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Summary

From fertilisation onwards, the cells of the human body continuously experience damage

to their genome, either from intrinsic causes or from exposure to mutagens. While the vast

majority of DNA damage is repaired and the genome is replicated with extremely high

fidelity, cells steadily acquire single nucleotide variants throughout life. Since cells pass these

genetic changes on to their descendants, mutations shared between any two cells therefore

imply a shared developmental path. In essence, these somatic mutations connect all cells

together into one large phylogenetic tree of human development with the zygote at the root.

Reconstructing phylogenies of human development requires readouts of somatic mu-

tations present in single cells. Recently, low-input whole-genome sequencing following

laser-capture microdissection has allowed us to reliably call somatic mutations in distinct

single-cell derived physiological units, such as colonic crypts and endometrial glands, while

retaining spatial information on a microscopic level. In this way, I reconstructed large-scale

phylogenies of cells from many different organs of three individuals. These phylogenetic

trees recapitulate the early stages of embryonic development and asymmetric cell allocation

in the blastocyst, as well as later clonal expansions such as benign prostatic hyperplasia and

neoplastic polyp formation.

In a similar way, I also used somatic mutations to investigate the emergence of paediatric

cancer, which is thought to be closely linked to aberrations in development. In the context of

phylogenetic analyses of tumours, mutations shared between childhood cancers and different

normal tissues can shed light on the embryonic lineage of tumours and may reveal the precise

juncture at which tumours began to form. Accordingly, I studied the origin of Wilms tumour,

the most common childhood cancer of the kidney. I discovered that these tumours often arise

from large tissue-resident precursor clones residing in the normal kidney. These embryonal

precursors represent an early clonal expansion driven by H19 hypermethylation.

Lastly, using somatic mutations I discovered that the human placenta is made up of large

clonal patches of closely related trophoblast cells. Comparing early embryonic mutations

between placental lineages and umbilical cord DNA, which is derived from the inner cell

mass, revealed that in approximately half of the cases, a trophectodermal lineage shares no

somatic mutations with the umbilical cord. Furthermore, in a quarter of cases, the umbilical
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cord is entirely derived from a progenitor later than the zygote. This indicates a natural early
segregation between these lineages and a pathway to generate confined placental mosaicism.

This dissertation as a whole provides a new framework to study normal and aberrant hu-
man development from whole-genome sequencing. The ability to reconstruct developmental
lineages retrospectively can answer fundamental questions about human development and
carcinogenesis.
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