Chapter II

Materials and Methods

2.1 Gene identification

2.1.1 DNA manipulation methods

2.1.1.1 Polymerase chain reaction

PCR reactions were performed in 96-well microtitre plates (Costar ThermowellTM C- or M-type) in an Omnigene (Hybaid) (C-type) or a PTC-225 (MJ Research) (M-type). For most applications, 15 µl reactions were prepared.

- 1. A premix sufficient for all reactions was prepared, allowing for a 1 X reaction mix once the DNA template was added (10 μ l of mix and 5 μ l of template).
- The standard reaction mix contained 2 µl of Buffer 1, 2 µl of 5 mM dNTPs, 0.28 µl of 1/20th βME, 0.07 µl of 5 mg/ml BSA, 5.165 µl of 40% sucrose, 0.325 µl of primer mix (each primer at 100 ng/µl) and 0.16 µl (0.8 U) of Taq DNA polymerase (AmpliTaq). All reaction mixture variants are listed in Table 2.1.
- 3. Amplifications were performed under the following cycling profile (unless specified otherwise): 94°C for 5 minutes, 35 cycles at 94°C for 30 seconds, annealing temperature (specific to each primer) for 30 seconds and 72°C for 3 minutes, and finally 1 cycle at 72°C for 10 minutes. All cycling reaction mixtures used are listed in Table 2.1.
- 4. Reaction products were visualised by agarose gel electrophoresis and stained with ethidium bromide (section 2.1.1.2).

DNA templates

The templates used were:

- 1. cDNA pools.
- 2. DNA excised from agarose gels in 100 μ l T_{0.1}E and left overnight; 5 μ l used directly.
- 3. Human genomic DNA at 12.5 ng/µl.

2.1.1.2 Gel electrophoresis

- An agarose gel was prepared (2.5% for most PCR amplified products and 1% for fragments over 1 Kb) in 1 X TBE and ethidium bromide (250 ng/µl).
- PCR reaction products were loaded directly. For purified DNA samples, the appropriate amount of 6 X loading buffer was added prior to loading (e.g. 5 μl of purified DNA and 1 μl of 6 X loading buffer).
- 3. Size markers (100 bp or 1 Kb ladder) were also loaded.
- Minigels were run at 80 volts for 10-15 minutes and larger gels were run at 200 volts for approximately one hour.
- DNA was visualised under UV on a transilluminator and photographed with a Polaroid camera.

2.1.1.3 DNA purification

2.1.1.3.1 Gel purification

The DNA fragment was excised from the agarose gel with a clean scalpel.

- 1. The gel slice was weighed in a 1.5 ml Eppendorf tube.
- 2. The gel slice was then purified using a Qiaquick Gel Extraction KitTM (Qiagen) according to the manufacturer's instructions.
- 3. Recovery was tested by gel electrophoresis (section 2.1.1.2).

2.1.1.3.2 Ethanol precipitation

- 1. In a 1.5 ml microcentrifuge tube, 0.1 volumes of 3 M sodium acetate and either one volume of isopropanol or two and a half volumes of ethanol were added to the DNA.
- 2. The samples were mixed well by vortexing and incubated for 20 minutes at -20° C.
- 3. DNA was pelleted in a microcentrifuge at 13,000 rpm and washed with 70% ethanol.
- 4. The pellet was left to dry and then resuspended in the appropriate amount of $T_{0.1}E$.
- 5. Recovery was tested by gel electrophoresis (section 2.1.1.2).

2.1.1.4 Restriction enzyme digests of DNA

- Up to 10 μg of DNA was digested in a reaction containing the appropriate 1 X buffer,
 1 mM spermidine, 100 μg/ml BSA and 20-50 units of the appropriate enzyme.
- 2. The DNA was digested for 2 hours or overnight at the appropriate temperature for the enzyme.
- The DNA was subjected to agarose gel electrophoresis and visualised (section 2.1.1.2).

Table 2.1: PCR mixes (A) and cycling programs (B, next page). All prime	er concentrations are at 100 ng/µl unless specified
otherwise.	

	D	OD	•
Α.	Р	CK.	mixes
	_	~	

•

Def	ault	SSP-F	PCR1 SSP-PCR2		PCR2	Vecto	rette
Buffer 1	2µl	Buffer 1	2µl	Buffer 1	2µl	Buffer 1	1.5µl
5mM dNTPs	2µl	5mM dNTPs	1.1µl	5mM dNTPs	1.1µl	5mM dNTPs	1.5µl
1/20 βME	0.28µl	1/20 βME	0.28µl	1/20 βME	0.28µl	1/20 βME	0.21µl
5mg/ml BSA	0.07µl	5mg/ml BSA	0.66µl	5mg/ml BSA	0.66µl	0.5mg/ml BSA	0.495µl
40% sucrose	5.165µl	40% sucrose	5.11µl	40% sucrose	5.11µl	40% sucrose	4.545µl
Primer mix	0.325µl	T _{0.1} E	1.85µl	T _{0.1} E	2.85µl	Primer 224	0.375µl
Amplitaq	0.16µl					Primer specific	0.375µl
Total	10µl	Total	11µl	Total	12µl	Total	9µl

RACE1		RACE2		Vectorette/RACE enzyme mix		SSP-PCR enzyme mix	
Buffer 1	1.5µl	Buffer 1	1.5µl	AmpliTaq	0.12µl	Buffer 1	0.1µl
5mM dNTPs	1.5µl	5mM dNTPs	1.5µl	Taq Extender	0.12µl	AmpliTaq	0.2µl
1/20 βME	0.21µl	1/20 βME	0.21µl	Perfect Match	0.12µl	T _{0.1} E	0.7µl
5mg/ml BSA	0.495µl	5mg/ml BSA	0.495µl	40% sucrose	0.64µl		
40% sucrose	4.745µl	40% sucrose	4.32µl				
Primer specific	0.45µl	Primer specific	0.65µl				
Primer AP1	0.1µl	Primer AP2	0.325µl				
Total	9µl	Total	9µl	Total	1µl	Total	1µl

B. Cycling programs

.

Default		SSP-PCR		Vectorette		
95°C	5min	95°C	3min	95°C	3min	
		Add 1µl SSP-PCR	Pause PCR machine	Add 1µl vectorette	Pause PCR machine	
		enzyme mix		enzyme mix		
		95°C	2min	95°C	2min	
94°C	30sec	94°C	30sec	94°C	5sec	
60°C	30sec 30cycles	60°C	30sec 25cycles	68°C	30sec 17cycles	
72°C	3min	72°C	3min	72°C	3min	
				94°C	5sec	
				60°C	30sec 18cycles	
				72°C	3min	
72°C	10min	72°C	10min	72°C	10min	

RA	ACE	PCR product re-amplification		
95°C	3min	95°C	5min	
Add 1µl RACE	Pause PCR			
enzyme mix	machine			
95°C	2min			
94°C	5sec	94°C	30sec	
68°C	30sec 25cycles	60°C	30sec 20cycles	
72°C	3min	72°C	3min	
72°C	10min	72°C	10min	

2.1.1.5 Primer design, synthesis and storage

- Primers were designed using the Primer3 program (Rozen and Skaletsky, 2000; <u>http://www.genome.wi.mit.edu/genome_software/other/primer3.html</u>) from <u>http://www.sanger.ac.uk/cgi-bin/primer3.cgi</u>.
- Primers were synthesised at the Sanger Institute by David Fraser and Diane Gibson. A subset of the primers were synthesised by GenSet (<u>http://www.genxy.com/index.html</u>).
- Primers were stored at -20°C and working dilutions were prepared at 100 ng/µl for each primer.

2.1.2 Clone resources

Different types of clone resources have been used throughout this project. The Sanger Institute clone resource and the gene identification groups maintain the clone resources.

2.1.2.1 cDNA libraries used

The cDNA libraries used during the course of this project are described in Table 2.2.

Table 2.2 (next page): cDNA resources. Pools available for each technique are listed at the far right. Column A reports the number of SSP-PCR Super Pools available for each library (each Super Pool representing cDNA inserts from 100,000 clones). Column B reports the number of SSP-PCR individual Pools (each representing cDNA inserts from 20,000 clones). Column C reports the number of vectorette Super Pools (each representing cDNA inserts from 100,000 clones). Column D reports the number of individual plated pools (each representing cDNA inserts from 20,000 clones). Column E reports the number of liquid pools (each representing cDNA inserts from 20,000 clones). Column F reports the number of liquid pools (each representing cDNA inserts from 100,000 clones grown in liquid media).

cDNA library code	cDNA library description	Supplier	Vector	Pools available					
				SSP-P	CR	CR Vectorette		e	
				Α	В	С	D	Е	F
Т	Adult testis	Clontech	pCDM8	5	25	-	-	-	10
FB	Fetal Brain	Invitrogen	pcDNAI	5	25	5	25	10	-
FL	Fetal Liver	Invitrogen	pcDNAI	5	25	5	25	10	-
FLu	Fetal Lung	Invitrogen	pcDNAI	5	25	5	25	10	-
HL60	Peripheral blood	Invitrogen	pcDNAI	5	25	5	25	10	-
AH	Adult Heart	Invitrogen	pcDNA3	5	25	5	25	10	-
ALu	Adult Lung	Clontech	pcDNAI	5	25	5	25	10	-
SK-N-MC	Neuroblastoma cells	Invitrogen	pcDNAI	5	25	-	-	-	-
PF	Adult brain	Pfizer	pcDNAI	3	15	-	-	-	-
U937+	(Monocyte, NOT activated, from a patient with promonocytic	DS*	pCDM8	5	25	-	-	-	-
U937ACT	(Monocyte, PMA activated, from a patient with promonocytic leukaemia)	DS*	pCDM8	5	25	-	-	-	-
Н9	Placental, full term normal	DS*	pH3M	5	25	-	-	-	-
VT	HTLV 1 +ve adult laukaamia T aall	DC*	nU2M	5	25				
I I NV	Notural tillar call	D2*	pholyi mliam	5	25	-	-	-	-
INK Daudi	D kranh ang	D2.	phom nu2M	5 5	23	-	-	-	-
	B lympnoma	D2*	pH3M 	5	25	-	-	-	-
нрван	i cell from a patient with acute	D2*	рнзм	3	23	-	-	-	-
DM	iymphocytic leukaemia	DC*		F	25				
BM DV2	Bone marrow	D2* D2*	pH3M	5	23 25	-	-	-	-
DX3	Melanoma	DS*	pH3M	5	25	-		-	-

*Libraries marked with an asterisk were generously provided by David Simmons, Oxford

2.1.2.2 Construction of cDNA pools

2.1.2.2.1 Library titration

- 2 litres of LB agar were used to prepare 35 agar plates. Molten LB agar was left to cool down to 55°C and the appropriate amounts of antibiotics were added (ampicillin at 50 µg/ml and tetracycline at 10 µg/ml final volume). Approximately 50 ml of the mixture was used for each colony picker plate. The plates were left to set and stored at 4°C.
- The cDNA library, consisting of bacteria stored in glycerol, was defrosted on ice and 2 μl were diluted in 198 μl LB. Six ten-fold serial dilutions were prepared and 100 μl of each was plated on LB agar plates with Hybond N+ filters, using an ethanol-flamed bent Pasteur pipette.
- 3. The plates were left inverted, at 37°C for 4 hours. They were then transferred to 30°C for 16 hours, and then back to 37°C for an additional 4 hours. The colonies of each plate were counted and the library titre estimated.

2.1.2.2.2 Low-density plated pools

- The cDNA library was diluted in 20% glycerol/LB/antibiotics. 20,000 clones were plated out on each of 25 LB/antibiotics plates with Hybond N+ filters (500,000 clones in total).
- The plates were left to dry for 3-5 minutes, and the clones were then left to grow (4 hours at 37°C, 16 hours at 30°C and 4 hours at 37°C).

2.1.2.2.3 High-density liquid pools

- 1. Ten 50 ml Falcon tubes containing 20 ml of LB/antibiotics were set up.
- The cDNA library was diluted in LB/antibiotics and 250,000 clones were added to each tube (2,500,000 clones in total). The clones were left to grow at 37°C/240 rpm for 20 hours in a shaking incubator.
- Dilutions of 1000, 100, 10 and 1 were plated out on colony picker plates/Hybond+ filters to check titration. The plates were inverted and left to grow overnight at 37°C.

2.1.2.2.4 Preparation of SSP-PCR pools

- All SSP-PCR pools were prepared from low-density plated clones (section 2.1.2.2.2).
- The contents of each filter were scraped into 3 ml of 20% glycerol in LB/antibiotics using a glass Pasteur pipette, and transferred to a 15 ml Falcon tube. The cells were shaken off and the filters were removed.
- Super Pools were prepared by pooling 1 ml from each of a group of five tubes (Pools) in a new Falcon tube thus generating 5 Super Pools. The tubes were frozen in dry ice and stored at -70°C.
- 4. Pool templates for use in PCR screens and SSP-PCR reactions were prepared by transferring 0.3 ml of each Pool (or Super Pool) in screw-top Eppendorf tubes. The aliquots were boiled for 5 minutes and then quenched in ice. The contents were briefly spun, and stored at -20° C. 1/100 dilutions of the boiled template/T_{0.1}E were prepared for the first and second steps of SSP-PCR (Super

Pool and individual pool screens), respectively. 1/10 dilutions of the boiled Pools template/ $T_{0.1}E$ were prepared for the third step of SSP-PCR (cDNA-end recovery). All dilutions were stored at $-20^{\circ}C$.

2.1.2.2.5 Preparation of vectorette pools

- For plated vectorette pools, each Hybond N+ filter was removed from the colony picker plates, rolled-up and placed in a 50 ml Falcon tube containing 20 ml of SET. The cells were shaken off and the filters were removed.
- The cells in the thirty-five, 50 ml Falcon tubes (25 plated pools/SET and 10 liquid pools/LB), were pelleted at 4,000 rpm for 10 minutes at room temperature, using a Beckman J6-MC centrifuge.
- 3. The media (or SET) was removed and the pellets were re-suspended in 200 μ l of GTE on ice, transferred to a 1.5 ml tube and left to stand for 5 minutes.
- 4. 400 μl of freshly made 0.2 M NaOH/1% SDS (briefly cooled in ice) was added and the tubes were left to stand on ice for 5 minutes. 300 μl of 5 M acetate/3 M K⁺ were added to each tube. The tubes were gently inverted once and left on ice for 10 minutes.
- Cell debris was pelleted in a microcentrifuge at 13,000 rpm for 10 minutes and the clear supernatants were removed and put into clean tubes. These were spun for 5 minutes to remove any remaining debris.
- 6. 600 μ l of isopropanol stored at -20°C was added in each tube. The tubes were then well shaken and left on ice for at least 10 minutes.

- 7. DNA was pelleted by spinning the tubes in a microcentrifuge at 4° C /13,000 rpm, for 15 minutes. The pellets were re-suspended in 200 µl of T_{0.1}E.
- 200 μl of phenol:chloroform:isoamyl alcohol (25:24:1) was added in each tube. The tubes were shaken and spun for 5 minutes. The top (aqueous) layers were removed and placed in fresh tubes.
- 9. The DNA was ethanol precipitated (section 2.1.1.3.2).
- 10. The DNA was pelleted in a microcentrifuge and washed with 70% ethanol.
- 11. The DNA was resuspended in 30 μ l T_{0.1}E and stored at -20°C.
- 12. 1 µl of 10 mg/ml RNase was added to each tube and incubated at 37°C for 1 hour.
- 13. 1 μ l of the DNA was run on a 0.8% agarose gel to check the extraction outcome.
- 14. 1 μ g of each extracted DNA was digested with the appropriate enzyme in a total volume of 30 μ l (section 2.1.1.4).
- 15. 70 μl of water was added and the DNA was extracted with 200 μl of phenol:chloroform:isoamyl alcohol (25:24:1).
- 16. The DNA was ethanol precipitated (section 2.1.1.3.2).
- 17. The DNA was pelleted in a microcentrifuge, washed with 70% ethanol and left to dry for 5 minutes. The pellets were then re-suspended in 100 μ l of ligation buffer.
- 18. 10 μl of 1 pmol/μl annealed vectorette bubbles, 1.1 μl adenosine 5'-triphosphate and 2.5 units of T4 DNA ligase were added to each tube and left at 16°C overnight.

- 19. The contents of each tube were diluted to 500 μ l with T_{0.1}E to generate Stock Pools.
- 20. Equal volumes of sets of five plated Stock Pools were mixed to generate Stock Super Pools.
- 21. 1/100 dilutions of Stock Super Pools were prepared using $T_{0.1}E$, for Super Pool PCR screens.
- 22. 1/100 dilutions of the plated Stock Pools were prepared using $T_{0.1}E$, for the second step of the vectorette method (individual Pool screens).
- 23. 1/10 dilutions of the plated Stock Pools were prepared using T_{0.1}E, for cDNA-end recovery (vectorette PCR). 1/10 dilutions of the liquid Stock Pools were also prepared using T_{0.1}E, for PCR pool screening and cDNA-end recovery.

2.1.3 Isolation of cDNA fragments

Three methods (SSP-PCR, vectorette and RACE) were used to isolate expressed sequences from cDNA pools. The PCR mixes and cycling programs used for each technique are listed in Table 2.1. The various universal primers used are listed in Table 2.3.

 Table 2.3: Universal primer sequences.

SSP-PCR	Primer Sequences	Comments
pH3M-1FP	CTT CTA GAG ATC CCT CGA	Amplifies inserts from pH3M and pCDM8 vectors
pH3M-2FP	GAT CCC TCG ACC TCG AGA T	Amplifies inserts from pH3M and pCDM8 vectors
pH3M-1RP	CGC AGA ACT GGT AGG TAT	Amplifies inserts from pH3M and pCDM8 vectors
pH3M-2RP	CGA CCT GCA GGC GCA GAA	Amplifies inserts from pH3M and pCDM8 vectors
T7-2FP	TAA TAC GAC TCA CTA TAG G	Amplifies inserts from pCDM8, pcDNA3 and pcDNAI vectors
pCDM8-RP	TAA GGT TCC TTC ACA AAG	Amplifies inserts from pCDM8 and pcDNAI vectors
SP6	ATT TAG GTG ACA CTA TAG	Amplifies inserts from pcDNA3 vectors
VECTORETTE	Primer Sequences	Comments
224	CGA ATC GTA ACC GTT CGT ACG AGA ATC GCT	Universal primer for all vectorette pools. Used for cDNA-end isolation
Xho-I	TCG AGC AAG GAG AGG AGG ACC AAG GAG AGG ACG CTG TCT GTC GAA GGT AAG GAA CGG ACG AGA GAA GGG AGA G	Used for the construction of the Testis vectorette library
Xho-II	CTC TCC CTT CTC GAA TCG TAA CCG TTC GTA CGA GAA TCG CTG TCC TCT CCT TGG TCC TCT CCT TGC	Used for the construction of all vectorette libraries
RACE	Primer Sequences	Comments
AP1	CCA TCC TAA TAC GAC TCA CTA TAG GGC	Adaptor Primer 1
AP2	ACT CAC TAT AGG GCT CGA GCG GC	Nested Adaptor Primer 2

2.1.3.1 SSP-PCR

The technique of end-fragment isolation from cDNA libraries is an adaptation (Bye and Rhodes, unpublished) of the original SSP-PCR (Shyamala and Ames, 1989; Shyamala and Ames, 1993). cDNA pools for SSP-PCR were constructed by Jackie Bye, Suzan Rhodes and George Stavrides.

2.1.3.1.1 Identification of positive pools

- 5 μl from each of the 88 available Super Pools (five Super Pools from seventeen cDNA libraries and 3 Super Pools from 1 cDNA library) were PCR screened.
- For each positive Super Pool, the five individual constituent Pools (1/100 dilutions) were PCR screened.

2.1.3.1.2 Amplification of cDNA ends

- The first part of the SSP-PCR cDNA-end isolation (SSP-PCR1) was performed using the 1/10 dilutions of the positive individual Pools. Because the orientation of the cDNA insert in the clone was unknown, two reactions were set-up for each gene-specific primer.
- 1 μl from each positive pool and 4 μl of T_{0.1}E were added to 11 μl of SSP-PCR1 buffer mix. 2 μl of the sense or antisense gene-specific primer (100 ng/μl), 1 μl (10 ng/μl) of either the forward or reverse vector primer and a drop of mineral oil were also added.
- 3. The PCR reaction was performed under the SSP-PCR cycling profile, which was briefly paused after the first step to add 1 μ l of SSP-PCR mix in each well.

- 4. The second part of the SSP-PCR method of cDNA-end recovery (SSP-PCR2) was performed using 1/50 and 1/10 dilutions (in $T_{0.1}E$) of the SSP-PCR1 products as templates.
- 5. 5 μ l from each dilution was added to 12 μ l of SSP-PCR2 buffer mix. In agreement with the SSP-PCR1 step, 1 μ l of either a sense or an anti-sense gene-specific nested primer was also added. 1 μ l of either a forward or reverse nested vector primer and a drop of oil were also added.
- The PCR reaction was performed under the SSP-PCR cycling profile, paused after the first step to add 1 μl of SSP-PCR mix in each well.

2.1.3.1.3 Isolation and re-amplification of cDNA ends

- 1. Reaction products were visualised by agarose gel electrophoresis (section 2.1.1.2).
- 2. The amplified DNA fragments were excised and the gel slices were placed in 1.5 ml tubes containing 100 μ l T_{0.1}E and left overnight at 4°C.
- 3. To obtain sufficient DNA for sequencing, liquid from around the gel slice was reamplified by PCR (re-amplification PCR mix and cycling program). Four reactions were set-up to obtain sufficient DNA for sequencing. The amplified products were separated by gel electrophoresis (section 2.1.1.2) and gel purified (section 2.1.1.3.1). Recovery was checked by gel electrophoresis (section 2.1.1.2).
- 4. Elizabeth Huckle performed the DNA sequencing reactions.

2.1.3.2 Vectorette

The technique of vectorette cDNA end isolation is an adapted version (Collins, unpublished) of the original vectorette PCR (Riley et al., 1990; Arnold and Hodgson, 1991). cDNA pools for vectorette were constructed by John Collins, Melanie Goward and George Stavrides.

2.1.3.2.1 Identification of positive pools

- 5 μl from each of the 30 available Super Pools (five Super Pools from six cDNA libraries) or the 60 liquid Pools (ten Pools from six cDNA libraries) were PCR screened.
- For each positive Super Pool, the five individual constituent Pools (1/100 dilutions) were PCR screened.

2.1.3.2.2 Amplification of cDNA ends

- Vectorette cDNA-end recovery was performed on 1/10 dilutions of positive Pools.
 μl of each positive Pool were added to 9 μl of the vectorette reaction mixture that contained one gene-specific primer and a universal primer (224). One drop of oil was also added to each well.
- 2. The PCR reaction was performed under the vectorette cycling profile that was briefly paused after the first step in order to add 1 μ l of vectorette enzyme mix.

2.1.3.2.3 Isolation and re-amplification of cDNA ends

The PCR products were isolated, re-amplified and sequenced, as above (section 2.1.3.1.3).

2.1.3.3 RACE

RACE was performed on either Human Brain or Testis Marathon-Ready™ cDNA.

2.1.3.3.1 Identification of positive Marathon pools

 5 µl of RACE template (2 µl of Marathon-Ready™ cDNA diluted in 3 µl T_{0.1}E) was PCR screened.

2.1.3.3.2 Amplification of cDNA ends

- The first step of RACE (RACE1) was performed with 5 µl of RACE template (2 µl of Marathon-Ready[™] cDNA diluted in 3 µl T_{0.1}E) added to 9 µl of RACE1 reaction mixture (which included one gene-specific primer and the adaptor primer AP1). PCR was performed under the RACE cycling profile, which was briefly paused after the first step to add 1 µl of RACE enzyme mix.
- 2. 1/50 and 1/10 dilutions of the RACE1 products were prepared using $T_{0.1}E$. 5 µl of each dilution was used as templates in a second round of RACE.
- 3. 9 μl of RACE2 buffer mix (which includes one gene-specific primer and the nested adaptor primer AP2) was added in each template and PCR was performed under the RACE cycling profile, which was briefly paused after the first step to add 1 μl of RACE enzyme mix.

2.1.3.3.3 Isolation and re-amplification of cDNA ends

The PCR products were isolated, re-amplified and sequenced, as above (section 2.1.3.1.3).

2.1.4 Northern Blots

2.1.4.1 Probe generation and labelling

- Probes were generated by PCR (section 2.1.1.1) from cDNA templates (Table 2.2).
- 2. PCR products were separated by gel electrophoresis (section 2.1.1.2).
- 3. The expected-size band was excised and stored in 100 μ l T_{0.1}E, at 4°C.
- 4. Labelling was performed (to be described in section 2.2.1.2).

2.1.4.2 Hybridisation

Labelled probes were hybridised to Multiple Tissue Northern (MTN®) Blots (Clontech). Each blot contains 2 µg of polyA mRNAs from different adult and fetal human tissues (Table 2.4).

Human MTN Blot	Human MTN Blot II	Human Fetal MTN Blot II
#7760-1	#7759-1	#7756-1
Heart	Spleen	Brain
Brain	Thymus	Lung
Placenta	Prostate	Liver
Lung	Testis	Kidney
Liver	Ovary	
Skeletal muscle	Small Intestine	
Kidney	Colon	
Pancreas	Peripheral Blood	
	Leukocyte	

Table 2	2.4: No	rthern	Blots.
---------	---------	--------	---------------

- The blots were pre-hybridised for 1 hour and then hybridised for 18 hours at 65°C in ExpressHyb Hybridisation solution (Clontech).
- 2. The blots were washed twice in Northern Wash Solution I for 5 minutes at room temperature, then twice in Northern Wash Solution II for 3 minutes at 55°C.
- 3. The blots were subjected to autoradiography for an average of 4 days, at room temperature.

2.2 Mouse studies

The RPCI-23 female (C57Bl/6J) mouse BAC library (Osoegawa *et al.*, 2000) was screened in this study. Library details are shown in Table 2.5.

			··· J ·			
Library	Library	Library	Antibiotic	Vector	Cloning	Genomic
	type	code			site	digest
RPCI-23	BAC	bM	Chloramphenicol	pBACe3.6	<i>Eco</i> RI	<i>Eco</i> RI
			12.5 µg/ml			

Table 2.5:	Details	of the	mouse	genomic	library
------------	---------	--------	-------	---------	---------

2.2.1 Probe preparation

2.2.1.1 Primer testing and probe generation with PCR

- 20 μl reaction mixtures were set-up in a 96-well plate containing 10 μl of dilution-buffer/primer-mix solution, 7.063 μl sucrose solution, 2 μl of PCR Buffer
 2, 0.187 μl of 1/10 β-ME, 0.25 μl of 5mM dNTP solution, 0.4 μl of mouse genomic DNA (or T_{0.1}E as negative control) and 0.1 μl (0.5 U) of AmpliTaq.
- 2. PCR was performed using a touch-down PCR program (Table 2.6).
- 3. PCR products were separated by gel electrophoresis (section 2.1.1.2). The expected-size band was excised and stored in 100 μ l of T_{0.1}E at 4°C.

Steps	65T		60T		4	55T
1	94°C	5min	94°C	5min	94°C	5min
2	93°C	30s	93°C	30s	93°C	30s
3	65°C	50s	60°C	50s	55°C	50s
4	-0.5 per cycle		-0.5 per cycle		-0.5 per cyc	ele
5	72°C	50s	72°C	50s	72°C	50s
6	repeat steps 2-5	, 9 times	repeat steps 2-5	, 9 times	repeat steps	2-5, 9 times
7	93°C	30s	93°C	30s	93°C	30s
8	60°C	50s	60°C	50s	60°C	50s
9	72°C	50s	72°C	50s	72°C	50s
10	repeat steps 7-9	, 29 times	repeat steps 7-9	, 29 times	repeat steps	7-9, 29 times
11	72°C	5min	72°C	5min	72°C	5min

Table 2.6: Touch-down PCR programs.

2.2.1.2 PCR labelling

- 1. A 9.5 μ l reaction mixture was set-up in a 0.5 ml tube, for each probe. The reaction mixture contained 1 μ l of PCR Buffer 3, 0.4 μ l of primer mix, 2.5 μ l of the liquid surrounding the gel slice, 0.4 μ l of d(ATG), 4.6 μ l of H₂O and 0.1 μ l of AmpliTaq.
- 2. A single drop of mineral oil was added on top of the reaction mixture, followed by 0.5 μ l of α -³²P.
- PCR was performed as follows: 94°C for 5 minutes, 20 cycles of 93°C for 30 seconds, 55°C for 30 seconds and 72°C for 30 seconds, followed by 1 cycle at 72°C for 5 minutes.
- 4. The PCR products were then denatured at 99°C for 5 minutes in the thermal cycler, snap chilled on ice and added to the hybridisation mix (unless competitive re-association was required, section 2.2.1.3).

2.2.1.3 Competitive re-association of radiolabelled probes

Where appropriate, the radiolabelled probes were competed using polyCA•GT to suppress the non-specific binding of PCR-labelled probes containing polyCA•GT.

- The labelling reaction products (section 2.2.1.2) were transferred in a screw-top microcentrifuge tube containing 5 μl of 1 mg/ml polyCA•GT, 125 μl of 20 X SSC and 360 μl of H₂O.
- 2. The tube was left to boil for 5 minutes in a water bath.
- 3. The tube was snap chilled on ice and the contents were then added to the hybridisation mix.

2.2.2 Screening

2.2.2.1. Screening library filters

- 1. The probes were prepared as described above (section 2.2.1).
- 2. A. 2-30 library filters were placed in a 15 X 10 X 5 cm sandwich box containing approximately 150 ml of hybridisation buffer (enough to cover all filters). A plastic sheet was placed on top of the filters. The filters were then left to pre-hybridise at 65°C for at least 3 hours, in an orbital shaker. The filters and the plastic sheet were removed from the sandwich box and the denatured, labelled probe(s) added to the hybridisation solution and mixed well. The filters were added back to the box one by one and the plastic sheet was again placed on top.

B. When only one filter was to be screened, a 15 ml Falcon tube was used instead of sandwich boxes. The filter was placed in the 15 ml Falcon tube containing 13 ml of hybridisation buffer. The filter was left to pre-hybridise at 65°C for at least 3 hours, in an orbital shaker. The labelled probe was then added and mixed well.

- 3. The filters were left to hybridise overnight at 65°C, in an orbital shaker.
- The filters were then rinsed twice in 2 X SSC at room temperature, followed by two 30 minute washes with 0.5 X SSC/1% N-Lauroyl Sarcosine at 65°C in an orbital shaker.
- 5. The filters were rinsed twice in 0.2 X SSC and wrapped in Saran[™] wrap.
- 6. The wrapped filters were placed overnight in a cassette with an X-ray film and two intensifying screens.
- 7. The X-ray films were developed and data was entered in the 2musace database.

2.2.2.2 PCR screening of BAC DNA pools

- 1. BAC DNA pools were PCR screened with the STS of interest (section 2.1.1.1).
- 2. Positive pools were identified by gel electrophoresis (section 2.1.1.2).

2.2.2.3 Colony PCR

- 1. The colony of interest was picked in 70 μ l of H₂O and boiled at 95°C.
- 5 µl aliquots were used as templates in PCR screens with the STS(s) of interest (section 2.1.1.1) and PCR products were visualised by gel electrophoresis (section 2.1.1.2).

2.2.3 Fingerprinting

2.2.3.1 Clone picking and microprepping

- 1. BAC clones were picked in 96-deep-well plates containing 1.5 ml LB broth/antibiotics, using a wooden cocktail stick.
- 2. The picked clones were grown at 37°C/300 rpm for 16 hours.
- 3. Eight plate copies were prepared by aliquoting 170 μ l from each well into 96-well plates. Each plate copy was frozen on dry ice and stored at -70° C.
- Bacterial clones were microprepped (Marra *et al.*, 1997) by Carol Carder (Sanger Institute).

2.2.3.2 Restriction enzyme digestion

- 1. Simultaneous digestion of 96 clones was achieved with the use of 96-well plates.
- The restriction digest mixture for each BAC DNA consisted of 2.6 μl of ddH₂O,
 0.9 μl of 10 X enzyme buffer B, and 0.5 μl of *Hind*III. The mixture was delivered in each well using a Hamilton combitip dispenser.
- 3. The 96-well plate was sealed, gently agitated using a whirlimixer, briefly centrifuged at 1,000 rpm and incubated at 37°C for 2 hours.
- 4. The reaction was terminated by the addition of 2 μ l of 6 X loading dye. The plate was resealed, and briefly centrifuged at 1,000 rpm.

2.2.3.3 Agarose gel electrophoresis and data acquisition

- 1. 450 ml of molten agarose were used to prepare 1% agarose gels in 1 X TAE.
- Each solidified gel was placed in an electrophoresis unit containing 2-3 litres of 1 X TAE.
- 0.8 μl of marker mix was added in the first well and every fifth well. 1 μl from each restriction enzyme digestion/loading dye mix was then loaded.
- Samples were electrophoresed at room temperature for 30 minutes at 90 volts. The electrophoresis apparatus was then moved into the cold room where the gels were left to run for 15 hours at 90 volts.

- Following electrophoresis, the gels were trimmed to ~19 cm, placed in plastic trays containing Vistra Green stain mix and agitated in the dark, on an orbital flatform shaker, for 45 minutes.
- The gels were then briefly rinsed with de-ionised H₂O and imaged using a FluorImager SI.

2.2.3.4 Fingerprint analysis and contig construction

- 1. Fingerprint analysis was performed interactively using the Image 3.10 software (Sulston *et al.*, 1980; Platt and Wobus, unpublished; also see section 4.2.3).
- 2. Band data was collected and used to perform an automatic contig assembly using FPC V4 (Soderlund *et al.*, 2000). The parameters used were an overlap statistic of $3x10^{-12}$ (about 75% clone overlap) and 0.7 mm tolerance.
- 3. To identify potential joins, fingerprints of clones at the extreme ends of contigs were used to query the FPC database at a lower fingerprint overlap stringency (overlap statistic of 1×10^{-8} or about 50% clone overlap).
- 4. Joins were incorporated into the map if the fingerprint data was logically consistent with the proposed map order.

2.3 Human variation

2.3.1 DNA samples

The Caucasian, Asian and African American samples were obtained from the Coriell Cell Repository (<u>http://locus.umdnj.edu/ccr/</u>). The Caucasian panel consists of 95 DNA samples and is drawn from the UTAH CEPH pedigree collection. The Asian panel consists of twelve Japanese DNA samples from unrelated individuals. The African American panel consists of twelve African American DNA samples from unrelated individuals. Specific sample identifiers are listed in Table 2.7.

All DNA samples were diluted to 3.5 ng/ μ l using T_{0.1}E (working DNA solutions).

2.3.2 SNP selection and primer design

Publicly available SNPs from various discovery efforts were utilised. SNPs were selected in a hierarchical way so as to generate a polymorphic SNP map of increasing density. Genotyping was performed after each round of SNP selection followed by additional SNP selection and genotyping. Where possible, SNPs that mapped outside repeats were selected.

Sarah Hunt designed the primers and probes in a quadruplex format, using the SpectroDesigner software (Sequenom, San Diego, CA). GenSet (<u>http://www.genset.fr/</u>) synthesised all SNP primers and probes.

Table 2.7: (A) The Caucasian family samples. (B) and the Caucasian, Asian and African American samples (twelve unrelated individuals from each ethnic group). PGF, paternal grandfather; PGM, paternal grandmother; MGF, maternal grandfather; MGM, maternal grandmother; F, father; M, mother; S, son; D, daughter.

A.								
Family	Relation	DNA	Family	Relation	DNA	Family	Relation	DNA
ID		name	ID		name	ID		name
1331	PGF	NA07007	1341	PGF	NA07034	1408	PGF	NA12154
1331	PGM	NA07340	1341	PGM	NA07055	1408	PGM	NA12236
1331	MGM	NA07016	1341	MGM	NA06993	1408	MGM	NA12155
1331	MGF	NA07050	1341	MGF	NA06985	1408	MGF	NA12156
1331	F	NA07057	1341	F	NA07048	1408	F	NA10830
1331	М	NA06990	1341	Μ	NA06991	1408	Μ	NA10831
1331	S	NA06983	1341	S	NA07020	1408	S	NA12148
1331	D	NA06988	1341	D	NA07006	1408	D	NA12149
1333	PGF	NA07049	1346	PGF	NA12043	1416	PGF	NA12248
1333	PGM	NA07002	1346	PGM	NA12044	1416	PGM	NA12249
1333	MGM	NA07017	1346	MGM	NA12045	1416	MGM	NA12250
1333	MGF	NA07341	1346	F	NA10857	1416	MGF	NA12251
1333	F	NA07038	1346	Μ	NA10852	1416	F	NA10835
1333	Μ	NA06987	1346	S	NA12039	1416	Μ	NA10834
1333	S	NA07009	1346	D	NA12040	1416	S	NA12243
1333	D	NA07011	1347	PGF	NA11879	1416	D	NA12244
1334	PGF	NA12144	1347	PGM	NA11880	1420	PGF	NA12003
1334	PGM	NA12145	1347	MGM	NA11881	1420	PGM	NA12004
1334	MGM	NA12146	1347	MGF	NA11882	1420	MGM	NA12005
1334	MGF	NA12239	1347	F	NA10858	1420	MGF	NA12006
1334	F	NA10846	1347	Μ	NA10859	1420	F	NA10838
1334	М	NA10847	1347	S	NA11871	1420	Μ	NA10839
1334	S	NA12138	1347	D	NA11870	1420	S	NA12007
1334	D	NA12139	1362	PGF	NA11992	1420	D	NA11997
1340	PGF	NA06994	1362	PGM	NA11993	1423	PGF	NA11917
1340	PGM	NA07000	1362	MGM	NA11994	1423	PGM	NA11918
1340	MGM	NA07022	1362	MGF	NA11995	1423	MGM	NA11919
1340	MGF	NA07056	1362	F	NA10860	1423	MGF	NA11920
1340	F	NA07029	1362	Μ	NA10861	1423	F	NA10842
1340	Μ	NA07019	1362	S	NA11984	1423	Μ	NA10843
1340	S	NA07040	1362	D	NA11985	1423	S	NA11909
1340	D	NA07053				1423	D	NA11910

No.	Asian	African	Caucasian ¹
		American	
1	NA17051	NA17109	NA11879
2	NA17053	NA17111	NA11880
3	NA17056	NA17114	NA11881
4	NA17057	NA17115	NA11882
5	NA17058	NA17117	NA12248
6	NA17060	NA17119	NA12249
7	NE00251	NA17122	NA12250
8	NE00374	NA17124	NA12251
9	NE00904	NA17125	NA07340
10	NE00810	NA17132	NA07016
11	NE00299	NA17134	NA07050
12	NE00744	NA17136	NA07007

B.

¹Also part of the family panel

2.3.3 Working PCR primer mix and probe dilutions

- For each set of 384 SNPs to be genotyped, 375 nM (for each primer) quadruplex primer mix dilutions were prepared in either a 96-well V bottom plate or a 0.5 ml Costar Assay Block on a Genesis RSP Tecan, using ddH₂O.
- 2. Similarly, 10 µM (for each probe) quadruplex probe dilutions were also prepared.

2.3.4 PCR amplification

Reactions were performed in 384-well microtitre plates. Each microtitre plate was used to genotype 384 SNPs assays across four DNA samples (1,536 assays).

1. The quadruplex PCR reaction mixtures (5 μl final volume) consisted of 2 μl of the appropriate primer mix, 0.75 μl of 10 X PE buffer, 0.2 μl of 5mM dNTP mix,

1.01 μl of ddH2O, 0.04 μl (2 X) of Titanium Taq and 1 μl of the DNA to be tested.

- Each 384-well plate was sealed with Microseal 'A' film and PCR was performed under the following cycling profile: 95°C for 1 minute, 45 cycles of 95°C for 20 seconds, 56°C for 30 seconds and 72°C for 1 minute, followed by 1 cycle at 72°C for 5 minutes.
- The plates were spun at 1,000 rpm for one minute, their seals replaced with ScotchPad[™] Tape Pads, and stored at -20°C until the next step.

2.3.5 SAP

After the PCR reaction, the un-incorporated dNTPs were inactivated using Shrimp Alkaline Phosphatase (SAP).

- SAP deactivation of dNTPs was performed in a total volume of 7 μl consisting of the PCR reaction products (5 μl), 1.5 μl of ddH₂O, 0.2 μl of 10 X TS buffer and 0.3 μl (0.3 U) of SAP enzyme.
- Each 384-well plate was sealed with Microseal 'A' film. The SAP reaction was performed at 37°C for 20 minutes, followed by inactivation of the SAP enzyme at 80°C for 5 minutes.
- The plates were spun at 1,000 rpm for one minute, their seals replaced with ScotchPad[™] Tape Pads, and stored at -20°C until the next step.

2.3.6 Extension of primer probe

- Primer probe extension was performed in a total volume of 9 μl consisting of the SAP reaction products (7 μl), 0.5 μl of the appropriate extend primer probes,
 0.382 μl of ddH₂O, 0.2 μl of 10 X TS buffer, 0.9 μl of the appropriate dNTP/ddNTP combination and 0.018 μl (0.58 U) of Thermosequenase.
- Each 384-well plate was sealed with Microseal 'A' film and reactions were cycled as follows: 94°C for 2 minutes and 55 cycles of 94°C for 5 seconds, 52°C for 5 seconds and 72 °C for 5 seconds, followed by 1 cycle at 72°C for 5 minutes.
- The plates were spun at 1,000 rpm for one minute, their seals replaced with ScotchPad[™] Tape Pads, and stored at -20°C until the next step.

2.3.7 Water and resin addition

- After the extension of primer probes, the 384-well plates were spun at 1,000 rpm for 1 minute.
- 16 μl of Milli-Q water was delivered in each well using a BECKMAN Multimek-96 automated 96-Channel Pipettor.
- 3. To remove residual salt from the reactions, a cation exchange resin (SpectroCLEAN[™]) was added. The resin was initially applied on specially adapted trays and then delivered in each well. Approximately 1 g of resin was used for each 384-well plate.

- The plates were rotated at medium speed on a Roto-Shake Genie[™] rotator for 4 minutes.
- 5. The plates were then spun for 4 minutes at 4,000 rpm.

2.3.8 Mass spectroscopy

- 7 nl of the purified primer extension reaction was loaded on to a matrix pad (3hydroxypicoloinic acid) of a SpectroCHIP.
- 2. SpectroCHIPs were analysed using a Bruker Biflex III Maldi-TOF mass spectrometer (SpectroReader, Sequenom).
- 3. Spectra were processed using SpectroTYPER (Sequenom).

2.4 Bioinformatics and computational support

The software used in these studies is listed in Table 2.8. The names of people involved in database management and sequence analysis are reported in Table 2.9. Table 2.10 gives the URLs of web sites used.

Software	Description	Reference
ACeDB	Data storage/graphical display	Durbin and Thierry-Mieg, 1994
Ensembl	Genome browser	Hubbard et al., 2002
UCSC GB	Genome browser	Kent et al., 2002
Genscan	Gene prediction	Burge and Karlin, 1997
FGENESH	Gene prediction	Salamov and Solovyev, 2000
RepeatMasker	Repeat sequences prediction	Smit and Green, unpublished
CPGFIND	CpG island prediction	Micklem, unpublished
PromoterInspector	Promoter prediction	Scherf et al., 2000
Eponine	TS site prediction	Down and Hubbard, 2002
BLAST	Similarity searches	Altschul et al., 1990, 1997
InterProScan	Protein motif analysis	Zdobnov and Apweiler, 2001
Dotter	Dot plot DNA comparisons	Sonnhammer and Durbin, 1995
CLUSTAL W	Sequence alignments	Thompson et al., 1994
Belvu	Formatting of aligned sequences	Sonnhammer, unpublished
FPC 4V	Contig building	Soderlund et al., 2000
Image 3.10	Processing of raw fingerprint data	Sulston et al., 1980
PipMaker	Comparative sequence alignments	Schwartz et al., 2000
Spectro Designer	SNP assay design	Sequenom [™] , unpublished
SpectroTYPER RT	Genotype analysis	Sequenom [™] , unpublished
SpectroTYPER DB	SNP data storage	Sequenom [™] , unpublished
SpectroCHECK	Genotype Quality Control check	Sequenom [™] , unpublished

Table 2.8	8: Software	used in	this	study.

James Gilbert	Automated sequence analysis and chromosome 20 Ensembl database curator	
Michele Clamp Guy Slater	Exonerate analysis of chromosome 20 sequence and WGS homologous mouse reads	
Sarah Hunt	SNP analysis and data management	
Carol Scott	Management of chromosome-specific fingerprint and sequence databases	
Jilur Ghori	Oligo ordering and management of primace database	
Jennifer Ashurst Laurens Wilming Andrew King Kerstin Jekosch	Sequence analysis and annotation	
Panos Deloukas George Stavrides	Chromosome 20 gene annotation group	
Lisa French Ian Mullenger	Manual curation of mouse FPC database	

Table 2.9: People involved in sequence analysis and data storage and management.

Table 2.10: URLs used in this study.

Description	URL
ACeDB	http://www.acedb.org/
BACPAC resources	http://www.chori.org/bacpac/home.htm
BLAST at NCBI	http://www.ncbi.nlm.nih.gov/BLAST/
BLAT	http://genome.ucsc.edu/cgi-bin/hgBlat?db=hg7
DKFZ	http://mbi.dkfz-heidelberg.de/
Dotter	http://www.cgr.ki.se/cgr/groups/sonnhammer/Dotter.html
Ensembl	http://www.ensembl.org/Docs/
Ensembl Trace server	http://trace.ensembl.org/
European Bioinformatics Institute	http://www.ebi.ac.uk/
European Molecular Biology Laboratory	http://www.embl.org/
FPC	http://www.sanger.ac.uk/Software/fpc
GeneMap '99	http://www.ncbi.nlm.nih.gov/genemap/
Genoscope	http://www.genoscope.cns.fr
Human BLAST server at the Sanger Institute	http://www.sanger.ac.uk/HGP/blast_server.shtml
Human Chromosome 20	http://www.sanger.ac.uk/HGP/Chr20/
Image	http://www.sanger.ac.uk/Software/Image
Mouse BAC end sequences	http://www.tigr.org/tdb/bac_ends/mouse/bac_end_intro.html
Mouse BAC fingerprints	http://www.bcgsc.bc.ca/projects/mouse_mapping/
Mouse genome sequence FTP at the Sanger Institute	<u>ftp://ftp.sanger.ac.uk/pub/mouse/</u>
PipMaker	http://bio.cse.psu.edu/pipmaker/
PromoterInspector	http://www.genomatix.de/cgi-bin/promoterinspector/promoterinspector.pl
PubMed	http://www.ncbi.nlm.nih.gov/PubMed/
RIKEN Genomic Sciences Centre	http://www.gsc.riken.go.jp/
SMART	http://smart.embl-heidelberg.de/help/smart_about.shtml
SSAHA	http://www.sanger.ac.uk/Software/analysis/SSAHA/
The Baylor College of Medicine search launcher	http://searchlauncher.bcm.tmc.edu/
The Coriell Cell Repository	http://locus.umdnj.edu/ccr/
The dbSNP database	http://www.ncbi.nlm.nih.gov/SNP/

The EMBL nucleotide sequence database The Ensembl Human genome server The Ensembl Mouse genome server The EST database dbEST The GenBank DNA sequence database The Genome Sequence Centre (BCGSC) The Institute for Genomic Research The InterPro database The InterProScan package The Jackson Laboratory mice web site The LocusLink query interface The Mouse Sequencing Consortium The MRC Mouse Genome Centre The National Center for Biotechnology Information The Online Mendelian Inheritance in Man database The Pfam collection of protein sequence alignments The PRINTS compendium of conserved protein motifs The ProDom (protein domain database) The PROSITE database of protein families and domains The Reference Sequence project The Sanger Institute The Sequence Retrieval System (SRS) at the EBI The SNP Consortium The SWISS-PROT protein sequence database The TIGRFAMs collection of protein families The TrEMBL computer-annotated protein database The UniGene human sequences collection The Whitehead Institute Center for genome research The Whole Mouse Catalog

http://www.ebi.ac.uk/embl/ http://www.ensembl.org/Homo sapiens/ http://www.ensembl.org/Mus musculus/ http://www.ncbi.nlm.nih.gov/dbEST/ http://www.ncbi.nlm.nih.gov/Genbank/index.html http://www.bcgsc.bc.ca/ http://www.tigr.org/ http://www.ebi.ac.uk/interpro/ http://www.ebi.ac.uk/interpro/scan.html http://jaxmice.jax.org/index.shtml http://www.ncbi.nlm.nih.gov/LocusLink/ http://www.sanger.ac.uk/Info/Press/001006.shtml http://www.mgc.har.mrc.ac.uk/ http://www.ncbi.nlm.nih.gov/ http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM http://www.sanger.ac.uk/Software/Pfam/ http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/ http://prodes.toulouse.inra.fr/prodom/doc/prodom.html http://www.expasy.ch/prosite/ http://www.ncbi.nlm.nih.gov/LocusLink/refseg.html http://www.sanger.ac.uk/ http://srs.ebi.ac.uk/ http://snp.cshl.org/ http://www.expasy.org/sprot/ http://www.tigr.org/TIGRFAMs/Explanations.shtml http://www.ebi.ac.uk/swissprot/ http://www.ncbi.nlm.nih.gov/UniGene/Hs.Home.html http://www-genome.wi.mit.edu/ http://www.rodentia.com/wmc/toc.html

2.5 Materials

Culture plates (Genomic Solutions #CONS1001) Ampicillin sodium salt (Sigma #A9518) Hybond N+ filters (Amersham #NK9655) 1.2 ml screw-top propylene tubes (Costar #2027) Beckman J2-MC centrifuge RNase solution, 500 µg/ml (Boehringer Mannheim #119 915) 100 X NEB BSA, 10 mg/ml (New England Biolabs #B9001S) 10 X Ligation buffer (Boehringer Mannheim #1243 292) Phenol:chloroform:isoamyl alcohol, 25:24:1 v/v (GIBCO BRL #15593-031) Taq Extender PCR additive 5 U/µl (Stratagene #600-148-81) BSA (Albumin, Bovine), 5% solution (Sigma A-4628)

Tetracycline hydrochloride (Sigma #T3383)

Glucose (BDH #10117)

EDTA (IBI #IB70182)

Innova 4000 Incubator Shaker (New Brunswick Scientific)

Isopropanol (BDH #102246L)

*Eag*I, 10,000 U/ml (New England Biolabs #505L)

5 U/µl T4 DNA ligase (Boehringer Mannheim #799 009)

Glacial acetic acid (Mallinckrodt Baker #9507-02)

100 mM adenosine 5'-triphosphate solution (Amersham Pharmacia Biotech #27-2056-01)

Perfect Match 1 U/µl (Stratagene #600-129-81)

Ammonium sulphate, enzyme grade (GIBCO BRL #5501UA) Ultrapure dNTP set 100 mM solution (Amersham Pharmacia Biotech #27-20-35-01)

Sucrose (BDH #102744B)

Human Brain Marathon-Ready™ cDNA (Clontech #7400-1)

Light white oil (Sigma #M3516)

BAC genomic filters

Costar 6511 96-well plates (M-type)

AmpliTaq DNA polymerase, 5 U/µl (Roche #N808-0145)

2-mercaptoethanol (Bio-Rad #161-0710)

Perkin Elmer DNA thermal cycler

Kodak M35I film processor

Beta cabinets, shields, bins, racks and boxes (Anachem-Scotlab)

N- Lauroyl Sarcosine (Sigma #L-5125)

Poly (dA-dC)•Poly (dG-dT) (Amersham Pharmacia Biotech #27-7940-01)

Sodium chloride (BDH #301237S)

Tri-sodium citrate (BDH #301287F)

Cresol red sodium salt (Sigma #C-9877)

Tris base (Anachem #0826)

Human Testis Marathon-Ready™ cDNA (Clontech #7414-1)

MJ thermal cycler

Hybaid OmniGene cycler

Omni seals (Hybaid #HB-TD-MT-SRS-5)

Mouse genomic DNA, 0.1 µg/µl (Clontech #6650-1)

BSA (Sigma A-2153)

HAAKE SW20 waterbath

Decon 90 (Decon Laboratories)

Innova 4080 Incubator shaker (New Brunswick Scientific)

Saran[™] wrap (Dow Chemical Co.)

Redivue [α-³²P]dCTP 10 mCi/ml, 3000 Ci/mmol

(Amersham Pharmacia Biotech #AA0005)

Super RX Fuji X-Ray film (#03G010)

Whatman filter paper (#1001 240)

Sodium dodecyl sulphate (SDS, BDH #442444H)

Whatman 3MM chromatography paper (#3030 931)

Polyvinylpyrrolidone (Sigma #PVP-40)

Innova 4000 Incubator Shaker (New Brunswick Scientific)

96-well Microtest, flat bottom plates (Falcon #353072)

HindIII, 40 U/µl (Roche Molecular Biochemicals #798983)

DNA molecular weight marker V (Roche Molecular Biochemicals #821705)

Analytical marker DNA, wide range (Promega #DG1931)

Mylar plate sealers (Dynex Technologies #5701)

Benchtop centrifuge (Eppendorf #5415C)

Ficoll Type 400-DL (Sigma #F-9378)

Vistra Green (Amersham Life Sciences #RPN5786)

Tabletop centrifuge (Sorvall #RT6000D)

Xylene cyanol (BDH #44306)

4N Sodium hydroxide solution (BDH 191373M)

Dextran sulphate (Amersham #17-0340-02)

Ficoll (Sigma #F-9378)

2ml deep 96-square-well titre plates (Beckman #140504)

Glacial acetic acid (Mallinckrodt Baker #9507-02)

10 X SuRE/Cut Buffer B (Roche Molecular Biochemicals)

Gel tanks (Owl Scientific Gator Wide Forma System model A3-1 #008100191)

> Seakem LE Agarose (FM Bioproducts #50004)

> Hamilton repeat dispenser (Hamilton Company)

Wooden cocktail sticks

Cold room regulated to 4°C

FluorImager SI Vistra Fluorescence (Molecular Dynamics)

Eppendorf Combitip Repeat Dispenser

Bromophenol blue (BDH #20015)

ExpressHyb Hybridisation solution (Clontech #8015)

Titanium Taq DNA Polymerase, 50 X (Clontech #8434)

Bruker Biflex™ III MALDI-TOF mass spectrometer

96-well V bottom plates with lids (SARSTEDT #82.1583.001)

Genesis RSP (Robotic Sample Processor) 100/8 Tecan with MβP® 50µl tips (BioRobotic Molecular BioProducts #902-262), linked to an AcerPower4100

TOMTEC THINLID [™] plate sealers (Costar #3095)

BECKMAN Multimek-96 automated 96-Channel Pipettor

> Impact multichannel pipettes by MATRIX

Shrimp alkaline phosphatase 1 U/µl (Amersham #70092)

> Roto-Shake Genie™ (Scientific Industries Inc.)

3-Pt Calibrant (Sequenom #335)

RoboDesign SpectroPOINT (Sequenom)

Clontech MTN® Blots (#7756-1, #7759-1, #7760-1)

Thermo-Fast® 384-well plates (Abgene #TF-0384)

> 0.5 ml Assay block (Costar #3956)

MATRIX technologies 100 ml disposable reagent reservoir (MATRIX #8086)

> ScotchPad™ Tape Pads (3M #0212-61618)

Microseal 'A' film (MJ Research #MSA-5001)

> Benchtop centrifuge (Eppendorf #5403)

SpectroCLEAN[™] (Sequenom[™] #10053)

Thermosequenase DNA polymerase, 32 U/µl (Amersham #79000)

SpectroCHIP (Sequenom #000153)

2.6 DNA ladders

2.6.1 1 K 024). This 1,018 bp c fragments the follow	b ladder (s contains concatenated from 75 to ing sized fra	Gibco-BRI 1 to 12 rep 1 fragment a 1,636 bp, 1 gments (bp)	and vector producing):	2.6.2 100 br #15628-019). ended fragme in multiples fragment at following size	DNA ladder This consists ents between 100 of 100 bp and 2072 bp, p ed fragments (bp	(Gibco-BRL of 15 blunt- 0 and 1500 bp an additional producing the b):
12,216	6,108	1,018	201	2,072	1,000	400
11,198	5,090	517/506	154	1,500	900	300
10,180	4,072	396	134	1,400	800	200
9,162	3,054	344	75	1,300	700	100
8,144	2,036	298		1,200	600	
7,126	1,636	220		1,100	500	

Т

2.6.3 Wide Range Analytical Marker DNA (Promega)

The Analytical Marker DNA, Wide Range, provides an evenly spaced distribution of 37 DNA fragments ranging from 702 bp to 29,950 bp in size and was used for band sizing in fingerprint experiments. This marker is composed of a mixture of restriction enzyme digests of Lambda DNA and ϕ X174 DNA.

2.7 Solutions

$\underline{T}_{0.1}\underline{E}$	<u>5 M acetate-3M K⁺ (100 ml)</u>
10 mM Tris-HCl (pH8.0)	60 ml 5 M potassium acetate
0.1 mM EDTA	11.5 ml glacial acetic acid
	28.5 ml H ₂ O
<u>1 X GTE</u>	<u>SET</u>
50 mM glucose	10 mM Tris-HCl (pH8.0)
25 mM Tris-HCl (pH8.0)	0.1 mM EDTA
1 mM EDTA	100 mM NaCl
Vectorette bubbles (1 ml)	PCR buffer 1 (1 litre)
1 nmole of XhoI or EagI primer	80 g Tris Base
1 nmole of XhoII primer	22 g (NH ₄) ₂ SO ₄
25 μl of 1 M NaCl	65 ml 1 M MgCl ₂
H ₂ O up to 1 ml	Made up to 1000 ml with ddH ₂ O
Heated to 65°C for 5 minutes and left to	
cool at room temperature	

40% sucrose/cresol red (11itre)	34.6% sucrose/cresol red (1 litre)
400 g sucrose	346 g sucrose
0.1 g cresol red	0.1 g cresol red
Made up to 1000 ml with ddH ₂ O	Made up to 1000 ml with ddH ₂ O
Northern wash solution I	Northern wash solution II
2 X SSC	0.1 X SSC
0.05% SDS	0.1% SDS
Nucleotide mix (PCR labelling)	Nucleotide mix (PCR amplification)
dATG dGTP and dTTP at a concentration	
uATO, uOTT and uTTT at a concentration	dATG, dCTP, dTTP and dGTP at a
of 5 mM each.	dATG, dCTP, dTTP and dGTP at a concentration of 5 mM each
of 5 mM each. <u>Primer mix</u>	dATG, dCTP, dTTP and dGTP at a concentration of 5 mM each <u>PCR buffer 2 (10 ml)</u>
of 5 mM each. <u>Primer mix</u> Sense and antisense primers at a	dATG, dCTP, dTTP and dGTP at a concentration of 5 mM each <u>PCR buffer 2 (10 ml)</u> 4.5 ml 1 M Tris-HCl (pH8.8)
of 5 mM each. <u>Primer mix</u> Sense and antisense primers at a concentration of 100 ng/µl each	dATG, dCTP, dTTP and dGTP at a concentration of 5 mM each <u>PCR buffer 2 (10 ml)</u> 4.5 ml 1 M Tris-HCl (pH8.8) 0.15 ml 1 M MgCl ₂
of 5 mM each. <u>Primer mix</u> Sense and antisense primers at a concentration of 100 ng/µl each <u>Cresol red solution</u>	dATG, dCTP, dTTP and dGTP at a concentration of 5 mM each <u>PCR buffer 2 (10 ml)</u> 4.5 ml 1 M Tris-HCl (pH8.8) 0.15 ml 1 M MgCl ₂ 0.1453 g (NH ₄) ₂ SO ₄
<pre>uATO, uOTT and uTTT at a concentration of 5 mM each. <u>Primer mix</u> Sense and antisense primers at a concentration of 100 ng/µl each <u>Cresol red solution</u> 0.1 g/l cresol red in T0.1E</pre>	dATG, dCTP, dTTP and dGTP at a concentration of 5 mM each <u>PCR buffer 2 (10 ml)</u> 4.5 ml 1 M Tris-HCl (pH8.8) 0.15 ml 1 M MgCl ₂ 0.1453 g (NH ₄) ₂ SO ₄ 0.35 ml H ₂ 0

Dilution buffer (pH8.5)	PCR buffer 3
8 ml T _{0.1} E	500 mM KCl
0.13 ml cresol red solution	100 mM Tris-HCl (pH 8.3)
14 μl NaOH	15 mM MgCl ₂
16 ml H ₂ O	
Northern strip solution	Dilution buffer/primer mix solution
H ₂ O/0.5% SDS	2.5 ng/ μ l of primer mix in dilution buffer
<u>20 X SSC</u>	<u>0.2 X SSC</u>
3 M NaCl	0.03 M NaCl
0.3 M Tri-sodium citrate	0.003 M Tri-sodium citrate
<u>2 X SSC</u>	Wash solution
0.3 M NaCl	0.5 X SSC
0.03 M Tri-sodium citrate	1% N-Lauroyl Sarcosine
<u>50 X TAE (11itre)</u>	<u>6 X loading dye</u>
242 g Tris	0.25% bromophenol blue
0.1 M EDTA	0.25% xylene cyanol
57.1 ml glacial acetic acid	15% Ficoll
Made up to 1,000 ml with milli-Q water	

Hybridisation buffer	Strip solution I
6 X SSC	0.4 N NaOH
2 mg/ml polyvinylpyrrolidone	Strip solution II
2 mg/ml Ficoll	0.1 X SSC
2 mg/ml BSA	0.2 M Tris-HCl (pH 7.4)
50 mM Tris-HCl (pH7.4)	1% N-Lauroyl Sarcosine
1% N-Lauroyl Sarcosine	
10% w/v dextran sulphate	
LB broth	Marker mix
10 mg/ml bacto-tryptone	1.5 µl Analytical marker DNA wide range
5 mg/ml yeast extract	0.1 µl DNA molecular weight marker V
10 mg/ml NaCl	4.2 µl 6 X loading dye
pH 7.4	19.2 µl T _{0.1} E
LB culture medium (for BAC clones)	<u>10 X TS buffer</u>
92.4 ml LB broth	260 mM Tris-HCl (pH 9.5)
7.5 ml 100% glycerol	65 mM MgCl ₂
0.1 ml 25 mg/ml chloramphenicol	

PE 10 X PCR buffer CGT stop mix 500 mM KCl ddCTP, ddGTP, ddTTP and dATG at a concentration of 5 mM each 100 mM Tris-HCl (pH 8.3) 15 mM MgCl₂ 0.01% (w/v) gelatine ACT stop mix ACG stop mix

ddATG, ddCTP, ddTTP and dGTP at a concentration of 5 mM each

ddATG, ddCTP, ddGTP and dTTP at a concentration of 5 mM each