting efficiency of 3%. The homozygous point mutation was generated by homology-directed repair (HDR) with a single-stranded oligonucleotide template. Clones homozygous for the point mutation were generated in two rounds of genome editing. A complete loss of ALADIN protein in undifferentiated human iPS cells was observed in both knockout and point mutant cells, suggesting that the disease is caused by null mutations in the AAAS gene. These models lay the foundation of future detailed phenotype analysis and understanding of disease manifestations by differentiating them to the disease-relevant cell types, particularly cortical neurons and adrenocortical cells.

Huntington's disease is a progressive neurodegenerative genetic disorder that mainly causes motor, behavioral, and cognitive abnormalities in an individual. This disease occurs due to an autosomal dominant expansion of CAG-repeats in the huntingtin (HTT) gene. I attempted to insert 67 Q-repeats into HTT by Cas9-assisted homologous recombination (HR) with a donor plasmid containing the extended repeat fragment. From a screen of 192 unselected clones, I was unable to recover any clones containing the expanded repeats. Presumably the rate of homologous recombination was too low in unselected clones and future experiments will require drug selection to ensure retention of the expanded Q-repeats.