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Abstract 

 

Systematic analyses of loss-of-function phenotypes have been carried out for the 

majority of genes in S. cerevisiae, C. elegans, and D. melanogaster. While these studies 

greatly expand our knowledge of individual gene functions, they do not address 

redundancy in genetic networks nor do they attempt to identify genetic interactions. 

Developing tools for the systematic mapping of genetic interactions is thus a crucial step 

for exploring gene networks. 

I established protocols for simultaneously targeting multiple genes by RNA 

interference (RNAi) in C. elegans using bacterial feeding (‘combinatorial RNAi'). This 

approach allows me to examine interactions between any pair of genes and to detect the 

great majority of previously known synthetic lethal (SL) and post-embryonic synthetic 

genetic interactions.  I used this technique to provide the first large-scale analysis in any 

organism of the redundant functions of gene duplicates. Focusing on genes that have been 

duplicated in the genome of C. elegans since divergence from either S. cerevisiae or D. 

melanogaster, I identified 16 out of 143 of duplicated gene pairs amenable to analysis by 

combinatorial RNAi to be at least partially functionally redundant. Intriguingly, the 

majority of these redundant gene pairs were duplicated before the split of C. elegans and 

C. briggsae 80-110 million years ago. My findings support population genetics models, 

which suggest that redundancy is not just a transient side effect of recent gene duplication 

but is instead a phenomenon that can be maintained over substantial periods of 

evolutionary time. 

While I have identified functional redundancy between gene duplicates, most 

redundancy in genetic networks tends to be more complex. The majority of synthetic 

lethal interactions that were uncovered in S. cerevisiae occur between genes unrelated at 

the sequence level. To date, there is still much debate about how such ‘higher-order’ 

functional redundancy might arise, whether it is a selectable trait, and whether such 

redundancy can be conserved throughout evolution. Thus, to shed light on the evolution 

of genetic interactions, I investigated the conservation of gene networks between S. 

cerevisiae and C. elegans. Using an RNAi-based approach, I set out to explore whether 
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individual synthetic lethal interactions uncovered in S. cerevisiae are retained in C. 

elegans. I found synthetic lethal interactions to be poorly conserved between yeast and 

worm — despite the very high degree of conservation of individual gene functions — 

demonstrating a substantial evolutionary plasticity of complex gene networks. My results 

suggest that SL interactions are unlikely to be explained by simple models of genetic 

redundancy and led me to propose a novel model for the interpretation of SL interactions. 

In this view (‘induced essentiality’), SL interactions represent a special form of 

conditional essentiality. 
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