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ABSTRACT

A range of biochemically diverse molecules located in the plasma membrane—
such as proteins, glycans, and lipids—mediate cellular recognition events,
initiation of signalling pathways, and the regulation of processes important for
the normal development and function of multicellular organisms. Interactions
mediated by cell surface receptors can be challenging to detect in biochemical
assays, because they are often highly transient, and membrane-embedded
receptors are difficult to solubilise in their native conformation. The biochem-
ical features of low-affinity extracellular protein interactions have therefore
necessitated the development of bespoke methods to detect them.

Here, I develop a genome-scale cell-based genetic screening approach
using CRISPR-Cas9 knockout technology that reveals cellular pathways re-
quired for specific cell surface recognition events. Using a panel of high-affinity
monoclonal antibodies, I first establish a method from which I identify not only
the direct receptor but also other required gene products, such as co-receptors,
post-translational modifications, and transcription factors contributing to anti-
gen expression and subsequent antibody-antigen recognition on the surface
of cells. I next adapt this method to identify cellular factors required for re-
ceptor interactions for a panel of recombinant proteins corresponding to the
ectodomains of cell surface proteins to the endogenous surface receptors
present on a range of cell lines. In addition to finding general cellular features
recognised by many ectodomains, I also identify direct interaction partners of
recombinant protein probes on cell surfaces together with intracellular genes
required for such associations.

Using this method, I identify IGF2R as a binding partner for the R2 subunit of
GABAB receptors, providing a mechanism for the internalisation and regulation
of GABAB receptor signalling. The results here demonstrate that this single
approach can identify the molecular nature and cell biology of surface receptors
without the need to make any prior assumptions regarding their biochemical
properties.
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