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Abstract

 The notochord is a vital and defining organ in vertebrates.  Mutagenesis 

screening in zebrafish identified seven ‘dwarf’ mutants that lack notochord 

development; grumpy, sleepy, bashful, dopey, happy, sneezy and doc.  This thesis is 

concerned with the identification and positional cloning of the doc locus as well as 

the confirmation and characterisation of the dopey and happy loci.  Previous 

positional cloning efforts identified the grumpy, sleepy and bashful genes, 

demonstrating a requirement for the laminin chains 1, 1 and 1 in formation of the 

notochord basement membrane (Parsons et al., 2002b; Pollard, 2002) and the mutant 

sneezy, which has been shown to encode the COPI subunit  (Coutinho et al., 2004).

This thesis establishes that the doc locus lies within a 0.5Mb region on 

linkage group 18, containing several genes, including a novel gene encoding a 

predicted protein with 14 WD40 domains.  Antisense morpholino (MO) knock-down 

of doc results in a phenocopy of doc and insitu expression demonstrates that this 

gene is expressed specifically within the notochord during development.  Expression 

analysis of echidna hedgehog (ehh) demonstrated that MO knock-down of this gene 

results in a lack of notochord differentiation.  I therefore expect this novel gene is 

doc.

 Analysis of the mutants dopey and happy has demonstrated that they encode 

the coatomer subunits COP ’ and COP  respectively.  Expression of these and other 

COPI subunits demonstrate that the majority of COPI subunits are up-regulated 

within the notochord during development and maintained abnormally in COPI 

deficient embryos.  I have investigated the mechanism of coatomer gene regulation 
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and found that loss of coatomer function leads both to up-regulation of coatomer 

mRNA and activation of the unfolded protein response (UPR). Suggesting that the 

UPR is the regulator of mRNA expression, functioning to maintain the secretory 

network during development, though work to provide definitive proof remains. 
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To my mum, who taught me and to Zoë, who keeps me sane. 
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It is not enough to have a good mind; the main thing is to use it well. 

Rene Descartes 1596-1650 

Creationists make it sound as though a “theory” is something you dreamt up after 

being drunk all night. 

Isaac Asimov 1920-1992 
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