

The contribution of rare variants to risk of schizophrenia and neurodevelopmental disorders

Tarjinder Singh

Wellcome Trust Sanger Institute University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy

January 2017

Declaration

I hereby declare that I carried out the work described in this Thesis between September 2012 and August 2016 under the supervision of Dr. Jeffrey C. Barrett at the Wellcome Trust Sanger Institute. The contents of this Thesis has not been submitted in whole or in part for any other degree or qualification at the University of Cambridge, or any other University. This Thesis does not exceed the specified length limit, and is formatted according to the requirements set by the Biology Degree Committee and the Board of Graduate Studies.

Tarjinder Singh January 2017

Acknowledgements

I would first like to thank my supervisor Jeff for giving me the opportunity to write my thesis in his group and for his support and encouragement in the past four years. I arrived in Cambridge in 2012 with plans to complete a one-year MPhil degree in the genetics of blood traits before attending medical school the following year. Little did I know that I would be fortunate enough to stay at the Sanger and explore an area of genetics and medicine that I had never previously encountered. Now, four years later, I am more motivated than ever to delve deeper into the world of statistical genetics and use its advances to understand the fundamental causes of mental illnesses. This formative experience would not be possible if not for the patience, mentorship, and guidance that Jeff has shown me. I sincerely hope we keep in touch, and perhaps find an opportunity to work together again in the future.

The research in this Thesis requires the coordinated efforts of numerous collaborators in the UK and around the world. I thank the many clinicians and scientists in the UK10K consortium who designed the initial study that laid the foundation for this Thesis. In particular, I would like to thank Mike Owen, Mick O'Donovan, Dave Curtis, and Matthew Hurles for productive discussions, advice, and contributions to this work. I want to express my gratitude to the Wellcome Trust and Williams College for their generous financial support. Most importantly, I want to thank the tens of thousands of patients and participants who enrolled in the studies described in this Thesis, without whom none of this work is possible and for which I am indescribably grateful.

On a more personal note, I want to extend my gratitude to the members of the Barrett team, past and present, for engaging team meetings, memorable retreats, and entertaining lunch discussions. I also want to thank my friends at Emmanuel College for all the enjoyable Formal dinners, pub crawls, and European travels that have made life in Cambridge so entertaining. In particular, I want to thank Albert and Uttara for their unwavering friendship, support, and honesty. I am grateful to the PhD students at the Sanger Institute, especially the Class of 2012, for all the enjoyable times we've had, from the scenic drives through the Peak District to the adventures in Warsaw. Lastly, I want to thank my parents and sister for their patience, encouragement, love and support throughout the years.

Abstract

In recent years, whole-exome sequencing has successfully identified genes in which rare variants confer substantial risk for neurodevelopmental disorders, such as autism spectrum disorders and intellectual disability. In many of these studies, the same gene is implicated in a wide variety of diagnoses and presentations. Despite a number of rare variant studies in schizophrenia, no gene has been significantly implicated using rare coding variants. In this Thesis, I compiled the largest rare variant data set in schizophrenia to date, and meta-analysed the whole-exome sequences of 1,077 trios, 4,268 cases, and 9,343 matched controls. With these data, I identified a genome-wide significant association between rare loss-of-function (LoF) variants in *SETD1A* and risk for schizophrenia. I additionally found that *SETD1A* is substantially depleted of LoF variants in the general population, and that LoF variants in this gene increased risk for a range of neurodevelopmental disorders. Combined, our results implicate epigenetic regulation, specifically histone modification, as a mechanism in the pathogenesis of schizophrenia, and suggest that rare risk alleles may potentially be shared between schizophrenia and other neurodevelopmental disorders.

To better understand if *SETD1A* finding can be generalized to a larger number of rare schizophrenia risk variants, I jointly analysed the trio and case-control exome data with array-based copy number variant calls from 6,882 cases and 11,255 controls. I found that individuals with schizophrenia carried a significantly higher burden of rare damaging variants in 3,488 "highly constrained" genes with a near-complete depletion of truncating variants. Rare variant enrichment analyses demonstrated that the rare schizophrenia risk variants were most strongly enriched in autism risk genes, and genes diagnostic of severe developmental disorders. I further showed that schizophrenia patients with intellectual disability had a greater enrichment of rare damaging variants in highly constrained genes, but that a weaker but significant enrichment existed throughout the larger schizophrenia population. Combined, these results demonstrate that schizophrenia risk loci of large effect across a range of variant types implicate a common set of genes shared with broader neurodevelopmental disorders, suggesting a path forward in identifying additional risk genes in psychiatric disorders and further supporting a neurodevelopmental etiology to the pathogenesis of schizophrenia.

Table of contents

Li	st of f	figures		xiii
Li	st of t	tables		xvii
1	Intr	oductio	n	1
	1.1	Schizo	pphrenia	1
		1.1.1	Diagnostic criteria and clinical heterogeneity in presentation	2
		1.1.2	Disease management and prognosis	3
		1.1.3	Epidemiology and global burden of disease	4
		1.1.4	Environmental risk factors	6
	1.2	The ge	enetic architecture of schizophrenia	7
		1.2.1	Family studies find substantial genetic component to risk	7
		1.2.2	Genome-wide association studies implicate common polygenic vari-	
			ation	8
		1.2.3	Recurrent copy number events confer substantial risk	10
		1.2.4	Shared common risk variants across psychiatric disorders	12
	1.3	Whole	e-exome sequencing as a means of studying rare variants	12
		1.3.1	Common study designs for sequencing studies	14
	1.4	Early 1	results from sequencing in schizophrenia	16
	1.5	Biolog	gical insights from genetic studies of schizophrenia	17
	1.6	Goals	of this Thesis	19
2	A p	rotocol f	for the quality control of whole-exome sequencing data sets	21
	2.1	Challe	enges behind the production and analysis of sequencing data	21
		2.1.1	Publication note and contributions	23
	2.2	Materi	als and methods	23
		2.2.1	Sample collections	23
	2.3	Segue	nce data production	26

Table of contents

		2.3.1	Sample preparation	26
		2.3.2	Alignment and BAM processing	26
		2.3.3	Variant calling	27
	2.4	Variant	calling and quality control across capture and batch	27
		2.4.1	Adjusting for differences between capture and batch	27
	2.5	Sample	e-level quality control for case-control analysis	29
		2.5.1	Sample-level QC in the UK10K-INTERVAL case-control data set $$.	29
		2.5.2	Sample-level QC in the Finnish and Swedish case-control data sets	31
	2.6	Variant	filtering in case-control data sets	32
		2.6.1	Variant filtering in the UK10K-INTERVAL data set	32
		2.6.2	Variant filtering in the Finnish and Swedish data sets	36
	2.7	Compa	rison of population genetics metrics across data sets	36
	2.8	System	natic annotation of coding variants	38
	2.9	Evalua	ting the effectiveness of existing in silico predictors of pathogenicity	39
		2.9.1	The interpretation of protein-coding consequences	39
		2.9.2	A description of existing annotation tools	40
		2.9.3	Strategy for evaluating variant annotation tools	41
		2.9.4	Preparation of annotation files	43
		2.9.5	Classifiers display variable performance depending on test data	43
		2.9.6	A comparison of annotation approach with other whole-exome se-	
			quencing studies	45
	2.10	A meta	a-analysis of published schizophrenia parent-proband trio studies	48
	2.11	Gene-s	pecific mutation rates based on GENCODE transcripts	49
	2.12	Discuss	sion	51
	2.13	Consor	tia	53
		2.13.1	UK10K consortium	53
		2.13.2	DDD Study	54
		2.13.3	Swedish Schizophrenia Study	54
		2.13.4	INTERVAL study	54
		2.13.5	Sequencing Initiative Suomi project	54
2	SET	D14 is 9	associated with schizophrenia and neurodevelopmental disorders	57
,	3.1		action	57
	3.1	3.1.1	Motivation behind rare variant analyses in psychiatric disorders	57
		3.1.2	Early studies of rare variants in psychiatric disorders	58
		3.1.2	Emerging results from sequencing studies of neurodevelopmental	50
		٥.1.٦	disorders	59
			disorders	59

Table of contents xi

		3.1.4	Goal and aims	60	
		3.1.5	Publication note and contributions	61	
	3.2	3.2 Materials and methods			
		3.2.1	Gene-based analysis in the case-control data set	61	
		3.2.2	Meta-analysis of <i>de novo</i> mutations and case-control burden	62	
		3.2.3	Frequentist method of meta-analysis using Fisher's method	62	
		3.2.4	Bayesian modeling of <i>de novo</i> and case-control variants using TADA	63	
		3.2.5	Validation of variants of interest	64	
		3.2.6	Functional consequence of the exon 16 splice acceptor deletion	64	
		3.2.7	Phenotype clustering in DDD probands	65	
	3.3	Results	8	65	
		3.3.1	Study design	65	
		3.3.2	LoF variants in SETD1A are associated with schizophrenia	66	
		3.3.3	Robustness of the SETD1A association	69	
		3.3.4	SETD1A is associated with severe developmental disorders	78	
		3.3.5	Power calculations to show co-morbid cognitive impairment in		
			schizophrenia SETD1A carriers	82	
		3.3.6	De novo burden in neurodevelopmental disorders	84	
	3.4	Discus	sion	86	
4	Schi	zophrei	nia risk genes are shared with neurodevelopmental disorders	91	
	4.1	Introdu	action	91	
		4.1.1	Early evidence for a neurodevelopmental etiology to schizophrenia	91	
		4.1.2	Sharing of rare variants between autism spectrum disorders and		
			intellectual disability	92	
		4.1.3	Individual loci increasing risk for schizophrenia and neurodevelop-		
			mental disorders	93	
		4.1.4	Genes with near-complete depletion of protein-truncating variants .	94	
		4.1.5	Aims and goals	95	
		4.1.6	Publication note and contributions	96	
	4.2	Metho	ds	96	
		4.2.1	Sample collections	96	
		4.2.2	Rare variant gene set enrichment analyses	97	
		4.2.3	Combined joint analysis	99	
		4.2.4	Description of gene sets	100	
		4.2.5	Conditional analyses	102	
		4.2.6	Rare variants and cognition in schizophrenia	103	

xii Table of contents

	4.3	Results	S	104
		4.3.1	Study design	104
		4.3.2	Selection of allele frequency thresholds and consequence severity .	106
		4.3.3	Robustness of enrichment analyses	109
		4.3.4	Rare, damaging schizophrenia variants are concentrated in con-	
			strained genes	110
		4.3.5	Comparing the enrichment in constrained genes across neurodevel-	
			opmental disorders	112
		4.3.6	Schizophrenia risk genes are shared with other neurodevelopmental	
			disorders	115
		4.3.7	Schizophrenia rare variants are associated with intellectual disability	117
	4.4	Discus	sion	125
_	ъ.			40=
5			and future directions	127
	5.1		ary of findings	
	5.2		tions of results described in this Thesis	
		5.2.1	Limitations in the interpretation of protein-coding consequences	
		5.2.2	Insufficient standardisation of clinical data	130
		5.2.3	Limitations in the definition of the constrained gene list	131
		5.2.4	Interpretation and generalisability of gene set results	132
	5.3	Future	directions	133
		5.3.1	Whole-genome sequencing at the population scale	133
		5.3.2	Specificity of shared risk alleles for individual psychiatric disorders	136
		5.3.3	In vitro and in vivo modeling of risk genes for neurodevelopmental	
			disorders	137
	5.4	Conclu	nding remarks	139
Re	eferen	ces		141
				

List of figures

1.1	Risk variants for schizophrenia	11
2.1	Density plots of sequence coverage in the UK10K, INTERVAL, and DDD datasets	28
2.2	Principal components analysis of UK and Finnish samples in the UK10K schizophrenia dataset	30
2.3	The evaluation of different variant filtering thresholds using rare DDD inherited variants and Mendelian inconsistent variants as a testing set	33
2.4	Variant metrics in the UK10K and INTERVAL datasets after each variant filtering step.	35
2.5	Variant counts summarised according to variant class and sequencing batch in the UK10K, INTERVAL, Finnish, and Swedish datasets	37
2.6	Distributions of TiTv and frameshift-inframe ratios in the UK10K, INTER-VAL, Finnish, and Swedish datasets	38
2.7	ROC curve evaluating the performance of missense classifiers on UniProt pathogenic and benign variants	44
2.8	ROC curve evaluating the performance of missense classifiers on pathogenic <i>de novo</i> mutations and benign variants from UniProt	46
2.9	ROC curve evaluating the performance of missense classifiers on pathogenic <i>de novo</i> mutations and ExAC missense variants with MAF > 1%	47
2.10	Correlation between mutation rates generated using GENCODE and RefSeq transcript databases	52
2.11	The ratio of the damaging missense mutation rate to the missense mutation rate of each GENCODE coding gene.	52
3.1	Study design for the schizophrenia exome meta-analysis	66
3.2	Manhattan plot of the rare variant association analysis of LoF variants in 4,264 cases and 9,343 controls	67

xiv List of figures

3.3	QQ plots of the rare variant association analysis of LoF variants in 4,264	
	cases and 9,343 controls	68
3.4	Manhattan plot of the meta-analysis of <i>de novo</i> mutations and case-control	
	variants in 1,077 trios, 4,264 cases and 9,343 controls	70
3.5	QQ plot of the meta-analysis of <i>de novo</i> mutations and case-control variants	
	in 1,077 trios, 4,264 cases and 9,343 controls	71
3.6	The genomic position and coding consequences of 16 SETD1A LoF variants	
	observed in the schizophrenia exome meta-analysis, the DDD study, and the	
	SiSU project	71
3.7	Results from the minigene experiment assessing the impact of the exon 16	
	splice acceptor site variant	75
3.8	The robustness of the SETD1A result across reasonable parameters in the	
	TADA model	76
3.9	De novo microdeletion of a single copy of SETD1A identified in the DDD	
	study.	81
3.10	Sample size curves for detecting an increased risk of pre-morbid cognitive	
	impairment in schizophrenia SETD1A LoF carriers	83
3.11	A comparison of genome-wide <i>de novo</i> mutation rates in probands with	
	autism, developmental disorders, schizophrenia, and controls	85
3.12	Mendelian disorders of epigenetic machinery at histone H3	87
3.13	SET1/COMPASS complex	88
4.1	The overlap between autism risk genes and dominant developmental disorder	
	genes	94
4.2	Analysis workflow	105
4.3	Q-Q plots of <i>P</i> -values from enrichment tests of 1,766 gene sets	107
4.4	The use of frequency and size cut-offs in CNV gene sets enrichment tests to	
	reduce genomic inflation	108
4.5	Q-Q plots of <i>P</i> -values from enrichment tests of random gene sets	110
4.6	Non-random sampling of genes in the 1,766 gene sets resulted in non-null	
	enrichment of disruptive variants	111
4.7	Enrichment of schizophrenia rare variants in constrained genes	112
4.8	Enrichment of <i>de novo</i> mutations in genes with near-complete depletion of	
	truncating variants across schizophrenia and neurodevelopmental disorders.	113
4.9	Enrichment of de novo mutations in genes ordered and grouped by genic	
	constraint across schizophrenia and neurodevelopmental disorders	114

List of figures xv

4.10	Enrichment of case-control SNVs in genes ordered and grouped by genic	
	constraint	115
4.11	Enrichment of rare variants in constrained genes between schizophrenia	
	(SCZ) individuals with ID, schizophrenia individuals without ID, and matched	
	controls	122
4.12	Enrichment of rare variants in diagnostic developmental disorder genes	
	between schizophrenia (SCZ) individuals with ID, schizophrenia individuals	
	without ID, and matched controls	124
5.1	Risk variants for schizophrenia, with SETD1A included	129
5.2	Distribution of overlap coefficients with the constrained gene set	134
5.3	Heatmap of overlap coefficients calculated between FDR $< 5\%$ gene sets	135

List of tables

2.1	Description of samples collections included as cases in the UK10K schizophrenia analysis	24
2.2	Description of samples collections included as controls in the UK10K	25
2.3	schizophrenia analysis	
2.4	Published studies identifying <i>de novo</i> mutations in schizophrenia parent-proband trios using whole-exome sequencing	50
3.1	Meta-analysis results for 1,077 trios, 4,264 cases and 9,343 controls. Only <i>SETD1A</i> reached exome-wide significance	70
3.2	Results from statistical tests associating disruptive variants in <i>SETD1A</i> to schizophrenia and developmental delay	72
3.3	TADA results using the hyperparameters in the De Rubeis <i>et al.</i> autism meta-analysis. Only <i>SETD1A</i> has a <i>q</i> -value $< 0.01. \dots \dots$	77
3.4	Burden tests associating disruptive variants in <i>SETD1A</i> to schizophrenia and developmental delay	78
3.5	Phenotypes of individuals in the schizophrenia exome meta-analysis who carry LoF variants in <i>SETD1A</i>	79
3.6	Phenotypes of individuals in the DDD study and SiSU project who carry LoF variants in SETD1A	80
4.1	Gene sets enriched for rare coding variants conferring risk for schizophrenia	116
4.2	Gene sets enriched for rare coding variants conferring risk for schizophrenia	
4.3	Results from enrichment analyses of FDR < 5% gene sets, conditional on	119
	brain-expressed and ExAC constrained genes	121

•••	T ' . C . 11
XVIII	List of tables

4.4	Phenotypes of schizophrenia individuals with cognitive information carrying	
	LoF variants in developmental disorder genes	123