
Chapter 1

Cellular identity in the genomics era

Cell biologists have attempted, from the inception of the discipline, to categorize the
extensive variability of cells that are found in Nature. This endeavour is hampered by
the intrinsic complexity of cells, which associated to their small size and sensitivity
to the surrounding environment, makes cellular phenotypes hard to probe in an
integrated and comprehensive way. The last decade however has seen extraordinary
improvements in the detail to which molecules can be assayed in individual cells.
Single-cell RNA-sequencing (scRNA-seq) has for the first time provided an unbiased,
transcriptome-wide census of RNA molecules for one cell at a time. By acquiring the
transcriptome of large numbers of cells, we can group them by their gene expression
programmes - a proxy for their function - and thus define their cell identity. The
definition of this cell type identity from the massive amounts of transcriptome data
produced in recent years has required the continuous adoption of new computational
and analytical methodologies.

This chapter provides an introduction to the definition of cell types. It will
show how more recently developed experimental and computational approaches are
shaping our understanding of how cells are categorized.

1.1 Cell type discovery and definition

The term "cell" was coined by Robert Hooke in the 17th century to describe the empty
cell walls he observed in cork samples through his microscope (Hooke, 1667). This
observation was complemented some years later, when Antonie van Leeuwenhoek
first observed live unicellular organisms and other cells with a microscope composed
of more powerful lenses (Mazzarello, 1999). Research and observations in the
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following 200 years led to the formulation of cell theory. Its first tenet was introduced
by Schleiden and Schwann, and states that all living structures are composed of cells
or their byproducts (Schwann, 1847). The theory was later complemented by Robert
Remak, Rudolf Virchow, and Albert Kölliker to include the postulate that all cells
are derived from other cells (in the latin formulation popularized by Virchow, omnis
cellula e cellula).

These early studies looked at a variety of sources to unveil different types of cells.
Leeuwenhoek reported observations from blood, brain, muscle and semen (Leeuwen-
hoeck M, 1674; Leeuwenhoek Antoni Van, 1677). Subsequent developments of
microscopy techniques led to improved imaging of a variety of tissues and the cells
that compose them. For the first centuries of cell biology, microscopy was the method
of choice to identify cell types. While this was mostly due to the relatively reduced
knowledge of cellular biochemistry, it was immediately apparent that morphology
was intrinsically tied to cellular function. The most illustrative example of this is the
neuron, whose unique structure was only unravelled after subsequent improvements
in tissue preparation and staining, as well as increases in resolution and development
of electron microscopy (Mazzarello, 1999). Microscopy was also important in under-
standing where cell types come from by mapping their developmental origin. The
three germ layers - endoderm, mesoderm, ectoderm - were identified in the 19th
century, and was postulated that each of them would give rise to different sets of tis-
sues (Collins and Billett, 1995). Developmental studies have since had a central role
in defining cell lineages, and thus how cell types are related. Advances in microscopy
were also crucial to the identification of organelles. While larger structures, like
nuclei, are still identifiable with simpler microscopes (Brown, 1866), others required
improved resolution and staining or preparation to be identified (Golgi and Lipsky,
1989). Other advancements in microscopy like live-cell imaging or super resolution
microscopy are constantly perfected to expand the boundaries of cellular functional
characterization.

Advances in biochemistry and molecular biology revealed that most organic
molecules that compose cells are directly responsible for their function. Proteins
are responsible for most cellular functions, being involved in enzymatic reactions,
signalling and regulatory pathways or structural components. They became a prime
target for cellular phenotyping with the development of immunostaining (Coons
et al., 1941), whereby an antibody that specifically targets a certain protein is usually
tagged with a fluorophore. Immunostaining can identify protein expression in tissue
slices, and the use of different fluorophores allows for the imaging of cells expressing
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multiple proteins. The usefulness of immunostaining became especially apparent
when it was combined with high-throughput microfluidics methods and used for
fluorescence-activated cell sorting (FACS) (Bonner et al., 1972). This introduced
the first high-throughput studies on molecular phenotyping of cells, and sorting
allowed cell function to be probed in parallel (Julius et al., 1972). More recently,
mass cytometry has allowed for a further expansion of the repertoire of proteins
assayed (Bandura et al., 2009; Di Palma and Bodenmiller, 2015). This technique,
while destructive, has also been combined with tissue imaging, adding a spatial
component to the cell populations examined (Chang et al., 2017).

The identification and classification of cell types is dependent on their function.
Function is deeply related to cellular morphology (Prasad and Alizadeh, 2019),
and both are ultimately a consequence of the molecular pathways shaping them.
Additionally, even though recent advances permit high throughput cell sorting through
imaging (Nitta et al., 2018), the limited resolution hinders the identification of finer
details of cell and organelle shape, which are frequently more informative of cellular
activity. Cell sorting with fluorescent antibodies and mass cytometry can reveal
more details on the molecules underlying cellular behaviour, but they are targeted
approaches that depend on prior knowledge of the effector molecules. The more
recent attempts at defining cell identity have therefore relied on the unbiased, high-
throughput character of single-cell RNA-sequencing methods.

1.2 Defining cell types using scRNA-seq

Methods to sequence the transcriptome of individual cells started to be developed
shortly after the advent of RNA-seq (Mortazavi et al., 2008; Tang et al., 2009). This
early development was pushed not by a need to define the molecular makeup of the
unit of life, but rather to allow transcriptomic studies to be performed in low-input
samples. Nonetheless, this seminal work still sparked the improvements that occurred
in the decade that followed (Svensson et al., 2018) (Figure 1.1).

Initial developments focused on increasing sensitivity, since the original scRNA-
seq protocol was performed on cells from very early developmental stages, which
are larger and contain more RNA than most differentiated cell types. Different
methodologies quantified gene expression by sequencing distinct transcript segments
(either the 5’ or the 3’ end, or the full transctipt) (Hashimshony et al., 2012; Islam
et al., 2011; Picelli et al., 2014; Ramsköld et al., 2012). The idea of multiplexed
scRNA-seq also started gaining traction with the use of multi-well plates or molecular
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Fig. 1.1: Timeline of scRNA-seq technology development
(A) Key technologies that have allowed jumps in experimental scale. A jump to
~100 cells was enabled by sample multiplexing, and then a jump to ~1,000 cells
was achieved by large-scale studies using integrated fluidic circuits, followed by a
jump to several thousands of cells with liquid-handling robotics. Further orders-of-
magnitude increases bringing the number of cells assayed into the tens of thousands
were enabled by random capture technologies using nanodroplets and picowell
technologies. Recent studies have used in situ barcoding to inexpensively reach the
next order of magnitude of hundreds of thousands of cells. (B) Cell numbers reported
in representative publications by publication date. Key technologies are indicated.
Original figure published in (Svensson et al., 2018).

barcodes for cells. The company Fluidigm eventually introduced the first commercially
available microfluidics chips (called the "Fluidigm C1 system") for miniaturized cell
isolation, RNA extraction and reverse transcription (Brennecke et al., 2013). It is
from this point that increased cell capture becomes the major technological driver
(and has gained even great importance as discussed in Section 1.3). The major
contributors to this have been nanodroplet-based technologies, that have put the
number of profiled cells per dataset in the range of 10.000 to 100.000 (Klein et al.,
2015; Macosko et al., 2015). The importance of this increase in throughput has
been demonstrated by Shekar and colleagues (Shekhar et al., 2016), where they
demonstrate that a Drop-seq dataset of approximately 25.000 cells sequenced at low
depth could identify more bona fide cell types and subtypes than a smaller, more
deeply sequenced Smart-seq2 dataset. Currently, most single-cell RNA-seq datasets
use droplet-based technologies, chiefly the protocols designed for the Chromium
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instrument by 10x Genomics (Zheng et al., 2017), which have a higher sensitivity to
detect different transcripts. Other more recent methods have followed the trend of
increase in cell throughput by using multiplexed barcoding, which allows for different
samples to be combined and reducing sample processing costs, reaching 105-106 cells
for less than $0.01 per cell (Cao et al., 2019a; Rosenberg et al., 2018). A list of the
most up-to-date scRNA-seq methods can be found in Table 1.1.

Table 1.1: Current methods for single-cell RNA-sequencing
Method Name Reference

Fluidigm C1 (Brennecke et al., 2013)
Smart-seq2 (Picelli et al., 2014)
Drop-seq (Macosko et al., 2015)
inDrop (Klein et al., 2015)
CEL-seq2 (Hashimshony et al., 2016)
Chromium (Zheng et al., 2017)
ICELL8 (Goldstein et al., 2017)
Quartz-seq2 (Sasagawa et al., 2018)
mcSCRB-seq (Bagnoli et al., 2018)
SPLiT-seq (Rosenberg et al., 2018)
MARS-seq2 (Keren-Shaul et al., 2019)
sciRNA-seq3 (Cao et al., 2019a)
Seq-Well S3 (Hughes et al., 2019)

The exponential developments in single-cell sequencing technologies were accom-
panied by essential computational developments to analyse the resulting data. From
a cell type discovery perspective, the key methods are clustering and pseudotime
analysis (Rostom et al., 2017), which assign to cells a discrete or a continuous label,
respectively. These are of course dependent of the upstream processing steps of
normalisation, feature selection and dimensionality reduction, as well as often used
batch correction methods (Luecken and Theis, 2019). Most of these analysis steps are
available in accessible software toolkits (Butler et al., 2018; McCarthy et al., 2017;
Wolf et al., 2018).

With clustering, the goal is to identify discrete cell populations. The most widely
used methods for clustering are the louvain and leiden community detection algo-
rithms (Blondel et al., 2008; Traag et al., 2019). These populations are commonly
considered an approximation of the cell types present in a sample of dataset, often
justified by examining the presence of known markers for known cell types across clus-
ters. Further application of differential expression methods (extensively benchmarked
in (Soneson and Robinson, 2018)) between clusters can identify other potentially
novel genes that are, within that context, unique to that population. This can be
used to characterise newly discovered populations (Montoro et al., 2018; Shekhar
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et al., 2016; Villani et al., 2017) and to identify new markers that can be used to
isolate or understand known cell types (Bjorklund et al., 2016; Shulse et al., 2019;
Vento-Tormo et al., 2018).

Pseudotime analysis consists on describing a set of cells from a continuous per-
spective. The name derives from the original application to obtain a dimensionless
temporal trajectory from time course scRNA-seq data (Trapnell et al., 2014). There
are several methods to perform this analysis (exhaustively reviewed in (Saelens
et al., 2019)), all with the goal of defining a latent variable from the data along
which a biological process, reflected in gene expression, is changing. Pseudotime is
especially useful to study response to stimuli (Lönnberg et al., 2017; Trapnell et al.,
2014) and developmental trajectories (Cao et al., 2019a; Watcham et al., 2019),
but has also been used to model changes to cellular spatial distribution (Scialdone
et al., 2016). These methods can differ in the way they model biological trajectories,
with some explicitly allowing for branched trajectories. This is of special importance
in development, where the goal is usually understanding which daughter cell types
share progenitors. The direction of differentiation is usually just assumed according
to previous knowledge and of the experimental conditions. This is not completely
possible in all situations, yet can be inferred from expression data. By considering
RNA kinetics, and using the quantification of spliced/unspliced reads, the current and
future (i.e. still circumscribed to the nucleus) transcriptomic states can be untangled
as a "velocity" vector (Manno et al., 2018). In differentiation trajectories, cell types
are therefore usually defined as the endpoints, with the cells in between forming more
transient cell states, along which gene expression is dynamically adjusting to the final
cellular identity. It should be noted that this "cell type vs cell state" nomenclature is
context-dependent, and there is no absolute agreement on how cell types should be
formally and empirically defined (Various, 2017).

Globally, the increasing adoption of scRNA-seq is due to its multi-gene and un-
biased profile. It allowed for the first time the non-directed profiling of molecules
driving heterogeneity in cellular populations. Nonetheless, its use for defining cell
identity still has some drawbacks. Even though the cost of high-throughput sequenc-
ing keeps dropping, single-cell RNA-seq still requires costly protocols, especially at
the scale that it is currently performed for cell type discovery. This however can be
mitigated by more targeted approaches, aimed at characterizing specific subsets of
already known cell types isolated by their broad markers. scRNA-seq is also prone to
batch effects, which can become more pronounced when comparing or integrating
data generated by different protocols. This has been a very active topic of research,
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and several batch alignment and correction methods can now account for these inte-
gration of different protocols (Butler et al., 2018; Haghverdi et al., 2018; Park et al.,
2018; Stuart et al., 2019). From the protocol side, sample barcoding for multiplexed
processing also greatly reduces batch issues (Shin et al., 2019; Stoeckius et al., 2018).

One last concern, although perhaps the largest, is the fact that profiling a tissue or
a cell type with scRNA-seq does not inherently give any functional information about
the cells. Cellular function has been from the beginning the major point to categorize
cells. RNA, despite being easily correlated with protein presence, is not in most cases
the effector molecule in a biological process. Additionally, most single-cell methodolo-
gies destroy the cell without imaging it, making the link between molecular makeup
and morphology harder to obtain. While this is an ongoing research topic, profiling
cells through the use of multi-omics technologies can help obtain a deeper mecha-
nistic characterization. Information on open chromatin regions (Buenrostro et al.,
2015), histone modifications (Kaya-Okur et al., 2019) or surface proteins (Stoeckius
et al., 2017) have the potential to be combined, directly or indirectly, with single-cell
RNA-seq (Clark et al., 2018). This can provide information on how these molecular
layers interplay and learn about the intrinsic regulatory processes of gene expres-
sion (Gorin et al., 2019; Qiu et al., 2019). CRISPR screens with single-cell expression
readout can also reveal more about cellular function (Datlinger et al., 2017; Dixit
et al., 2016). Lastly, developments in spatial transcriptomics hold the promise of
providing spatial context to cellular transcriptomes profiled individually, providing
information on the tissue context for cell identity determination (Rodriques et al.,
2019; Vickovic et al., 2019). Overall, while the discussion about where to draw the
line between cell types still lasts, technological developments provide us with ever
increasing information to approach a decisive and informative definition.

1.3 Methods for cell type classification

Single-cell RNA-seq was initially developed to obtain the whole transcriptome from
samples with very low starting material (Tang et al., 2009). Nonetheless, the notion of
using it to define cell types through their transcriptome was very early on envisioned.
In 2011, Islam and colleagues end the discussion on their newly developed scRNA-seq
method (STRT-seq) by stating "We envisage the future use of very large-scale single-
cell transcriptional profiling to build a detailed map of naturally occurring cell types,
which would give unprecedented access to the genetic machinery active in each type
of cell at each stage of development." (Islam et al., 2011). The exponential increase
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in the number of cells profiled per experiment eventually made this prediction come
true. A large amount of single-cell projects have used the technology to profile cells
captured from various tissues, in steady-state or disease conditions. Yet the most
direct example of how this quote reflects the evolution of the field is the Human Cell
Atlas (HCA) (Regev et al., 2017). This consortium has been established as a forum for
scientists around the world to share their expertise on genomics, bioinformatics, and
tissue biology, and coordinate the high-throughput profiling of cellular heterogeneity
in the human body. The HCA has groups focusing not just on individual organs, but
also on development (Behjati et al., 2018; Taylor et al., 2019) and disease.

In parallel, there have been increased efforts to obtain similar references for
other species, in particular animal models (Cao et al., 2017; Fincher et al., 2018).
The data collected for these species tends to have a greater cell coverage since the
tissue samples can be more readily available. Furthermore, these atlases are by no
means less important or useful than the human reference. The cell atlases produced
for mouse (Han et al., 2018; Various, 2018) were of especial relevance, since they
constitute the first broad, multi-organ cellular census of a mammalian organism, and
one for which a large portion of biomedical science has relied on. The accessibility
of human tissues for profiling and in vitro testing will be crucial in the near future.
Nonetheless, having a mouse reference that can be related to human can not only
teach us about the evolutionary principles that shape cell type evolution through
gene expression, but also serve as a bridge to transpose mouse-based biomedical
discoveries into a human context.

For a cell atlas to be used as a reference, it needs not only the expression data to be
annotated, but also a computational framework that can use it to classify new datasets
of interest. Over the last two years, several methods have been developed to handle
scRNA-seq data (a comprehensive list can be found in Table 1.2), which can be added
to other general purpose classification methods. These methods vary in complexity,
but in general they rely on machine learning approaches to map the reference cell
labels to the target dataset. While the most accurate method for this classification
is still up for debate (see (Abdelaal et al., 2019; Köhler et al., 2019) in addition
to benchmarks in individual method papers), there is agreement about the major
challenges for this task. Classification methods should be aware of batch differences,
be they caused by use of different scRNA-seq protocols or other technical differences
in tissue processing. Different cell isolation and library preparation protocols can
have a large impact on the number and type of genes detected (Mereu et al., 2019).
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Table 1.2: Comprehensive list of papers detailing methods for automated cell state
matching

Method Name Short Description Reference

scmap k-nearest-neighbor search
with cosine distance

(Kiselev et al., 2018)

matchSCore Jaccard Index for cluster markers (Mereu et al., 2018)
ClusterMap Hierarchical clustering with

marker gene binary expression
(Gao et al., 2018)

CaSTLe XGBoost classification (Lieberman et al., 2018)
Moana Linear SVM on (sub)clusters (Wagner and Yanai, 2018)
SAVER-X Autoencoder (Wang et al., 2018)
scQuery Neural network classifier (Alavi et al., 2018)
PopAlign oNMF, Gaussian Mixture model

and Jeffrey’s divergence
(Chen et al., 2018)

scGen VAE and linear classifier (Lotfollahi et al., 2018)
scVI VAE and hierarchical Bayesian model (Lopez et al., 2018)
scPred SVM in principal component space (Alquicira-Hernández et al., 2018)
SingleCellNet Random Forest on

binary marker expression
(Tan and Cahan, 2018)

CellAssign Multi-variable model with marker genes
and hierarchical Bayesian framework

(Zhang et al., 2019a)

ACTINN Neural network (Ma and Pellegrini, 2019)
scID Linear Discriminant Analysis

with marker genes
(Boufea et al., 2019)

SingleR Spearman correlation with training data (Aran et al., 2019)
Garnett Elastic net multinomial classifier using

markers from hierarchical cell types
(Pliner et al., 2019)

SCINA bimodal distribution of signature genes, (Zhang et al., 2019b)
Cell BLAST Adversarial Autoencoder and

nearest neighbour search
(Cao et al., 2019b)

scMatch Correlation with individual sample
or average of references

(Hou et al., 2019)

SuperCT Neural network with binary expression (Xie et al., 2019)
CellO Hierarchical binary classifiers (Bernstein and Dewey, 2019)
scCoGAPS &
projectR

NMF and projection in that latent space (Stein-O’Brien et al., 2019)

SciBet Entropy test and Bayesian comparison
of multinomial distributions

(Li et al., 2019a)

Seurat "Anchors" CCA, L2-normalisation and
mutual nearest neighbours

(Stuart et al., 2019)

LIGER integrative NMF and joint clustering (Welch et al., 2019)
cellHarmony Correlation with cluster centroids

of mean marker gene expression
(DePasquale et al., 2019)

CHETA Correlation with marker genes of
hierarchical reference

(de Kanter et al., 2019)

scPopCorn Co-membership Propensity Graph and
(joint) k-partition

(Wang et al., 2019)

p-DCS Voting based on known marker genes (Domanskyi et al., 2019)
EnClaSC Ensemble neural network classifier (Chen et al., 2019)
scClassify Ensemble classifier from

inferred cell type tree
(Lin et al., 2019)
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Many methods also mention the need to build a comprehensive reference, that
should be integrated taking the into account the technical variability mentioned
above. Training, and especially the prediction phases of the method should also
be scalable. Models can take a very long time to train on larger references, and
prediction steps that involve extensive manipulation or transformation of the target
data can become time consuming with the ever growing size of expression matrices.

Lastly, some methods try to approach this classification problem from a hierarchical
point of view (Lin et al., 2019; Pliner et al., 2019; Wagner and Yanai, 2018). This
is based on the notion that cell types can be organised trees depicting phenotypic
relationships. These trees represent not just developmentally-related lineages, but
also the increasing specification of cellular function (still mostly correlating with
terminal differentiation). This can be of great value in instances like describing cells
from the immune system or the brain, where functional diversification leads to more
intricate phenotypes (see Section 1.4). Notwithstanding, a hierarchical classification
can also be seen as a method that reflects the uncertainty in the prediction. Each
individual cell ideally conforms to a determined phenotype, which would correspond
to a leaf node in an ideal cell hierarchy. Assigning a cell to a parent node rather than
a terminal one (or not doing it with a high confidence) can be caused by data sparsity
or low coverage, and thus not necessarily reflecting a naturally occurring hierarchy
of gene expression-driven cellular phenotypes. Yet this structure is intuitive and
informative, and projects like the Cell Ontology have considerable value in creating a
controlled vocabulary to name and relate cell types (Bard et al., 2005), with some of
the methods listed here explicitly conforming to it. The use of a curated and specific
nomenclature should thus be incentivized when doing de novo annotation of scRNA-
seq data, and supplying these labels can greatly accelerate the data interpretation
and its application in the development of new algorithms.

Large collections of data and development of informative references can be of use
in multiple ways. A steady-state cell identity reference can serve as a baseline to which
a disease sample can be compared. Having a sufficiently comprehensive cell registry
can do away with the need to generate a reference dataset if the goal is quantifying
alterations to the proportions of known cell populations. Evolutionary biology can
also benefit from predictive models for cell identity. Models can be adapted to
function across species, which can help trace the evolutionary origins of cell types.
Producing interpretable models from integrated data can also be informative in itself.
Some models return the importance of genes or gene sets in classifying each cell type,
and as such can help uncover novel features of a cell’s phenotype. Finally, organised
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references can also speed up new in-depth studies of specific cell types, as well as
studies focusing on other aspects of cell identity (e.g. open chromatin, methylation,
proteome, or spatial interactions). It should be noted that the methods discussed
so far in this section, while being in their majority developed for scRNA-seq, can
also for the most part be adapted to other data modalities like scATAC-seq (for open
chromatin) or CITE-seq (combining RNA and surface protein detection). Modelling
cell identity with multiple layers can revel more details about the molecules shaping
it, how they interact, and their relative importance.

1.4 Cell identity in the immune system

The immune system is one of the most complex and diverse biological systems across
the animal kingdom. The increased evolutionary pressure caused by the need to
continuously adapt to the fast evolving pathogens (Barreiro and Quintana-Murci,
2010) has resulted in a broad variety of molecular pathways and cells. The variability
in the types of cells found in the immune system is directly related to their intrinsic
plasticity in gene expression. Immune cells are very responsive to their environment,
having to constantly fine-tune expression programmes to react in a prompt and
targeted manner. It then comes as no surprise that many cell states have been
determined and named in immunology, and it is, perhaps on par with neurobiology,
the field where the definition of cell type and cell state clash the most.

Due to the fact that immune cells are non-adherent cells, immunology benefited
immensely from the development of flow cytometry. Immune cells have been deeply
characterised by this technology, with antibodies targeting surface receptors as well as
cytoplasmic proteins. It then comes as no surprise that the immune system has been
an early and major target of single-cell sequencing methods. scRNA-seq has had a role
in the fine-grained mapping of gene expression changes in haematopoiesis (Watcham
et al., 2019), discovering and reorganising subpopulations (Villani et al., 2017),
mapping their heterogeneity across tissues (Miragaia et al., 2019; Scott et al., 2018),
studying immune response to pathogens (Lönnberg et al., 2017; Stubbington et al.,
2016), and map communication of immune cells with their tissue of residence (Vento-
Tormo et al., 2018).

Immunity can be divided into innate and adaptive. The latter depends on a subset
of lymphocytes which are responsible for an immune response that can flexibly adjust
to invading pathogens in a non-evolutionary way (i.e. without the need for selection
at the level of the individual). The key strength of this system is the use of receptors
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which recombine and mutate (Krangel, 2009), forming a highly diverse repertoire that
can eventually be selected to respond to particular invaders. This variability, central
to the adaptive immune response, is further complemented by immune memory, that
is, the specific repertoire obtained when combating an infection will remain stored
in the organism in the form of inactive immune cells, which can be more quickly
reactivated should the same threat reappear. This is far more advantageous than
having to undergo selection of the receptor repertoire every time the same pathogen
is introduced in the system.

Fig. 1.2: Gene and protein structure of TCR
(A) The genomic organization of the human (left) and mouse (right) TCR genes α
(red), β (blue), γ (brown), and δ (green), showing clusters of V, D, J, and C gene
segments aligned vertically for clarity. Arrows represent the direction of transcription
within each of the TCR genes; squares and circles indicate gene elements in the direct
and reverse orientations, respectively. The murine TCR γ2 gene is inverted relative to
the rest of the locus. Dark colors indicate apparently functional gene elements, while
lighter shades represent pseudogenes. Curly brackets indicate the duplicated sets of
V genes in murine TCR α/δ locus. The TCR β and TCR γ loci are both on human
chromosome 7, on opposite sides of the centromere (schematically represented by
the black circle). Original figure published in (Glusman et al., 2001).
(B) Ribbon diagram of the complex oriented as if the TCR MS2-3C8 and CD4
molecules are attached to the T cell at the bottom and the HLA-DR4 MHC class
II molecule is attached to an opposing APC at the top. TCR α chain, blue; TCR β

chain, green; CD4, pink; MHC α chain, gray; MHC β chain, yellow; MBP peptide,
red. Original figure published in (Yin et al., 2012).

Within adaptive immunity lymphocytes, T cells fill various niches, but are broadly
considered to be the orchestrators of immune response (Kumar et al., 2018). T
cells are characterised by their expression of the T Cell Receptor (TCR), a dimeric
surface protein that can recognise an antigen presented by an Antigen Presenting
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Cell (APC) (Reinherz, 2014). This receptor’s ability to recognize a trove of antigens
resides in the original gene’s unique recombination capacity. TCR genomic segments
are composed of many genes (in addition to a constant region) - grouped into
variable (V), diversity (D) and junction (J) genes - that encode the variable section of
the final protein, which interacts with the antigen presented by the MHC complex
(Figure 1.2A). During T cell development in the thymus, these genes are recombined
through the action of RAG enzymes, which target recombination signal sequences
to cleave DNA and join them - first D and J (if D is present), then (D)J and V. The
insertion of additional non-templated nucleotides at the junctions can result in further
variability. There are numerous V and J genes, which gives rise to a large number of
possible V-J combinations, thus ensuring the diversity needed for antigen recognition
by T cells. This is further augmented by differential combination of TCR chains in the
final receptor. The activity of each receptor sub-unit is subject to selective pressures
that ensure that it can functionally recognise and respond to foreign antigens, while
being unresponsive to self-produced peptides and thus avoid auto-immune responses.
In adaptive T cells, these receptors are composed of an α and a β chain. γ and δ

chains also exist as a pair, but are less variable which results in a different type of
response (Simoes et al., 2018).

The TCR is part of a larger membrane surface complex that assists in the recogni-
tion of the antigen being presented, as well as the APC presenting them (Figure 1.1B).
T lymphocytes can thus be separated into two subsets with a shared developmental
origin, bifurcating depending on the type of antigen-presenting Major Histocompat-
ibility Complex (MHC) they can match. Consequently, each with their own APC
matching capabilities and is easily identifiable by the expression of a surface protein
that participates in this specific interaction. CD8-expressing T cells recognise antigens
presented through MHC class I, which exists on the surface of almost all cells. This
recognition elicits the maturation of CD8+ T cells, preparing them for an anti-cellular
response. This subset is accordingly also named cytotoxic, and through the use
of perforins and granzymes they destroy cancer cells, as well as cells infected by
intracellular pathogens (Halle et al., 2017).

CD4+ T cells are the other lineage of T cells. Also known as T-helper (Th) cells,
these lymphocytes are credited with the organisation of immune response, producing
cytokines that serve as triggers or blockers of particular immune reactions (Luck-
heeram et al., 2012). Th cells recognise antigens presented by the MHC class II,
present only on the membrane of dendritic cells, mononuclear phagocytes, some en-
dothelial cells, thymic epithelial cells (important during T cell selection for functional,
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Fig. 1.3: An overview of known T-helper cell heterogeneity and key marker genes.
Beyond their core markers, Th cells can be classified into based on different pheno-
types that depend on stage of immune response, the type of effector function, the
type of memory cell they form and their tissue of residence (a topic understudied
comparatively to the rest). Question marks (??) represent unresolved phenotypes.

non-self-responding TCR), and B cells. This interaction, combined with signalling
from the media where the cell is acting, induce an activation programme of the cell
that is specific to the external threat being handled. CD4+ T cells encompass a large
transcriptional plasticity, which results in diverse related phenotypes (Figure 1.3).
Th cells have classically been organised into various effector phenotypes based on
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their cytokine secretion profile (Mosmann et al., 1986; Schmitt and Ueno, 2015),
allowing them to orchestrate the professional immune cells in the microenvironment.
For instance, IFNγ production by Th1 cells has been identified as a key signalling
molecule to combat intracellular parasites through the stimulation of macrophages,
as well as class switch recombination of B cells to an IgG isotype. In turn, Th2 cells
use IL-4 and IL-13 to stimulate basophils and mast cells to release granules against
helminth invaders, and Th17 cells coordinate neutrophil recruitment by epithelial
cells through IL-17A and IL-17F (Weaver et al., 2013). While diverse in function,
these effector phenotypes are not the sole drivers of variability between Th cells,
which also vary according to their activation state (naïve, effector, and memory cells)
and with the host environment cues (tissue-specific phenotypes).

Upon finishing responding to an infection, T cells can go into a lowly replicative
memory state in which they will save the TCR that drove the specialized response.
The various memory states relate to the level of activation of the cell, but also
to its tissue of residence. Cells expressing the chemokine receptor CCR7 are in a
more naive, non-stimulated state, and also target lymphoid tissues like lymph nodes
or the spleen, where most of antigen presenting to CD4+ T cells takes place. In
addition, tissue-homing and residency phenotypes exist, all of them characterised
by the involvement of one or more chemokine receptors or adhesion molecules like
integrins. Nonetheless, tissue-specificity in T-helper cells, and even more broadly in
immune cells, is still generally understudied. Recent developments using single-cell
high throughout methods have tackled this questions (Scott et al., 2018; Wong et al.,
2016a), and it is expected that future efforts will rely on the accumulation of data to
extract these patterns from cross-tissue samples.

Among the phenotypic variability of T-helper cells we can find the particular
subset termed T-regulatory (Treg) cells. They are different from most Th cell subtypes
in that, rather than boosting immune response, they are responsible for dampening
it (Sakaguchi et al., 1995). This regulatory role in the immune system is of dire
importance. Leaving the immune response unchecked can lead to destructive re-
sponses that will adversely affect the organism, as in autoimmune diseases. Treg
cells were originally identified by their high expression of CD25, but as a subset they
are more clearly defined by the expression of the FOXP3 transcription factor (Hori
et al., 2003). Despite the focus on CD4+ Treg cells here presented, CD8+ cells can
also have a regulatory phenotype, yet this are understudied compared to its CD4+

counterpart (Yu et al., 2018).
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Further subsets of Treg cells have been described, either related to the various
parallel programmes that Th cells can adopt or their developmental origin. All
T cells derive from a Common Lymphoid Progenitor cell that originates through
haematopoiesis in the bone marrow, and travels via the bloodstream to mature in
the thymus, where their TCR recombines and is tested for responsiveness to foreign
antigens (positive selection) and against self-antigens (negative selection). However,
natural Treg cells are derived from a subset of T cells with an intermediate level
of response to self-antigens. This subset is further supplemented by induced Treg
cells, which originate from other T-helper cells. While both natural and induced
T-regulatory cells share a role, their distinct origins extend their TCR repertoire and
thus their function (Zhang et al., 2014). Beyond this, Treg cells are also subject to
memory and tissue-trafficking phenotypes like the remaining Th cells (Huehn et al.,
2004), although these are not as well studied.

Immune cells are also described to have roles beyond defense against pathogens.
These roles involve interactions with other non-immune tissues and mostly focus
on their maintenance (Gordon and Martinez-Pomares, 2017; Laurent et al., 2017),
and the immune system has also been described as relaying signals to the nervous
system (Veiga-Fernandes and Mucida, 2016). Treg cells have been increasingly
noted to be relevant, not just for their role in the immune system, but also for their
functions beyond it. This regulatory subset has been shown to be involved in tissue
repair (Li et al., 2018b) (chiefly muscle (Burzyn et al., 2013)), hair growth (Ali
et al., 2017), and homeostatic regulation of gut microbiota (Cebula et al., 2013)
and adipose tissue (Cipolletta, 2014; Sharma and Rudra, 2018). These functions,
being widespread in the organism, consequently rely on an efficient trafficking
and tissue localization scheme (Liston and Gray, 2014). Despite the importance
of understanding how these migration and adaptation programmes are constituted
and regulated (Agace, 2006), this aspect of the immune system is still incompletely
understood.

1.5 Tissue-specific gene expression

Histological studies have uncovered many details of organ biology and physiology.
Tissue staining is routinely used in pathology, and a better understanding of which
molecules are markers of different tissue structures and cells in steady-state has
resulted in important medical advancements.
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Early studies in transcriptomics using microarrays dissected transcriptional re-
sponses to metabolic shifts (DeRisi et al., 1997) and disease (with a particular focus
in cancer) (Rhodes et al., 2004), with homeostatic tissue sample comparison only
appearing later (Shyamsundar et al., 2005).

RNA-sequencing has, from its inception, been linked to the unraveling of cross-
organ and tissue differences (Mortazavi et al., 2008). Compared with preceding
technologies, RNA-seq was capable of detecting a broader variety of transcripts in an
unbiased way, along with high confidence splice junctions and allele-specific expres-
sion, with the added benefit of doing it for a lower cost (Wang et al., 2009). RNA-seq
was quickly adopted and improved (see Section 1.2), extending its sensitivity and
breadth of applications. Consortia were developed around the use of sequencing
technologies for different biomedical purposes, often with RNA-seq taking a pivotal
role (Lonsdale et al., 2013; The Cancer Genome Atlas Research Network et al., 2013;
The ENCODE Project Consortium, 2012). These large collections of data were instru-
mental in revealing the functionality of genomic regions and relationships between
samples. With data from the Genotype-Tissue Expression (GTEx) consortium, it was
revealed how human tissues transcriptionally relate to each other, as well as what
genes vary in expression across tissues and individuals (Melé et al., 2015). The Can-
cer Genome Atlas (TCGA) relied on RNA-seq, as well as other data modalities, from
several cancer types to map the similarities between different tumours, and identify
potentially important pathways for the treatment of those malignancies (Hoadley
et al., 2018). Comparison between disease samples and steady-state can also be
particularly informative, for example in understanding how tumours affect their adja-
cent tissue (Aran et al., 2017), or how tumour growth compares to developmental
tissues and which pathways are involved (Young et al., 2018). In short, while large
databases of expression data can serve as useful resources for broader applications
by the scientific community, they can also be mined for emerging patterns.

Transcriptomic data can also be analysed beyond one species to gain understand-
ing of the evolutionary links of gene expression programmes. Early microarray data
analysis showed how human-chimpanzee divergence was especially accentuated
when looking at brain RNA (Enard et al., 2002). Collection of samples from more
species, combined with the use of RNA-seq, augmented the resolution of what gene
expression changes could be observed (Brawand et al., 2011). Varying divergence
rates for different tissues, gene groups and genomic regions, could be observed
and associated to different selective pressures and tissue functions. Further studies
have since compared other species (Li et al., 2014) or aspects of the transcrip-
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tome (Barbosa-Morais et al., 2012), revealing the intricate way evolution sculpted
molecular programmes in different tissues across the tree of life, and defined the core
genes involved in tissue function.

The functional associations observed between tissues are a consequence of the
similarities and differences of the cell types that constitute them. These are mostly a
result of the developmental processes giving rise to these tissues. For example, most
tissues contain epithelial cells, marked by EPCAM, which share certain features such
as forming barriers and secretory functions (Trzpis et al., 2007). Epithelial cells have
been found to be vastly diverse within and between tissues, adopting different shapes
and spatial arrangements (Wang et al., 2012), as well as further cytological changes
adapted to the specific tissue biology.

Many aspects of tissue-specific heterogeneity stem from immune cells, perhaps
owing to their mobility and plasticity. Various tissue-specific functions of Treg cells
have been described above (Section 1.4). Macrophage heterogeneity represents
another paradigmatic case of between-tissue phenotypic variability. In adult humans,
circulating macrophages derive from bone marrow progenitors; in contrast, tissue-
resident macrophages have been demonstrated to be developmentally related to
haematopoietic progenitors in the yolk sac (Gomez Perdiguero et al., 2015). These
macrophage subsets are important in mediating tissue immunity, while in parallel
governing their homeostasis, such as synaptic pruning by microglia, heme recycling
by splenic macrophages, or the pro-angiogenic role of Hofbauer cells at the maternal-
fetal interface. Importantly, tissue-specific functions are a consequence of signalling
in the local environment, which is capable of completely reprogramming macrophage
chromatin, gene expression and function (Gosselin et al., 2014; Lavin et al., 2014),
and consequently influence their response to tissue-specific injuries (Hoyer et al.,
2019). This heterogeneity has also been detected within tissues, and in the gut has
been associated with signalling provided by local neurons (Gabanyi et al., 2016).
Single-cell RNA-sequencing has also been used to reveal cross-tissue conserved
regulators of macrophage identity (Scott et al., 2018), and could in the future be
used to further explore potential subpopulation heterogeneity and correlate it with
gene expression spatial data to identify associations with specific anatomic locations
within organs.

The application of scRNA-seq methods can extend these methods to comparisons
between cell types, which results in larger scale comparisons, yet will open a window
into how different programmes are specified for cell function in evolution and how
they translate across species. It has recently been showed how variability in expression
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relates to evolution of innate immune response in fibroblasts (Hagai et al., 2018).
Data from this study has been further used to test an artificial intelligence method
that was capable of accurately predict species-specific responses solely based on the
data from the remaining organisms sampled (Lotfollahi et al., 2018). As well as
understanding evolutionary biology of cell types or immune responses, these types
of studies and applications can have considerable impact in translating results from
model organisms into the clinic.

1.6 Insights and scope of this thesis

Single-cell RNA-seq has revolutionized the profiling of cell type heterogeneity over
the last decade. This has allowed for a deep, unbiased look into several organs and
organisms, profiling hundreds of cell types at higher resolution. At the same time,
progress has been made in computationally combining datasets for further analysis.
As an increasing number of scRNA-seq datasets is produced, we come ever closer to
a first draft of a transcriptional Human Cell Atlas, showcasing the full spectrum of
cellular variety in our species.

The expansion in cell throughput is now permitting the study of smaller, rarer
subpopulations. While specific cell types can still be sorted prior to sequencing for
deeper profiling, unknown and underrepresented cell types will require larger num-
bers to be detected. This profound transcriptional portrayal of cells also often results
in valuable resources that can be examined for functional targets of novel therapies
and assays, which is especially true when studying immune cells. Developing directed
cell therapies is a long-term goal of many medical fields, but a thorough knowledge
of key cell types is still needed.

A transcriptional reference for cell types can be a key resource for those employing
scRNA-seq. Having a ready-to-use resource that draws on the combined knowledge
of the data generated would provide immediate assistance for automatic annotation
of novel projects. Additionally, an exhaustive and integrated collection can be very
informative about cell and tissue biology. However, the limits of this integration
should also be tested and examined.

After this introductory chapter, Chapter 2 will show a deep dive into T-regulatory
cell heterogeneity using single-cell RNA-seq. Treg cells have been shown to have
critical roles in steady-state and disease, but it is still not fully understood which
subpopulations fulfill which functions in different tissues, and how this heterogeneity
relates to cross-tissue diversity. The chapter will describe Treg cell subpopulations
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detected in mouse in different tissues and how they compare to other resident T-helper
cells. These subpopulations reflect different activation states, and form a phenotypic
continuum between peripheral tissues (skin and colon) and their respective draining
lymph nodes. The first sections will also discuss the limits of heterogeneity detection
using scRNA-seq, especially when using two different protocols. Lastly, a mouse-to-
human comparison will be presented, comparing conservation and divergence of
gene programmes and Treg cell subpopulations.

Chapters 3 and 4 will focus on the use of broad scRNA-seq data collections to
create informative references for automatic cell type annotation. Chapter 3 will detail
the development of CellTypist, a pipeline to integrate diverse scRNA-seq datasets
and cluster them into meaningful groups that approximate commonly defined cell
identity, and the training of an updatable classifier that can be used to annotate new
datasets. All annotation data available from these datasets is also collected, and the
classifier train is also in itself informative. Following this, Chapter 4 will be centred
on the dissection of a large collection of human scRNA-seq data. After application of
CellTypist, it will explore how gene expression at the cell type level influences tissue
similarity, as well as uncover the groups of genes characterising cell identity.

This thesis ends in Chapter 5, where I will be discussing the broader picture of the
results reported in this thesis. This chapter will explore to what detail cell identity
can be deconstructed, and what that means for informative automated annotation
of new datasets, as well as to our understanding of cell biology and how they are
categorized.


