

Copy Number Variation

and Schizophrenia

by

Gloria Wing Chi TAM

Wellcome Trust Sanger Institute Trinity College, University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy

Nov 2008

Preface

This dissertation reports the work carried out at the Wellcome Trust Sanger Institute, between April 2005 and October 2008. It is submitted for the degree of Doctor of Philosophy, contains 248 pages (excluding bibliography and appendices), 58 figures and 20 tables and does not exceed the limit set by the Degree Committee.

This dissertation is my own work and contains nothing that is the outcome of work done in collaboration with others, except as specified in the text and below.

In section 3, oligonucleotide array hybridization experiments (for the *ABCA13* deletion) were performed in collaboration with Tomas Fitzgerald (Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK).

In section 4, whole-genome tiling path array hybridization experiments were performed in collaboration with Karen Porter (Wellcome Trust Sanger Institute), who performed approximately one third of the hybridization experiments. Affymetrix SNP array experiments and analysis were performed by the International Schizophrenia Consortium (Broad Institute, Boston, Cambridge MA) and the data was provided by Prof. Douglas Blackwood (Department of Psychiatric Genetics, University of Edinburgh, Edinburgh). Perl scripts for CNV genotyping were developed by Dr Richard Redon (Wellcome Trust Sanger Institute).

I hereby declare that I am the sole author of this dissertation and no part of the work contained in this dissertation has been previously submitted for any other degree.

Gloria Wing Chi TAM

Abstract

Schizophrenia is a debilitating psychiatric illness affecting 1% of the population worldwide. The aetiology of schizophrenia is largely unknown, and deciphering schizophrenia genetics has remained a major challenge during the past decades in psychiatric research. In the past, visible alterations of the genome have been recognized as the underlying causes in a number of cognitive or behavioural defects. Structural chromosomal abnormalities, such as the 22q11 microdeletion and the Disrupted in Schizophrenia 1 (*DISC1*) translocation, were demonstrated to play a role in a proportion of schizophrenia cases. Furthermore, recent studies have identified a number of novel recurrent submicroscopic copy number changes significantly associated with schizophrenia (ISC 2008; Stefansson et al. 2008). This thesis describes a multi-faceted investigation to identify schizophrenia-related copy number variations (CNVs), defined as deletions and duplications larger than 1 kb in the genome.

As a first approach I performed array CGH on the whole-genome tiling path (WGTP) platform to screen for CNVs in three familial cases. Each pedigree consists of multiple patients affected with schizophrenia and other psychiatric illnesses. I identified a duplication on chromosome 1p36 common to all four affected members in one family, which was not identified in the normal HapMap controls (n=269). The CNV extends from the gene *H6PD* (Hexose-6-phosphate dehydrogenase precursor) to *SPSB1* (SPRY domain-containing SOCS box protein SSB-1). Using quantitative PCR, long range PCR and Fiber-FISH, I sequenced iii

the duplication breakpoint and delineated the structure of this potential pathogenic variant. Next, in a candidate-gene targeted approach I screened a multiplex schizophrenia family for CNVs in the gene *ABCA13* (ATP Binding Cassette Gene 13) at 7p12. I demonstrated the segregation of an intronic deletion with disease status.

Complementary to the family-based approach, I designed a population-based CNV study in schizophrenia versus matched control cohorts. Still using WGTP arrays, I performed a genome-wide screen for CNVs in 91 Scottish schizophrenia patients and 92 Lothian Birth Control DNA samples. In the WGTP dataset I identified a previously established schizophrenia-associated deletion at 15q11.2 (Stefansson et al. 2008) in a schizophrenia patient, near the CYFIP1 (cytoplasmic FMR1 interacting protein 1 isoform) gene. I also identified a number of rare variants overlapping genes that are linked to various psychiatric diseases, including SGCE (sarcoglycan, epsilon), OXTR (Oxytocin) and RCAN1 (Down Syndrome Critical Region 1). My results are consistent with recent reports demonstrating the role of rare CNVs in schizophrenia (ISC 2008, Walsh et al. 2008). In terms of common copy number variations, I genotyped 577 common CNVs using the WGTP data, and identified 31 candidates with putative bias in genotype distributions in cases versus controls. Two of these candidates, one at 3p26 and another at 15q13, were genotyped in an extended case-control cohort. Neither of them showed significant association with disease in the extended cohort.

iv

The last approach was based on the hypothesis that CNVs could be linked to variations in learning, memory and brain function, both in the normal population and in psychiatric patients. The strategy involved a CNV screen on a set of proteins with important neuronal and synaptic functions. The NMDA receptor complex (NRC/MASC) was selected due to known roles of its components in cognitive and behavioural traits. Out of 186 NRC/MASC proteins, 20 of them showed CNVs in normal HapMap individuals. Four of these were linked to components of the core synaptic machinery, including a common CNV at *DLG1* (Discs, Large homolog 1 (Drosophila)). In addition, I investigated the multi-allelic variant at 17q21 near the gene N-ethylmaleimide-sensitive factor (*NSF*). I identified two major CNV blocks with interesting population bias, and identified for the first time a European-specific haplotype in an allelic variant known as H1.

Acknowledgements

Firstly, I would like to express my deepest gratitude towards my supervisors, Professor Seth Grant and Dr Nigel Carter. Their continuous support, advice and guidance have made my research life a lot more rewarding than it would have been. I am also particularly grateful to Dr Richard Redon, who has frequently inspired me on scientific ideas and technical knowledge, as well as communication skills and thought processes. My PhD studies were greatly enhanced by the generous support and patience from these three mentors.

I would also like to thank all members of the labs in Team 32 and Team 70, in particular Karen Porter and Tomas Fitzgerald, who have contributed to parts of the research work described in this thesis, as well as being supportive and joyful companions in the lab. I am also grateful to everyone who has provided me with advice, scientific discussions and technical support, including Dr Louie Van de Lagemaat, Dr Norboru Komiyama, Dr Fengtang Yang, Dr Jianxiang Chi (University of Oxford), Diane Rigler, Diana Rajan, Dr Douglas Strathdee, Kathryn Elsegood, Ellie Tuck, Dr Lianne Stanford and Charles Pettit.

I would like to express my appreciation to members of my thesis committee, Professor Nabeel Affara (Department of Pathology, University of Cambridge) and Professor Allan Bradley, for their scientific insights and constructive comments during my PhD reviews.

vi

I would like to acknowledge my research collaborators at the University of Edinburgh, including Professor Douglas Blackwood, Professor Ian Deary, Dr. Walter Muir, Dr. Ben Pickard, Mary Malloy and Margaret Van Beck, for the provision of DNA samples, CNV data and the useful discussions on the clinical aspects of the project.

Special thanks go to the Wellcome Trust and Trinity College (University of Cambridge) for providing financial support. Last but not least, I am grateful to my family and all my friends for their endless love and support, and finally to Anson Ma for the wonderful years we have spent in Cambridge.

* Affiliation: Wellcome Trust Sanger Institute, unless otherwise specified in brackets.

Gloria Tam

November 2008.

List of Figures

Figure 1.1 Types of genetic variants and their relative sizes
Figure 1.2 Comparative Genome Hybridization applied on a cancer cell line revealed amplification of the myc locus 10
Figure 1.3 Schematics of an array comparative genome hybridization experiment13
Figure 1.4 Sensitivity and throughput of various CNV detection techniques
Figure 1.5 Non-allelic homologous recombination by low copy repeat
Figure 1.6 Phenotypic effects of CNVs
Figure 1.7 Lifetime risk of developing schizophrenia based on relationship
Figure 1.8 Genomic loci of the three novel recurrent deletions associated with schizophrenia 67
Figure 1.9 Schematic diagram of the synapse displaying known involvement of synaptic proteins in schizophrenia CNV loci
Figure 2.1 Amplified DNA samples after BioPrime Labelling Procedure
Figure 2.2 PCR genotyping of a deletion at 3p26 5' upstream of Close Homolog of L1 (CHL1)
Figure 2.3 Long Range PCR gel electrophoresis analysis of a tandem duplication at Chr1p36
Figure 2.4 Dissociation curves analysis for different primer sets
Figure 2.5 A typical standard curve of the control primer
Figure 2.6 Labelled DNA probes for Fluorescent In Situ Hybridisation
Figure 3.1 Three families analysed by whole-genome CNV screen
Figure 3.2 qPCR validation of duplication 1p36 in Pedigree F-29 109
Figure 3.3 Delineation of 1p36.22 duplication structure by Fiber-FISH112
Figure 3.4 Sequencing breakpoints of 1p36.22 revealed repeat structures
Figure 3.5 Array CGH detection of the 7p12 deletion for Patient 4398
Figure 3.6 Array CGH profiles for all available members in Family 340120

Figure 4.1 Case and control cohorts and CNV detection platforms used in our study
Figure 4.2 Normalization and filtering steps applied to WGTP hybridization data before CNV analysis
Figure 4.3 WGTP array quality control indicators 131
Figure 4.4 Frequency and types of CNVs and CNVRs in SCZ and LBC
Figure 4.5 Size and frequency distributions of CNVRs in Schizophrenia (SCZ) and Lothian Birth Control (LBC) Cohorts detected using the WGTP platform
Figure 4.6 CNVR gene content in the SCZ and LBC cohorts
Figure 4.7 Correlation of CNV discovery rate with data quality in SCZ and LBC 136
Figure 4.8 WGTP data compared with 4 known schizophrenia CNV loci
Figure 4.9 WGTP data detected a deletion at 15q11.2 in one patient140
Figure 4.10 WGTP CNV dataset validation strategies
Figure 4.11 Schizophrenia cohort-specific CNVRs containing brain-related or neuronal- related genes
Figure 4.12 Recurrent SCZ-specific CNVR regions detected by both WGTP and Affymetrix platforms
Figure 4.13 Vst scores to identify clones showing SCZ and LBC differentiation in the WGTP analysis
Figure 4.14 Examples of bivariate clustering based on log2ratio of consecutive clones
Figure 4.15 Three regions with significant difference of genotype distributions betweenSCZ and LBC as detected by bivariate clustering
Figure 5.1 A copy number polymorphism at chromosome 3p26.3 was detected by three BAC clones
Figure 5.2 CHL1 CNV genotypes from bivariate clustering 175
Figure 5.3 Genomic location of the CHL1 5' CNV
Figure 5.4 CHL1 expression level against BAC clone log2ratio in HapMap samples178
Figure 5.5 Genotyping of the CHL1 5' deletion polymorphism in HapMap samples 179
Figure 5.6 <i>CHL1</i> gene expression against copy number of the <i>CHL1</i> 5' CNV in HapMap CEU samples

Figure 5.7 The 15q13-14 genomic locus
Figure 5.8 The three existing polymorphic structures of CHRFAM7A allele at 15q13- 14
Figure 5.9 Copy number polymorphism at 15q13.2-13.3 spanning the geneCHRFAM7A194
Figure 5.10 CHRFAM7A CNV genotype distributions in cases versus controls195
Figure 5.11 Analysis of a typical Taqman qPCR experiment to determine <i>CHRFAM7A</i> genotypes. In each 96-well plate 40 samples (+2 controls) were genotyped197
Figure 6.1 Schematic diagram of a glutamatergic excitatory synapse
Figure 6.2 Log2ratio distributions for WGTP clones reporting CNV among 269 HapMap samples in 20 MASC regions
Figure 6.3 CNVs affecting core components of the NRC/MASC signalling complex 212
Figure 6.4 Schematic representation of the 17q21 locus
Figure 6.5 Array CGH genomic profiles of the 3 HapMap ethnic groups at chr17q21.219
Figure 6.6 Population differentiation at two major CNV blocks at 17q21220
Figure 6.7 High resolution oligo array CGH profiles for 20 individuals at chr17 41.5 Mb- 42.2 Mb. 222
Figure 6.8 Quantitative PCR validation of $CNV_{KIAA1267}$ and CNV_{NSF}
Figure 6.9 Fiber-FISH experiment to visualize copy number of CNV _{NSF}
Figure 6.10 Comparing SCZ and LBC samples at $CNV_{KIAA1267}$ and CNV_{NSF}
Figure 6.11 Locations of derived and ancestral loci of segmental duplications at 17q21228
Figure 7.1 Identification of CNVs as disease risk loci for further characterization 247

List of Tables

Table 1.1 Two most influential diagnostic guidelines for schizophrenia the DSM-IV and ICD-10
Table 1.2 Schizophrenia candidate genes with evidence from linkage and association analysis 56
Table 1.3 Three novel recurrent deletions associated with schizophrenia
Table 2.1 Cycling protocol for general PCR amplification 90
Table 2.2 Cycling protocol for long-range PCR amplification
Table 2.3 Reagent mixture for each Taqman quantitative PCR assay
Table 2.4 Cycling protocol for Quantitative PCR amplification
Table 3.1 Known genomic rearrangement at 1p36.22. 115
Table 3.2 Schizophrenia patients with DNA analysed on custom arrays
Table 4.1 Validated SCZ-specific rare variants
Table 4.2 SCZ-specific rare variants with genes associated with psychiatric disorders. 146
Table 4.3 Recurrent SCZ-specific variants as detected in 297 SCZ samples
Table 4.4 Validating 5 top Vst-regions using custom-design oligonucleotide array160
Table 5.1 CHL1 5' CNV distribution determined by the original genome-wide array CGH data
Table 5.2 CHL1 5' CNV distribution in an extended case-control cohort determined by PCR genotyping. 182
Table 5.3 Previous reports associating the 15q13-14 locus to schizophrenia and related psychiatric disorders 189
Table 5.4 CHRFAM7A CNV genotype distributions in the extended case and control cohorts. 198
Table 6.1 CNVs detected at 20 genes encoding NRC/MASC signalling complex components 206
Table 6.2 CNV genotypes for all unrelated HapMap individuals at $CNV_{KIAA1267}$ and CNV_{NSF}
Table 6.3 SCZ and LBC genotype counts at $CNV_{KIAA1267}$ and CNV_{NSF}

List of Abbreviations

ADEOAD Autosomal Do	minant Form of Early-Onset Alzheimer Disease
Alu a family of rep	eat elements named after the Alul restriction site
AS Angelman Syr	ndrome
ASD Autism Spectr	um Disorder
BAC Bacterial Artifi	cial Chromosome
bp Base Pairs	
CAA Cerebral Amy	oid Angiopathy
CD-CV Common-Dise	ease Common-Variant
CD-RV Common-Dise	ease Rare-Variant
CEU HapMap DNA	: Utah samples with European ancestry
CGH Comparitive G	enome Hybridisation
CHB HapMap DNA	: Chinese samples with Asian ancestry
CNP Copy Number	Polymorphism
CNV Copy Number	Variation
CNVR Copy Number	Variation Region
COS Childhood-On	set
cR combined ratio)
Cy3 Indocarbocyar	nine
Cy5 Indodicarbocy	anine
DECIPHER Database of C	hromosomal Imbalance
DGS DiGeorge Syn	drome
DGV Database of G	Genomic Variants
DISC1 Disrupted In S	chizophrenia 1

dNTP	Deoxynucleoside Triphosphate
DOP-PCR	Degenerate Oligonucleotide Primed Polymerase Chain Reaction
DSBs	Double Stranded Breaks
DSM-IV	Diagnostic and Statistic Manual of Mental Disorder- 4th Edition
ECS	Electroconvulsive Shocks
ESP	Clone-End Sequence-Pair
EtOH	Ethanol
FISH	Fluorescent In Situ Hybridisation
GAD	Genetic Association Database
G-banding	Giemsa-banding
GWAS	Genome-Wide Association Studies
ICD-10	International Statistical Classification of Diseases and Related Health Problems 10th Revision
INDEL	Insertions and Deletions in a chromosome
ISC	International Schizophrenia Consortium
JPT	HapMap DNA: Japanese samples with Asian ancestry
kb	Kilo Base (One Thousand Base Pairs)
LBC	Lothian Birth Control Cohort
LCR	Low Copy Repeat
LD	Linkage Disequilibrium
LINE	Long Interspersed Nuclear Element
LOD	Logarithm of Odds
LOH	Loss of Heterozygosity
LTP	Long-Term Potentiation
Μ	Molar
MAGUK	Membrane-Associated Guanylate Kinase

МАРН	Multiplex Amplifiable Probe Hybridisation
MAQ	Multiplex Amplicon Quantification
MASC	MAGUK Associated Signaling Complex
Mb	Mega Base
min	Minute
MLPA	Multiplex Ligation-Dependent Probe Amplification
MR	Mental Retardation
MRI	Magnetic Resonance Imaging
mRNA	Messenger RNA
NAHR	Non-Allelic Homologous Recombination
NHEJ	Non-Homologous End Joining
NMDA	N-Methyl-D-Aspartate
NRC	NMDA Receptor Complex
nt	Nucleotide
OMIM	Online Mendelian Inheritance In Man
OR	Odds Ratio
PBS	Phosphate-Buffered Saline
PCP	Phencyclidine
PCR	Polymerase Chain Reaction
PEM	Paired-End Mapping
PET	Poisitron Emission Tomography
PFGE	Pulsefield Gel Electrophoresis
PPI	Prepulse Inhibition
PSD	Postsynaptic Density
PWS	Prader Willi Syndrome

qPCR	Quantitaive PCR
RACE	Rapid Amplification of cDNA Ends
rcf	Relative Centrifugal Force
RNA	Ribonucleic Acid
rpm	Revolutions Per Minute
SCZ	Schizophrenia Cohort
SD	Segmental Duplication
SDe	Variability Measure for Array CGH Experiments
SINE	Short Interspersed Nuclear Element
SKY	Spectral Karyotype
SNP	Single Nucleotide Polymorphism
Tm	Melting Temperature
VCFS	Velo-Cardio-Facial Syndrome
VNTR	Variable Number Of Tandem Repeat
Vst	A varinace-based measure to compare quantitative data from different cohorts
WGTP	Whole Genome Tiling Path
YRI	HapMap DNA: Yoruba samples with African ancestry

CHAPTER 1 INTRODUCTION

1.1 COPY NUMBER VARIATION (CNV) AS A SOURCE OF GENETIC DIVERSITY		
1.2	DETECTION OF COPY NUMBER VARIATION	7
1.2. 1.2.3 1.2. 1.2. 1.2.4 1.2. 1.2. 1.2. 1.2.5 1.2.5 1.2.5	 2.1 BAC Array CGH 2.2 Oligonucleotide Array CGH 2.3 Choice of Reference DNA for Array Hybridization	.11 .12 .14 .15 .16 .17 .19 .20 .20 .22 .22 .22
1.3	MECHANISMS OF COPY NUMBER VARIATION GENERATION	25
1.3.1 1.3.2 1.3.3 1.3.4	Non-allelic Homologous Recombination Non-homologous End Joining Other Mechanisms Insights from Breakpoint Mapping	.26 .27
1.3.2 1.3.3	Non-homologous End Joining Other Mechanisms	.26 .27 .27
1.3.2 1.3.3 1.3.4 1.4 1.4.1 1.4. 1.4. 1.4. 1.4. 1.4. 1.4.	Non-homologous End Joining Other Mechanisms Insights from Breakpoint Mapping	.26 .27 .27 30 .30 .32 .34 .35 .35 .36 .38 .38 .40
1.3.2 1.3.3 1.3.4 1.4 1.4.1 1.4. 1.4. 1.4. 1.4. 1.4. 1.4.	Non-homologous End Joining Other Mechanisms Insights from Breakpoint Mapping BIOLOGICAL IMPACT OF COPY NUMBER VARIATION Phenotypic Effect of CNVs 1.1 CNV and Expression 1.2 CNV and Gene Disruption Phenotypic Variations and Evolution 2.1 CNV and Human Traits 2.2 Positive and Negative Selections on CNV CNV and Disease 3.1 Genome Disorder 3.2 Rare CNVs in Mendelian Disease Traits	.26 .27 .27 .30 .32 .34 .35 .35 .36 .38 .40 .41

1.5.2.1 Positive and Negative Symptoms	47
1.5.2.2 Endophenotypes	
1.5.2.3 Course of Illness	
1.5.2.4 Standardised Diagnostic Methods	
1.5.3 Aetiology and Neurobiology	
1.5.3.1 Dysfunction of Neurotransmitter Systems	
1.5.3.2 Neurodevelopment and Neuropathology	52
1.5.4 The Genetics of Schizophrenia	53
1.5.4.1 Evidence of Genetic Contribution	53
1.5.4.2 A Search for Candidate Genes	54
1.5.4.3 Genes and Environment	57

1.6 CNV IN SCHIZOPHRENIA AND OTHER PSYCHIATRIC DISEASES 58

1.6.1 Early Studies on Chromosomal Abnormalities in Schizophrenia	
1.6.1.1 DISC1 and Breakpoint Study in Schizophrenia	
1.6.1.1 22q11 Microdeletion and Schizophrenia	
1.6.2 Large Scale CNV Screen in Schizophrenia Patients	
1.6.1.1 Summary of CNV Findings	
1.6.2.1 Identification of Large Recurrent Schizophrenia Loci	65
1.6.2.2 Increased Mutation Burden of CNV in Schizophrenia Patients	69
1.6.2.3 Rare Variants Converging into Neurodevelopmental Pathways	70
1.7 SCOPE OF THESIS	77

CHAPTER 2 MATERIALS AND METHODS

2.1 ARRAY COMPARATIVE GENOME HYBRIDIZATION (ARRAY CGH)80

2.1.1 2.1.2	Patient and Control DNA Samples DNA Labelling	
2.1.3	Sample Precipitation and Preparation	
2.1.4	Array Hybridisation	
2.1.5	Image Acquisition and Data Analysis	83
2.2	AGILENT OLIGO CUSTOM-DESIGNED ARRAY CGH	86
2.2.1	Custom Array Designs	
2.2.2	DNA Labelling	
2.2.3	Preparation of Labelled Genomic DNA	
2.2.4	Array Hybridisation	87
2.2.5	Slide Washing	
2.2.6	Image Acquisition and Data Analysis	
2.3	POLYMERASE CHAIN REACTION (PCR)	90
2.3.1	PCR genotyping of the 3p26 Deletion near CHL1	90
		xvii

2.3.2	Long Range Polymerase Chain Reaction (LR-PCR)	92
	Quantitative Real-time Polymerase Chain Reaction (qRT-PCR)	
2.3.3.	1 SYBR Green Method	94
2.3.3.	2 Tagman Method with MGB Probes	95
2.3.3.	3 Thermal Cycler and Reaction Condition	95
	4 Standard Curve Generation	
	5 DNA Quantification and Data Analysis	

2.4.1	Growing Cell lines	
2.4.2	Preparation of Extended Chromatin Fibre Slides	
2.4.3		
2.4.4	Amplification and Labeling of DNA probes	
	1 GenomePlex® Whole Genome Amplification	
2.4.4	2 DNA Fluorescent Labelling	
	3 Probe Fragmentation	
2.4.5	Immunofluorescence and Image Acquisition	

CHAPTER 3 FAMILIAL STUDY IN SCHIZOPHRENIA

3.1	WHOLE-GENOME CNV SCREEN IN FAMILIES	106
3.1.1	Whole-genome Array CGH Screen in Three Familial Cases	
3.1.2	Characterization of the Rare Familial Duplication at 1p36.22	110
3.1.3	Known Genomic Rearrangements Near the 1p36.22 duplication	114
3.2	DELETION AT ABCA13 IN AN EXTENDED FAMILY WITH	
SCHI	ZOPHRENIA	116
3.2.1	Evidence of Functional Mutations of ABCA13 at 7p12.3	116
3.2.2	Oligo Array CNV Screen in an Extended Pedigree	118
3.3	CHAPTER SUMMARY AND DISCUSSION	

CHAPTER 4 POPULATION-BASED CNV STUDY IN SCHIZOPHRENIA

4.1.	EXPERIMENTAL DESIGN AND ARRAY DATA QUALITY CONTROL.	.127
4.1.1 4.1.2	Case-Control CNV Screen Experimental Design WGTP Array Data Quality Control	
4.2	COPY NUMBER VARIATION DETECTION ON THE WGTP ARRAY	.132
4.2.1 4.2.2	Distribution of CNVs and CNV Regions in Case and Control Cohorts Bias of CNV Discovery Rate in SCZ Versus LBC	
4.3 REGI	COMPARING WGTP DATA WITH KNOWN SCHIZOPHRENIA CNV	.137
4.4	RARE VARIANTS SPECIFIC TO THE SCHIZOPHRENIA COHORT	.141
4.4.1 4.4.2 4.4.3	Rare Variant Detection Using Consecutive Clone Calling Criteria Validation of SCZ-Specific Rare Variants Rare Variants in SCZ with Genes Involved in Psychiatric Disorders	142
4.5	RECURRENT SCZ-SPECIFIC VARIANTS IN EXTENDED COHORT	.150
4.5.1 4.5.2	A CNVR at Down Syndrome Critical Region 1 (RCAN1/DSCR1) A Variant Near Olfactomedin1 and other Recurrent CNVRs	
4.6	FREQUENT COPY NUMBER VARIATIONS IN SCZ AND LBC	.156
4.6.1 4.6.2	Variance-based Clone-by-Clone Cohort Comparison CNV Genotyping with Bivariate Clustering	
4.7	CHAPTER SUMMARY AND DISCUSSION	.165
CHAPTER 5 GENOTYPING TWO SCHIZOPHRENIA CNVS IN AN EXTENDED CASE CONTROL COHORT		

5.1	CANDIDATE I: CHL1 (CLOSE HOMOLOG OF L1) AT 3P26	170
5.1.1	Functional Significance of CHL1	170
5.1.2		
5.1.3		
5.1.4	I I I I I I I I I I I I I I I I I I I	
5.2	CANDIDATE II: CHRFAM7A (CHRNA7-FAM7A FUSION GENE) AT	102

5.2.1	Genomic Architecture at chromosome 15q13-14	
5.2.2	Molecular Genetic Studies linking 15g13-14 to Schizophrenia	
5.2.3	e , ,	
5.2.4	Copy Number Polymorphism at the CHRFAM7A Region	

5.3 CHAPTER SUMMARY AND DISCUSSION......199

CHAPTER 6 CNVS AND THE NMDA RECEPTOR COMPLEX

6.1 NMDA RECEPTOR COMPLEX, SCHIZOPHRENIA AND COGNITION..203

6.2 COPY NUMBER VARIATION AND THE NMDA RECEPTOR COMPLEX 205

6.3 CNV AT 17Q21 NEAR N-ETHYLMALEAMIDE-SENSITIVE FACTOR (NSF) 213

6.4	CHAPTER SUMMARY AND DISCUSSION	229
6.3.8	Evolutionary History of CNVNSF and CNVKIAA1267	228
6.3.7	CNVNSF and CNVKIAA1267 in Schizophrenia Versus Control	
6.3.6	Genotyping HapMap Individuals for 17q21 Structural Variants	
6.3.5	Validating CNVNSF and CNVKIAA1267 by qPCR and FISH	223
6.3.4	Resolving CNVKIAA1267 with SNP and High Resolution Oligo Array Data	221
6.3.	3.2 CNV _{KIAA1267} . Copy number Variant at KIAA1267	218
6.3.	3.1 CNV _{NSF:} Copy number Variant at 5' end of NSF	217
6.3.3	Array CGH Data Reveals Two Major CNVs at 17q21	217
6.3.2	Known Genomic Structure of 17q21	215
6.3.1	Introduction to the 17q21 locus near NSF	213

CHAPTER 7 GENERAL DISCUSSION

7.1	DESIGN OF CNV DISCOVERY AND ASSOCIATION STUDY	232
7.1.1	Multiple Approaches of CNV Study	232
7.1.2	Future Large-Scale CNV Studies	234
7.1.3	Enrichment of Schizophrenia Subtypes	235
7.2	UNDERSTANDING THE GENETIC MODEL OF SCHIZOPHRENIA	237
7.2.1	Rare Variants Versus Common Variants	237
7.2.1 7.2.2	Rare Variants Versus Common Variants Incomplete Penetrance and Expressivity	

7.3	CLINICAL RELEVANCE OF CNVS IN SCHIZOPHRENIA	241
	CNV Findings Translating into Disease Classification	
7.4	THESIS SUMMARY	244
7.5	FUTURE DIRECTION	246
REFE	RENCE	249
APPE	NDICES	278