
Chapter 2

A protocol for the quality control of
whole-exome sequencing data sets

2.1 Challenges behind the production and analysis of se-
quencing data

Whole-exome sequencing has emerged as the technology of choice in investigating the

contribution of rare variation in the genetic basis of complex disorders. It has been most

successful in identifying genes underlying rare Mendelian disorders, in which only a small

number of samples are needed to reveal causal variants of large effect [110, 111]. Early results

from complex diseases have demonstrated that a genome-wide burden of disruptive variants

exists in cases compared to controls. However, the identification of individual risk genes

remains elusive because a large number of genes appear to underlie many complex traits and

our ability to differentiate pathogenic variants from neutral polymorphisms remains limited

[78, 103, 88]. Much larger sample sizes, possibly in the tens of thousands, are required

to identify sufficient numbers of rare variants to implicate individual risk genes [88, 105].

While studies have individually analysed a small number of exomes, in aggregate tens of

thousands of whole-exome sequences have been generated to date [112]. Meta-analyses

leveraging published data sets are beginning to have sufficient power for gene discovery.

Standardized protocols currently exist for performing variant discovery on whole-exome

sequence data [113–117]. Raw reads in a FASTQ files are first mapped to a genome

reference, duplicated reads are marked in the resulting BAM file to reduce amplification bias,

and base quality scores are empirically adjusted for systematic errors. A variant caller such

as Samtools mpileup or GATK HaplotypeCaller identifies sites at which a potential variant

exists relative to the reference, and calculates the probabilities of each possible genotype
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at that site [113, 114]. For very large data sets, samples are called individually and merged

before variant calling occurs in aggregate. This enables the incorporation of variant-level

information across samples when determining the appropriate genotype. Subsequently, a

variant classifier, such as GATK Variant Quality Score Recalibration (VQSR), filters out

mapping and sequencing artefacts. The remaining variants are annotated with predicted

biological consequences and analysed. These best practices were successfully applied in

Mendelian disorder studies and parent-proband trio studies analysing de novo mutations

[110, 118, 98].

As we begin to jointly analyse thousands of samples aggregated from published studies,

additional complexities in the preparation and production of whole-exome sequencing data

begin to emerge. First, sequencing technologies have a higher genotyping error rate than

array-based calls, and unlike common variant association studies, genotype refinement using

a reference panel is unlikely to improve the quality of variant calls at the lowest end of

the allele frequency spectrum [116]. To partially address this, each sample is sequenced to

sufficiently high depth to ensure reasonable coverage (40× or greater) over the entire exome

[116]. However, the enrichment of coding sequences using DNA hybridization inherently

leads to uneven coverage: certain regions are captured to much greater affinity due to

sequence context (high GC content), while other baits fail when overlapping polymorphisms

modify its annealment affinity. Baits targeting low complexity regions capture reads from

other repetitive sequences, leading to a even greater disparity of coverage across the exome.

These limitations are further exacerbated by the substantial batch effects that appear from

combining data from different exome sequencing studies. Depending on study design,

researchers sequence samples to different mean coverage, which result in higher quality calls

in some samples over others. Furthermore, a number of commercial captures are available

for target enrichment, and each have systematic biases in its regional coverage of the exome.

Finally, sequencing centres have different protocols for sample preparation, sequencing, and

data production that are subject to change as technology progresses, all of which introduces

additional variability between groups of samples. To aggregate and meta-analyse published

sequencing data sets, we must first address these sources of systematic bias which often

confound the results of rare variant association tests.

In this Chapter, I first describe the whole-exome sequencing data generated in the UK10K

project, the Deciphering Developmental Disorders (DDD) study, INTERVAL study, Swedish

Schizophrenia study, and the Sequencing Initiative Suomi (SiSU) project, all of which are

analysed in Chapters 3 and 4. I then highlight the steps taken to prepare these data for

analysis, and detail best practices to harmonize sequence production, variant calling, and

variant- and sample-level QC across many thousands of whole-exome sequences. Useful
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metrics for comparing variant quality between data sets are shown and discussed. Using

diagnostic de novo mutations from the DDD study, I determine which in silico annotation

tool best differentiated pathogenic from benign variants, which I then use to classify missense

variants in subsequent analyses. Finally, I describe published whole-exome sequencing data

sets of schizophrenia parent-proband trios, and extend a method of modelling the recurrence

of de novo mutations for gene discovery.

2.1.1 Publication note and contributions

The results described in this chapter was peer-reviewed and published earlier this year [119].

I briefly summarise the various contributions to this project. The neuro group within the

UK10K study recruited and whole-exome sequenced schizophrenia cases. This initiative

was led by Aarno Palotie, Michael J. Owen, Jeffrey C. Barrett, and Daniel Geschwind.

The sequencing team at the Wellcome Trust Sanger Institute performed exome capture,

sequencing, and alignment for the UK10K and INTERVAL studies. I received the raw VCF

for the Finnish case-control data set from Mitja I. Kurki and Aarno Palotie. I performed

all subsequent production, and QC steps for these data under the supervision of Jeffrey C.

Barrett. Unless explicitly stated, the parts of the peer-reviewed publication reproduced in this

Chapter are my original work.

2.2 Materials and methods

2.2.1 Sample collections

Individuals clinically diagnosed with schizophrenia were recruited and exome sequenced as

part of eight neurodevelopmental collections (Aberdeen, Collier, Edinburgh, Gurling, Muir,

UK-SCZ, Finnish-SCZ, and Kuusamo) in the UK10K sequencing project. Matched popula-

tion controls were selected from non-psychiatric arms of the UK10K project, healthy blood

donors from the INTERVAL project, and five Finnish population studies (ENGAGE, Familial

dyslipidemia, FINRISK, Health 2000, and METSIM). Additional details on the UK10K

dataset are described in Table 2.1 and 2.2, and the sequence data have been deposited into

the European Genome-phenome Archive (EGA) under study accession EGAO00000000079.

The Swedish schizophrenia case-control study had been described in an earlier publication

[103], and I acquired processed VCFs for this data set via dbGaP authorized access (Ac-

cession: phs000473.v1.p1). A total of 2,536 schizophrenia cases and 2,543 controls were

available for analysis. The DDD study was designed to further our understanding of broader

developmental disorders while advancing clinical genetics practice in the UK. 4,281 children
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Table 2.1 Description of samples collections included as cases in the UK10K schizophrenia

analysis. 1,353 cases remained after sample quality control.

with diverse, severe undiagnosed developmental disorders and their parents were exome

sequenced to identify novel risk genes carrying variants of large effect. Patient recruitment,

sample collection, sequencing production, and initial analysis of the dataset were described

in detail in a previous publication [118]. The sequence data had been deposited into the EGA

under study accession EGAS00001000775.

The SiSU project is an international collaboration generating whole genome and whole-

exome sequence data from Finnish samples, and consists of a number of prospective and

case-control cohorts, including the ENGAGE, FINRISK, Health 2000, and METSIM studies

(http://www.sisuproject.fi/content/cohorts). The Northern Finnish 1966 Birth Cohort (NFBC)

is a geographically based representative birth cohort including 96% (N = 12,068) of all

live births in the two most northern provinces of Finland in 1966. The Northern Finnish

Intellectual Disability Cohort (NFID) is an ongoing sample collection of individuals who have

been diagnosed with ICD-10 diagnosis of intellectual disability or specific developmental

disorder of speech and language of unknown etiology (ICD-10 codes: F70-F79 and F80-F89).

The current sample includes 324 patients and their first-degree family members (N = 631,

92 full trios) with GWAS and WES data available. Combined, 5,720 Finnish exomes from

the SiSU project were available for analysis.
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Table 2.2 Description of samples collections included as controls in the UK10K schizophrenia

analysis. 4,769 controls remained after sample quality control.
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Informed consent was obtained for all samples. Further information is available at

http://uk10k.org/, http://www.ddduk.org, http://www.intervalstudy.org.uk/, and http://www.

sisuproject.fi/.

2.3 Sequence data production

2.3.1 Sample preparation

DNA samples in the UK10K, DDD, and INTERVAL studies were sequenced at the Wellcome

Trust Sanger Institute (Hinxton, Cambridge). One to three micrograms of DNA was sheared

to ∼100 to 400 base pairs using either a Covaris E210 or LE220 machine (Covaris, Woburn,

MA, USA), and processed using Illumina paired-end DNA library preparation. Three

different captures were used to capture targeted coding regions: an expanded custom Agilent

SureSelect Human All Exon v.3 capture with custom ELID C0338371 in the UK10K project,

the Agilent SureSelect Human All Exon v.3 Kit (ELID S02972011) in the DDD study, and

the Agilent SureSelect Human All Exon v.5 kit in INTERVAL study. All libraries were

subsequently sequenced on Illumina HiSeq 2000 with 75 base paired-end reads in multiple

batches according manufacturer’s protocol over the duration of each project.

2.3.2 Alignment and BAM processing

Sequencing reads that failed quality control (QC) were first removed using the Illumina

GA pipeline. Remaining raw reads were mapped to the reference genome (GRCh37 in

UK10K; GRCh37_hs37d5 in DDD and INTERVAL studies) using BWA (v0.5.9-r16 in

UK10K; v0.5.10 in DDD and INTERVAL) [113], and duplicate fragments were marked

using Picard (v1.36 in UK10K; v1.98 in DDD; v1.114 in INTERVAL) [120]. GATK (version

1.1-5-g6f43284 in UK10K; version 3.1-1-g07a4bf8 in DDD; version 3.2-2-gec30cee in

INTERVAL) was used to perform local realignment around indels [115], and recalibrate base

qualities in each sample BAM. I applied VerifyBamID (v1.0) to estimate the Freemix value,

which is representative of the contamination fraction in our sequence data [121]. I used the

recommended thresholds for contamination, and removed samples if they had Freemix score

≥ 0.03. 31 samples or 2% of the UK10K data set were excluded, while 201 samples or 4.5%

of the INTERVAL data set were excluded. We were unsure if the excess contamination in

the INTERVAL study occurred during sample extraction, preparation, or sequencing.
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2.3.3 Variant calling

I first called variants in individual samples using GATK Haplotype Caller (version 3.2-2-

gec30cee). All samples were merged into random batches of 200 using CombineGVCFs,

and then joint-called using GenotypeGVCFs at default settings [115, 122]. Because three

different exome captures had been used, variant calling was performed on the union of Agilent

v.3 and v.5 baits with 100 base pairs of flanking sequence. I subsequently ran the GATK

VQSR on all GENCODE coding variants using default settings. This joint calling protocol

was suggested by the GATK development team for the production of large sequencing data

sets.

2.4 Variant calling and quality control across capture and
batch

2.4.1 Adjusting for differences between capture and batch

The sequence data for individuals of UK ancestry was generated at the Wellcome Trust Sanger

Institute using the same Illumina sequencing platform and some version of the SureSelect

Human All Exon v.3 or v.5 captures. However, substantial differences exist between the

exome captures, and this must be carefully adjusted for if samples were to be jointly analysed

in a case-control framework. The v.5 capture improved coverage across the entire exome by

shifting problematic coding baits into the intronic region and excluding a small percentage of

repetitive and problematic genes. Because of this, the v.3 and v.5 captures shared only 77%

of their targeted regions, and a simple intersection could not be used to prioritise genomic

regions for a joint analysis. To best harmonize calls across projects, I first re-called samples

together using a common calling pipeline at the union of both Agilent captures with 100 bp

of flanking sequence. Instead of calculating coverage at v.3 and v.5 captures, I calculated

per-sample read depth at all coding exons defined by GENCODE version 19 to evaluate

differences in coverage and sequence quality [123]. From these data, I identified a set

of well-behaved coding regions with sufficient coverage across batches and captures for

subsequent QC and analysis.

In Figure 2.1, the v.5-captured samples (INTERVAL) had lower read depth across the

entire exome, but covered a larger percentage of coding regions than in earlier v.3 captures

(DDD and UK10K). The samples in the UK10K study were divided into two batches,

reflecting a known chemistry change that occurred early in the project. DDD exomes more

closely resembled the UK10K v.3 samples in regional coverage but clear differences still
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Fig. 2.1 Density plots of sequence coverage in the UK10K, INTERVAL, and DDD
datasets. Per-sample sequence coverage was calculated and summarised from exome se-

quencing data generated in the UK10K (N = 4,734 in batch 0, and N = 562 in batch 1),

INTERVAL (N = 4,502), and DDD (N = 1,972) datasets. The UK10K dataset was separated

into two sequencing batches. Top: sample mean coverage; Middle: percentage of GENCODE

v19 coding bases covered at 10× or more in each sample; Bottom: percentage of GENCODE

v.19 coding bases covered at 20x or more in each sample.
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existed between the v.3 and custom v.3 capture. Since all schizophrenia cases were sequenced

using the v.3 capture, I have less power to detect rare variant associations in regions where

this capture has limited coverage. I restricted our analysis to variants with a read depth of

7× or more in at least 80% of samples in each of the four batches (UK10K batch 0, UK10K

batch 1, DDD, and INTERVAL). For a more stringent filter, I identified exons that were

covered at 10× or more in at least 80% of samples in each batch for a total of 28.5 Mbs. By

applying these filters, I excluded regions that were not covered with sufficiently high depth

in our v.3-captured cases, or were not targeted in our v.5-captured controls by design.

2.5 Sample-level quality control for case-control analysis

The combined case-control data set consisted of individuals recruited from three countries:

the UK, Sweden, and Finland. The UK and Finnish cases were recruited as part of the

UK10K project, and the Swedish individuals were recruited in an independent study. While

cases were called with nationality-matched controls, each subgroup was processed and

sequenced at a different location with different reagents, and had to be analysed separately to

reduce the effects of possible confounders like population stratification. Because of this, I

performed sample-level and variant-level quality control steps on each nationality separately,

and describe these steps in detail below.

2.5.1 Sample-level QC in the UK10K-INTERVAL case-control data set

In the UK10K data set, we sequenced the exomes of 1,488 UK individuals with schizophrenia

and 5,469 matched controls without a known neuropsychiatric diagnosis. After per-sample

depth analysis, I removed 22 samples with low coverage (≤ 75% of the GENCODE v.19 cod-

ing region covered at ≥ 10×). I next identified high-quality LD-pruned SNPs to investigate

familial relatedness, non-European population ancestry, and outlying heterozygosity rates in

our data set. To acquire these variants, I extracted common SNPs (MAF > 5%) that passed a

stringent VQSR threshold (tranche sensitivity 99.0%), had missingness < 3%, and Hardy-

Weinberg equilibrium χ2 P-values > 1×10−3 in the UK10K and INTERVAL sequencing

batches. I merged this subset of samples and variants with the 1000 Genomes Phase III

release, and retained 43,837 SNPs with MAF > 5% and missingness < 3% in the combined

dataset. These variants were LD-pruned on PLINK v1.9 with parameters –indep-pairwise 50

5 0.2 while excluding extended regions of high LD (chr 6: 25,000,000-35,000,000, and chr 8:

7,000,000-13,000,000) [124]. After filtering, a total of 19,554 high-quality LD-pruned SNPs

were available for analysis.
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Fig. 2.2 Principal components analysis of UK and Finnish samples in our UK10K
schizophrenia dataset. Principal components were estimated using 1000 Genomes samples,

onto which I projected our cases and controls. I verified if samples had the same population

ancestry (UK or Finnish) as reported in the sample manifests, and excluded individuals who

were of non-European ancestry. Thresholds for sample inclusion and exclusion are shown

as dashed lines in each plot. Top left: Population structure of all UK10K samples, with

1000 Genomes populations used as bases. Samples bracketed by the dotted lines are of

European ancestry; Bottom left: PCA plot of individuals of non-Finnish European ancestry

in the UK10K dataset with 1000 Genomes European populations used as bases. Samples

not within the UK cluster (bracketed by the dotted lines) were excluded from analysis; Top
right: PCA plot of individuals of Finnish ancestry in the UK10K dataset. Samples not

in the Finnish cluster (bracketed by the dotted lines) were excluded from analysis. The

three-letter symbols describing each population originate from nomenclature in the 1000

Genomes Project. UK10K: samples in our case-control study; SCZ: schizophrenia cases;

Control: controls from our study.
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Principal components analysis (PCA) was performed using PLINK v1.947 with 1000

Genomes Phase III samples as reference populations. I observed that 407 individuals were

of non-European ancestry (Figure 2.2). In a second PCA using only European populations

as reference, I observed that our samples were predominantly of UK or North European

ancestry, with a small number of cases more related to 1000 Genomes individuals from the

Iberian peninsula (Figure 2.2). I retained these individuals, but noted that they may have to be

grouped into a separate batch or excluded in later analyses. I estimated kinship coefficients

between each sample pair using KING v1.448 [125], and removed 39 duplicate samples and

68 samples with abnormal values likely due to some level of contamination. Individuals in

first, second, and third-degree relationships were identified, and 190 samples were selectively

removed until the maximum pairwise kinship coefficient within the cohort is 0.09375. In

all, 826 samples were removed during QC, resulting in a final cohort of 6,122 UK samples

(1,353 cases and 4,769 controls).

2.5.2 Sample-level QC in the Finnish and Swedish case-control data
sets

In the UK10K data set, we sequenced the exomes of 399 Finnish individuals with schizophre-

nia and 2,116 matched controls, and performed variant calling using the GATK pipeline at

the Broad Institute (Cambridge, MA). After obtaining unprocessed VCFs containing these

samples, I excluded 16 samples with lower-than-expected coverage, and determined that

all samples within the Finnish data set were of either non-Finnish European or Finnish

ancestry (Figure 2.2). A more detailed projection using 1000 Genomes European individuals

revealed that 27 samples were more closely related to non-Finnish Europeans in ancestry, and

I excluded these 27 individuals from further analysis. From relatedness analysis, I excluded

67 samples. In all, 103 samples were removed during QC, resulting in a final data set of 2,412

samples (392 cases and 2,020 controls). A similar analysis within the Swedish case-control

data set determined that all samples were of non-Finnish European or Finnish ancestry. I

excluded 17 samples due to relatedness, resulting in a final data set of 5,073 individuals

(2,519 cases and 2,554 controls).
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2.6 Variant filtering in case-control data sets

2.6.1 Variant filtering in the UK10K-INTERVAL data set

Standard protocol for variant filtering recommends the use of GATK VQSR for calculating

the probability that a variant is real, and selecting a threshold that maintains a desired

sensitivity for true variants. The VQSR model trains on the annotation metrics (mapping

quality, strand bias, quality by depth) of validated variants from the HapMap project and

the 1000 Genomes Project to classify the remaining variants. However, recent studies have

suggested that VQSR is less effective in filtering ultra-rare variants, especially those that are

seen only once (singletons) or twice (doubletons) in the data set [126]. Notably, VQSR does

not filter individual genotypes, which allows low-quality calls to be inaccurately retained

if that site on average passes VQSR filtering. The inability to remove these low-quality

genotypes within variable sites adds unnecessary noise in downstream analyses. However,

recommended thresholds for filtering individual genotypes have not been established.

To complement the GATK filtering step, I empirically derived site and genotype filters by

evaluating the sensitivity and specificity of different thresholds using a training set consisting

of real rare variants and sequencing artefacts. First, I assumed that rare and singleton

ExomeChip genotype calls in 295 UK10K cases (83 in batch 0, 212 in batch 1) represented

real variants, and evaluated concordance with corresponding calls in our sequence data

to assess sensitivity. Second, I identified inherited variants unique to parent-proband pair

(inherited doubletons) and Mendelian inheritance inconsistent variants within DDD parent-

proband trios to evaluate SNP and indel filtering thresholds. I computed the percentage of

inherited variants retained and putative de novo variants removed at various thresholds to

evaluate the effectiveness of our variant filtering. Using these data, I explored genotype

thresholds across a number of variant and genotype-level metrics, including VQSLOD score,

reference allele read depth (DP0), alternate allele read depth (DP1), allelic balance (AB),

genotype quality (GQ), and mean genotype quality (GQ_MEAN). Variant thresholds were

determined for SNPs and indels separately. In summary, I used rare array-based variants and

rare Mendelian inheritance consistent (truth sets) and inconsistent variants from trios (false

set) to calibrate variant filtering thresholds.

Variant filtering thresholds for SNPs

Applying the following filters achieved a reasonable compromise between sensitivity and

specificity within our case-control data set (Figure 2.3):

• Exclude variants outside the VQSR tranche with 99.75% sensitivity
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Fig. 2.3 The evaluation of different variant filtering thresholds using rare DDD in-
herited variants and Mendelian inconsistent variants as a testing set. I evaluated the

sensitivity and specificity across a range of thresholds for each variant and genotype-metric.

AB<: retain variants with allelic balance greater than this threshold; DP1: retain variants

with alternate allele read depth greater than this threshold; GQ: retain variants with genotype

quality greater than this threshold; VQSR: retain variants with a GATK variant recalibration

scores greater than this threshold.

• Exclude variants with mean GQ < 30

• Exclude genotype calls with GQ < 30

• Exclude genotype calls with DP1 < 2

• Exclude genotype calls with AB < 0.2 and AB > 0.8

Using these thresholds, I removed 95.63% of all Mendelian inconsistent genotype calls

while retaining 98.38% of all doubleton inherited variants. In the ExomeChip data set,

I retained 99.45% of variants seen only once in the UK10K samples, and 99.62% of all

heterozygote calls. While GATK recommended a more conservative VQSLOD score thresh-

old (either VQSRTranche99.50 or VQSRTranche99.0), I found that a less stringent VQSR

filter combined with genotype-level thresholds retained a larger percentage of rare inherited

variants while attaining reasonable specificity. If VQSR were applied without genotype-

level filters, only 40.8% of all Mendelian inconsistent genotype calls would be excluded

were I to maintain a comparable sensitivity of 98% for doubleton inherited variants. I also

removed SNPs with missingness greater than 20%, and tested SNPs for deviation from Hardy-

Weinberg equilibrium within each sequencing batch (UK10K batch 0, UK10K batch 1, and

INTERVAL) and within the entire data set. The Hardy-Weinberg filter addressed mapping

issues that arose from differences in exome baits or decoy sequences used during alignment:



34 A protocol for the quality control of whole-exome sequencing data sets

mismapped variants often are seen only as heterozygotes in one batch and homozygotes in

another. Any variant that deviated from Hardy-Weinberg equilibrium with χ2 P-values of
< 1×10−8 in any batch or in the entire data set was excluded. Finally, I excluded variants
that resided in low-complexity regions, the 2% of the genome highly enriched for repetitive

sequences in which alignment and variant calling is more difficult (see Heng et al. [117] for
a more precise definition and motivation for its use). At each stage of filtering, I reported the

per-sample transition-transversion rate (TiTv), the number of heterozygote calls, the number

of non-reference homozygous calls, and the number of variants observed only once within

the UK10K-INTERVAL call set (Figure 2.4, 2.5). The variant metrics appeared comparable

across the four batches, and the mean sample TiTv was ∼3.26, the expected rate for coding

SNPs in European populations.

Variant filtering thresholds for indels

Using the same approach described above for SNPs, I found that the following filters achieved

a reasonable compromise between sensitivity and specificity for indel discovery within our

case-control data set:

• Exclude variants outside the VQSR tranche with 99.50% sensitivity

• Exclude variants with mean GQ < 90

• Exclude genotype calls with GQ < 90

• Exclude genotype calls with DP1 < 2

• Exclude genotype calls with AB < 0.25 and AB > 0.8

Using these variant and genotype-level thresholds, I removed 92.35% of all unfiltered

Mendelian inconsistent indel calls while retaining 93.60% of all doubleton inherited indels.

Applying VQSR alone was not sufficient to acquiring a clean indel set: even at a stringent

VQSLOD threshold of −0.3151 (VQSRTrancheINDEL0.00to99.00), I only achieved speci-

ficity of 40.72% for Mendelian inconsistent indels. I also removed indels with missingness

greater than 20%, and those that deviated from Hardy-Weinberg equilibrium with χ2 P-values
of < 1×10−8. I removed indels that resided in low-complexity, highly repetitive regions

(defined in the previous section) that could not be appropriately aligned using short-read

technology. Lastly, I excluded all indels that have more than two alternate alleles, or were

clustered within 3 bp of another indel. Following these indel filtering steps, the number of

indels and frameshift:inframe ratio appeared comparable across all batches (Figure 2.6).

From previous studies of parent-proband trio studies, we expected to find one coding de
novo mutation per proband [79, 80]. In our DDD trio data set, we observed 92 de novo SNVs
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Fig. 2.4 Variant metrics in the UK10K and INTERVAL datasets after each variant fil-
tering step. Box plots of per-sample heterozygote count (nHets), non-reference homozygote

count (nNonRefHom), TiTv (TiTv), number of singletons (nSiS), and number of indels

(nIndels) following each variant QC step. Variant metrics were summarised across all sam-

ples in the UK10K and INTERVAL datasets. Raw: no variant QC steps applied; Cov7:

restricting to variants with at least 7× mean coverage; VQSR: GATK variant calibration

using default parameters; Miss: filter for excess missingness; HWE: filter for deviation

from Hardy-Weinberg equilibrium; GTfilt: filter for low alternate allele read depth, and

abnormal allelic balance; GQmean: filter for low genotype quality; LCR: exclude variants in

low-complexity regions.
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and 12 de novo indels per proband prior to variant filtering, and 4 de novo SNVs and 0.92 de
novo indels per proband after variant filtering. The observed de novo mutation rate in our

data set still exceeded the expected rate of mutation described in previous studies, suggesting

that our variant QC was not sufficiently strict to over-filter genuine de novo events while

vastly reducing the number of false positives.

2.6.2 Variant filtering in the Finnish and Swedish data sets

In the Finnish data set, SNPs and individual genotype calls were excluded according to the fol-

lowing criteria: VQSLOD <−2.6557 (VQSRTrancheSNP99.75), GQ < 30, or GQ_MEAN

< 30. Indel sites and genotypes were excluded according to the following criteria: VQSLOD

< −0.2731 (VQSRTrancheIndel99.50), GQ < 90, or GQ_MEAN < 30. In addition, I re-

moved variants with missingness greater than 20%, or if they deviated from Hardy-Weinberg

equilibrium with χ2 P-values of < 1× 10−8. All variants within low-complexity regions

were excluded. I also removed all indels that have more than two alternate alleles, or were

located within 3 base pairs of another indel. After variant and genotype-level QC, the

sample TiTv and frameshift:inframe ratio was ∼3.29 and ∼1.01 respectively, which was

comparable across batches of the Finnish data set and with the UK10K-INTERVAL call set

(Figure 2.5, 2.6).

I was unable to acquire raw BAMs for the Swedish data set to re-call and perform QC

from scratch. However, the Swedish data set as provided already had very stringent filters

applied during a previous analysis, and I analysed the dataset with little additional QC.

Variant sites and genotypes were filtered out if the Hardy-Weinberg equilibrium χ2 P-values
< 1×10−8, missingness > 20%, or if they reside within in low-complexity regions. After

variant and site QC, the sample TiTv and frameshift:inframe ratio was ∼3.28 and ∼1.15
respectively, which was comparable across batches and with the UK10K-INTERVAL call

set.

2.7 Comparison of population genetics metrics across data
sets

Following sample and variant QC, 6,122 UK samples (1,353 cases and 4,769 controls),

2,412 Finnish samples (392 cases and 2,020 controls), and 5,073 Swedish samples (2,519

cases and 2,554 controls) were available for analysis. Variant counts and population genetic

metrics between data sets and sequencing batches were harmonized: the sample TiTv (mean

∼3.25) and the frameshift:inframe ratio were comparable across all populations and batches
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Fig. 2.5 Variant counts summarised according to variant class and sequencing batch in
the UK10K, INTERVAL, Finnish, and Swedish datasets. Box plots of per-sample variant

counts in the UK10K, INTERVAL, Finnish, and Swedish datasets. All samples included

in our meta-analysis are represented in the figure. The UK10K datasets was sub-divided

according to sequencing batches (batch 0 and batch 1), and sample ancestry (UK and Finnish).

The Finnish control datasets was separated by study of origin (Metsim, Finrisk, and Sanger

controls). The Swedish case-control dataset was separated into two sequencing batches.

Differences exist in total variant counts between the UK, Finnish, and Swedish collections,

likely reflecting differences in sequencing depth, capture reagents, sequencing protocol, read

alignment, and variant calling. However, variant counts and population genetics metrics were

consistent between cases and controls within each population group.
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(Figure 2.6). However, I still observed some differences between variant counts between the

UK, Finnish, and Swedish data sets (Figure 2.5). The UK, Finnish, and Swedish samples

were independently produced and called at different sequencing centres, and the discrepancy

in variant counts likely reflected differences in capture, sequencing batch, calling procedure,

and quality control. In particular, the Swedish data set we acquired from dbGAP underwent

extremely stringent variant filtering, and had per-sample variant counts nearly half of that

observed in the UK10K-INTERVAL data set and the 1000 Genomes Phase III data set.

These differences would confound rare variant tests and need to be explicitly corrected for.

In subsequent analyses, I adjusted for between-population differences by treating them as

separate analytical groups. More importantly, cases and controls within each population

group appeared to be well-matched, and this was reflected in the null statistics of subsequent

variant and gene-based analyses.

Fig. 2.6 Distributions of TiTv and frameshift-inframe ratios in the UK10K, INTER-
VAL, Finnish, and Swedish datasets. Here, I have a box plot of sample TiTv (left) and

violin plot of sample frameshift-to-inframe ratio (right) in the UK10K, INTERVAL, Finnish,

and Swedish datasets. All samples included in our meta-analysis are represented in the figure.

See 2.5 for the legend, and a description of each batch and sub-study. Following sample

and variant QC, the per-sample transition-to-transversion ratio was comparable between all

populations (mean ∼ 3.25).

2.8 Systematic annotation of coding variants

I used the Ensembl Variant Effect Predictor (VEP) version 75 to annotate coding variants

with GENCODE version 19 transcripts as reference [127]. VEP plugins were used to apply

in silico classifiers to missense variants, such as PolyPhen, SIFT, and CADD [128–130].

For each variant, I assigned a functional consequence on a per-gene basis, aggregating all

transcript-level annotations and retaining only the most severe consequence. Coding variants

were assigned into the following functional categories:
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1. Loss-of-function or disruptive (LoF) variants

• Frameshift

• Stop-gained

• Splice acceptor and donor variants

2. Initiator codon variants

3. Inframe deletion or insertions

4. Missense variants (mis)

5. Synonymous variants

Following other rare variant studies [94, 103, 105], I stratified our analyses into two functional

classes: 1. LoF variants, 2. missense or initiator codon variants.

2.9 Evaluating the effectiveness of existing in silico predic-
tors of pathogenicity

The use of variant annotation tools to prioritise coding variation has helped increase statistical

power for gene discovery [88, 94]. Most variants identified in the coding region reside in

the rarer end (MAF < 0.1%) of the allele frequency spectrum (AFS) [78]. If the predicted

functional consequence of variants were disregarded, a simple comparison of allele counts

between cases and controls would be diluted by large numbers of non-functional variants [88].

Functional annotation tools intend to accurately distinguish the pathogenic, disease-causing

variants from neutral polymorphisms, thus enriching our analyses on causal risk variants

while decreasing the rate of background noise. However, over-filtering and removing true

signals can have a detrimental effect on our power, especially when the allele counts of rare

damaging variants are already low due to purifying selection. A delicate balance between

specificity and sensitivity in annotating disease-causing variants is required to maximize our

power in detecting true associations.

2.9.1 The interpretation of protein-coding consequences

In the simplest case, a variant is annotated as functional based on its effect on a protein

product. A true loss-of-function (LoF) variant either drastically reduces levels of the gene

product or disrupts a protein’s ability to carry out key functions. This can be through

truncations, aberrant splicing, shifts in coding sequences, and pre-mature stop codons. A
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missense variant causes an amino acid substitution, which can lead to change in protein

functionality. Many of these changes are benign and would not be subject to strong selection:

missense variants may substitute amino acids without affecting charge and folding or disrupt

a domain or peptide that is irrelevant to protein function. On other hand, some missense

variants eliminate protein function by disrupt protein folding or modifying the charge of an

active site. Thus, even if a variant labelled as missense or loss-of-function by VEP, additional

information is needed to properly evaluate its pathogenicity.

2.9.2 A description of existing annotation tools

Because of this, a series of statistical tools have been developed to predict the pathogenicity

of missense variants. These missense classifiers primarily differ in the statistical approach

applied, the features inputed into the model, and the training and testing data set used for

calibration and evaluation (Table 2.3). For instance, PolyPhen2 uses a Bayesian classifier

to characterize missense variants based on structural information about the binding site,

protein domains, contact with ligands, and subunit interactions [129]. All the calculated

features are trained using a Bayes classifier on the HumDiv data set, a curated list of variants

causing Mendelian disorders, and the Humvar data set, a more comprehensive list of risk

alleles from UniProt [131]. SIFT, another popular tool, models function using a multiple

sequence alignment of proteins, and determines which base mutations was most tolerated

across similar proteins [128]. A SIFT score of 0.05 indicates the alternate allele was observed

in 5% of all alignments and could be considered not as damaging. Other missense classifiers

include LRT, MutationTaster, MutationAssessor, FATHMM, Radial SVM,MetaLR, GERP++,

PhyloP, Condel2, and SiPhy [132, 133]. Some of these, like GERP++, and PhyloP, classify

variants based on the degree of sequence conservation between species, while others, like

Radial SVM and Condel2, are ensemble classifiers that integrate results from other tools to

annotate variants. CADD differs in its approach completely by simulating its training set and

comparing these randomly generated alleles to the set of derived alleles common between

the human-chimpanzee ancestral genome [130]. A support vector machine with a large set

of features, including SIFT and PolyPhen, was used to model the relative deleteriousness of

all possible alleles across the genome. Unlike the other tools, CADD could annotate both

coding and non-coding variants.

When evaluating these models, differences in statistical approach, input features, and

training and testing data must be carefully considered to prevent issues of circularity and bias

(Table 2.3). For example, MutationalTaster incorporates frequency information from 1000

Genomes when determining pathogenicity; a testing set consisting of rare damaging variants

as pathogenic and common variants as benign would inflate the classifier’s effectiveness.
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Ensemble classifiers like CONDEL and Radial SVM incorporated MutationTaster, SIFT, and

PolyPhen as features, and indirectly incorporated frequency information. Furthermore, only a

few robust variant data sets exist for evaluating the effectiveness of each classifier, and many

of these classifiers already use them for training. For instance, PolyPhen, CONDEL, Radial

SVM, and MetaLR trained on the same set of curated coding variants provided by Uniprot,

while others trained on the Human Gene Mutation Database (HGMD) database. Therefore, a

new and wholly independent dataset is best suited for evaluating the performance of these in
silico classifiers.

2.9.3 Strategy for evaluating variant annotation tools

I evaluated the effectiveness of available annotation tools for LoF and missense variants

using a series of novel variant sets previously not used for classifier training. First, I used

a clinician-curated set of variants from the DDD study. De novo and inherited variants

were identified and validated in 1,133 affected probands, and variants disrupting known

developmental disorder genes were manually curated to determine if these variants were

pathogenic relative to the patient’s phenotype. I used all clinically reportable variants as a

truth set, and all rejected variants as a false set. For an additional truth set, I accumulated de
novo mutations from 2,263 trios sequenced as part of the Autism Sequencing Consortium,

and 2,500 trios sequenced in the Simon Simplex Collection. I identified all de novo missense

variants disrupting autism risk genes from Sanders et al. [109] as another truth set.
The ExAC database contained coding variants from 60,706 unrelated individuals without

severe paediatric diseases joint-called in a single pipeline [112]. It is important to note

that this release of ExAC contained a number of individuals with psychiatric phenotypes.

I assumed that the fraction of pathogenic variants in this data set was substantially lower

than in the DDD and ASD studies, and used missense variants with MAF < 1% in ExAC

as a false set. Finally, I re-annotated a large set of functional, protein-coding variants

manually curated by Uniprot for an additional training set. This truth set consisted of variants

described by Uniprot as disease-causing and our negative truth set were variants described as

general polymorphisms. I applied the following in silico classifiers to the missense variants:

PolyPhen2, SIFT, LRT, MutationTaster, MutationAssessor, FATHMM, Radial SVM, MetaLR,

GERP++, PhyloP, Condel2, CADD, and SiPhy. Using causal variants identified in the DDD

and ASD studies, I determined guidelines for prioritising variants in trio and case-control

analyses.
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Table 2.3 Description and summary of statistical tools developed to predict the pathogenicity

of coding variants. The statistical method, features, and training set of each missense classifier

were described. More information on these tools could be found in the annotation database

dbNSFP [132, 133].
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2.9.4 Preparation of annotation files

I used the Annovar tool and the dbNSFP v2.7 database [132, 133] to annotate all missense

variants with the following classifiers: PolyPhen2, SIFT, LRT, MutationAssessor, FATHMM,

Radial SVM, MetaLR, GERP++, PhyloP, CADD, and SiPhy. I used VEP to annotate variants

with CADD and Condel2 scores. Condel2 scores were separately downloaded from FannsDB

and parsed to be compatible with VEP.

2.9.5 Classifiers display variable performance depending on test data

First, I tested the effectiveness of the 14 classifiers in identifying pathogenic and benign

variants in the UniProt data set. I found that ensemble classifiers, such as LR score, Radial

SVM, VEST3, and CONDEL, had the greatest area under the curve (AUC), and reached a

sensitivity and specificity of just under 90% (Figure 2.7). These classifiers used PolyPhen,

SIFT and conservation scores as features to train more flexible statistical methods like the

random forest and support vector machine. This was followed by CADD and PolyPhen that

reached a sensitivity and specificity of just under 80%. SIFT and annotation methods based

on conservation did not perform as well as the other classifiers.

I next evaluated the classifiers using pathogenic de novo mutations from the DDD and

ASD studies as positive testing data. I first used UniProt benign polymorphisms as negative

testing data. As seen in Figure 2.8, I found that the missense classifiers performed sub-

stantially worse when classifying de novo mutations when compared to UniProt pathogenic

variants. None of the classifiers had a discrimination threshold that simultaneously achieved

a sensitivity and specificity of greater than 82%. Ensemble classifiers like LR score and

Radial SVM still outperformed the remaining classifiers. Along with CADD, these more

flexible methods outperformed PolyPhen, SIFT, and other conservation-based annotations.

Finally, I used ExAC missense variants with MAF < 1% as an alternate negative testing

data set, while still using diagnostic de novo mutations as the positive testing set. Again, the

ensemble classifiers massively outperformed the remaining annotation tools, with LR score

and Radial SVM leading with the highest AUC (Figure 2.9).

I attempted to identify optimal discrimination thresholds for each missense classifier using

Youden’s J-statistic. Surprisingly, the optimal discrimination threshold for each annotation

tool was highly sensitive to the testing data set used. For LR score, the optimal threshold for

the Uniprot testing data set was 0.28, and resulted in a sensitivity and specificity of 0.92 and

0.87 respectively. However, this same threshold resulted in a sensitivity and specificity of

0.68 and 0.98 when classifying de novo mutations and ExAC common variants. The optimal

threshold for this data set was instead 0.037, which yielded a sensitivity and specificity of
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Fig. 2.7 ROC curve evaluating the performance of missense classifiers on UniProt
pathogenic-benign variants. UniProt pathogenic variants were used as the positive testing
set, while UniProt polymorphic (benign) variants were used as the negative testing set. The

sensitivity and 1− specificity was plotted at various threshold settings for each classifier.
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0.96 and 0.94 respectively. Unfortunately, this pattern was also observed for Radial SVM and

VEST3. While the ensemble classifiers appear to outperform the other classifiers, identifying

the discrimination thresholds at which this generally occurs is not at all straightforward.

While it is difficult to explain this variability in optimal thresholds, these ensemble classifiers

directly or indirectly incorporate allele frequency as a feature in their models, and this may

lead to biases in evaluation depending on the proportion of common and rare variants in the

testing data sets.

Ultimately, I selected CADD > 15 to classify missense variants as damaging in our

case-control analysis. While CADD had an AUC lower than LR pred and Radial SVM,

it had optimal discrimination thresholds that were highly comparable across the different

testing data sets. The sensitivity and specificity at these optimal thresholds did not vary

significantly between different testing data sets. For de novo — ExAC common variant data

set, the optimal threshold was 14.1, the sensitivity was 0.84, and specificity was 0.86; for

the de novo — Uniprot benign data set, the optimal threshold was 16.3, with a sensitivity of

0.76, and specificity of 0.79; for the Uniprot pathogenic-benign data set, the threshold was

15.4, with a sensitivity of 0.82 and specificity of 0.75. CADD performed robustly across each

of our testing data sets, and its performance was superior to both PolyPhen, SIFT, and the

other conservation scores. Finally, its continuous score extended to synonymous, splice, LoF,

intronic, and intergenic variants, which may be useful for analyses that extended beyond

missense variants.

2.9.6 A comparison of annotation approach with other whole-exome
sequencing studies

While the annotation approach described here does not differ drastically with approaches

used by other whole-exome sequencing studies, it does differ in some notable aspects, which

I discuss here. Nearly all studies grouped functional coding variants into two categories

for analysis: loss-of-function variants (defined as nonsense, essential splice, and frameshift

variants), and nonsynonymous variants (defined as missense and inframe indels) [98, 103,

105, 118, 94, 112, 134, 135]. Variants were annotated based on the most severe consequence

on any transcript. Where studies generally differed was in the tool used to annotate variants,

the transcript reference database, and the in silico classifiers used to prioritise pathogenic

missense variants. For instance, Purcell et al. and Fromer et al. used PLINK/SEQ to

annotate variants according to the RefSeq transcript definitions; Do et al. and De Rubeis et
al. used SnpEff and also according to RefSeq transcripts; the DDD and ExAC studies used

VEP according to Ensembl GENCODE transcript definitions; Genovese et al. used SnpEff
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Fig. 2.8 ROC curve evaluating the performance of missense classifiers on pathogenic de
novo mutations and benign variants from UniProt. Pathogenic de novo mutations from
the DDD and autism studies were used as the positive testing set, while UniProt polymorphic

(benign) variants were used as the negative testing set. The sensitivity and 1 - specificity was

plotted at various threshold settings for each classifier.
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Fig. 2.9 ROC curve evaluating the performance of missense classifiers on pathogenic
de novo mutations and ExAC missense variants with MAF > 1%. Pathogenic de novo
mutations from the DDD and autism studies were used as the positive testing set, while

ExAC missense variants with MAF > 1% variants were used as the negative testing set. The

sensitivity and 1 - specificity was plotted at various threshold settings for each classifier.
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according to GENCODE transcripts, and Fuchsberger et al. used a combination of annotation

tools that included SnpEff and ANNOVAR according to GENCODE transcripts. In many of

these studies, little justification was provided for the choice of annotation tool and transcript

database. Notably, when 80 million variants were annotated using multiple approaches, only

a 83% agreement was observed in the annotation for exonic variants when using the RefSeq

or Ensembl GENCODE transcript sets as references [136]. In the end, I decided to annotate

variants using VEP with GENCODE transcripts as reference because a number of data sets

and resources used in our analyses, such as ExAC database, GTeX database, and the DDD

study, followed this approach. In addition, as seen in the following section, the GENCODE

transcript reference contained a more complete set of coding genes, which permitted the

analysis of an additional 1,067 protein-coding genes. However, as discussed in [136], variant

annotation remained an unsolved problem, and no single annotation software or transcript

set was identified as directly superior to the others.

Whole-exome sequencing studies also differed in the tools used for classifying missense

variants as pathogenic and benign. Fromer et al., Do et al. and De Rubeis et al. used

PolyPhen-2, while Purcell et al., Fuchsberger et al., and Genovese et al. used an ensemble

approach in which missense variants classified as damaging by multiple tools were defined as

pathogenic. In the previous sections, I demonstrated that a number of the classifiers, including

CADD, outperformed PolyPhen-2 and SIFT. On the other hand, the ensemble approach

incorporated a number of tools that did not perform well in our evaluation (such as LRT), or

was not very robust and had very different optimal discrimination thresholds depending on

the testing set used . Furthermore, in Table 2.3, I described complicated interdependencies

between the different annotation tools, in which the same data sets were used for training

and evaluation, and some tools even incorporated SIFT and PolyPhen as features during

training. Thus, I decided to use CADD to annotate missense variants in our analysis, which

achieved reasonable sensitivities and specificities while robust to the choice of the testing

data set. I did not apply LOFTEE, as no other case-control or trio study performed additional

filtering on loss-of-function variants. However, this remains an unsolved problem, and no

single approach could be suggested as directly superior to the others.

2.10 A meta-analysis of published schizophrenia parent-
proband trio studies

Recent studies have leveraged whole-exome sequencing to identify de novo mutations in

parent-proband trios. These mutations are very rare germline events that arose in a single
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generation, and their unlikely occurrence in individual genes have been used to implicate

risk genes for severe Mendelian disorders. In these disorders, gene discovery did not require

a well-calibrated statistical model: for instance, five of the six probands sequenced with

Wiedemann-Steiner syndrome had LoF mutations in KMT2A [137], while nine of the ten

probands sequenced with Kabuki syndrome had de novo truncating events in KMT2D [82].

However, for more complex and heterogeneous disorders, the burden of de novo mutations

was likely spread over many genes. Early sequencing studies of hundreds of schizophrenia

and autism probands successfully demonstrated that a genome-wide excess of de novo
mutations existed in cases compared to controls [80, 96], but were underpowered to identify

individual genes.

Because recent studies have suggested that case-control and de novo data appeared

to implicate an overlapping set of genes [105], I aggregated validated de novo mutations

identified in schizophrenia trios from seven published studies for analysis with our case-

control cohort [98, 99, 95, 97, 100–102]. I ensured that all de novo mutations included our

analysis had been validated with Sanger sequencing, and that each parent-proband trio was

included only once in our analysis (Table 2.4). For example, the Xu et al. 2011 and 2012

studies and the Takata et al. 2014 study analysed trios from the same underlying cohort.

After excluding sample duplicates, I identified 118 LoF and 662 missense de novo mutations

in 1,077 schizophrenia probands for subsequent analysis.

2.11 Gene-specific mutation rates based on GENCODE tran-
scripts

To implicate individual genes using de novo mutations, a robust method of evaluating the

excess of de novo events is needed. One approach to evaluating the excess of de novo
mutations is to first estimate the expected per-generation rate of new mutations in gene g
(μg). Given this gene-specific rate, the probability of observing X new mutations in gene g
as observed in N trios can be modelled using the following Poisson distribution:

X ∼ Pois(2Nμg)

P(X ≥ x) = 1−
x−1
∑
i=0

P(X = i)

where X is number of de novo mutations in gene g, μg is the gene-specific mutation rate, and

N is the number of trios in our study. However, establishing robust gene-specific mutation
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Table 2.4 Published studies identifying de novo mutations in schizophrenia parent-proband

trios using whole-exome sequencing. The Xu et al. and Takata et al. studies analysed the trios
from the same underlying cohort. After excluding sample duplicates, 1,077 schizophrenia

trios were available for analysis.

rates is challenging: genes differ significantly in both total coding length and local sequence

context, resulting in substantial differences in their mutability.

A recent study generated gene-specific mutation rates by considering the tri-nucleotide

context of each base change, and integrating these locally adjusted rates across an entire

gene [138]. The probabilities of each of the 192 possible mutational changes were described

as constant values in a mutation rate table. To calculate a gene-specific mutation rate for

different types of mutations (LoF, missense, synonymous), the authors determined all possible

mutational changes in the gene that would introduce a change of that particular class, and

added the tri-nucleotide probabilities of all of these theoretical events. As a robustness check,

the study showed that the correlation between the number of rare synonymous variants in

each gene and the probability of a synonymous mutation as defined by the mutational rate

model was 0.94.

Because of the reliability of this model as demonstrated in its use in previous studies of

autism and developmental disorders [105, 118], I chose to incorporate it in our analysis of

schizophrenia trios, with a few minor adjustments. First, the gene-specific mutation rates

in Samocha et al. were calculated based on canonical transcripts as defined by an older

version of NCBI RefSeq database (pre-2014), which described fewer protein-coding genes

and transcripts per gene than the GENCODE database [123]. Second, the missense mutation

rates did not incorporate in silico annotations to prioritise more damaging events, and
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restricting our analysis to only CADD ≥ 15 missense variants further reduces the mutational

target of each gene and improves power [130]. To address these limitations, I identified

the canonical GENCODE v.19 coding transcript of each gene as defined by the APPRIS

annotation pipeline. APPRIS incorporated information from protein structure, functional

information, and evolutionary evidence to identify one transcript per gene as the principal

functional isoform. In the case of multiple principal transcripts, I conservatively selected the

longest APPRIS principal transcript. Gene-specific mutation rates for LoF, missense, and

synonymous variants for each GENCODE transcript were computed using the tri-nucleotide

mutation rates and method previously described in Samocha et al, by adding the probabilities
of all theoretical mutational events. I then annotated all possible missense mutations with

CADD scores, and calculated a gene-specific mutation rate for missense variants with CADD

PHRED score ≥ 15.

For genes that existed in both transcript references (RefSeq and GENCODE), our muta-

tion rates based on GENCODE transcripts correlated well with those described in Samocha

et al., with a correlation coefficient of 0.97 and 0.98 for missense and LoF mutations re-

spectively (Figure 2.10). Notably, our gene mutation rates were on average greater than the

published rates since I conservatively selected for longer transcripts when multiple principal

isoforms are available. By using GENCODE over RefSeq, I generated rates for an additional

1,067 protein-coding genes, enabling statistical tests on a more comprehensive set of genes. I

also found that only 44% of all possible missense variants had CADD ≥ 15, resulting in a

substantial reduction in the mutational target for most genes in the genome (Figure 2.11).

Interestingly, there was substantial variability in the fraction of CADD damaging sites in

different genes: I found that missense damaging sites were nearly completely absent in

around ∼1,500 genes, while in other genes, more than 75% of all missense sites can be

prioritised as damaging. This variability appears to be a property of gene function, since

olfactory receptors as a class appear to have the lowest proportion of missense damaging

sites. As later shown in Section 4.3.2, these classifier-adjusted rates increased our power to

distinguish patterns in de novo burden across neurodevelopmental and psychiatric disorders.

2.12 Discussion

Using whole-exome sequence data from the UK10K study, INTERVAL study, Swedish

Schizophrenia project, and the SiSU project, I generated a discovery data set of 4,264

schizophrenia cases and 9,343 controls. Despite following standard protocol for alignment

and joint calling all samples at the same time, I still observed substantial batch effects from

different exome captures used at different time points of the experiment. To address this, I
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Fig. 2.10 Correlation between mutation rates generated using GENCODE and RefSeq
transcript databases I compared the LoF, missense, synonymous, and total mutation rates

generated using the two different transcript references. Each dot represented a different gene,

and mutation rate μ calculated from RefSeq was plotted along the Y-axis, while the rate from

GENCODE was plotted along the X-axis.

Fig. 2.11 The ratio of the damaging missense mutation rate to the missense mutation
rate of each GENCODE coding gene. The ratio between missense rate using only CADD

damaging sites to the rate from all missense sites was displayed using a histogram. The mean

of the bi-modal distribution was 0.44.
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restricted our analysis to regions with reasonable coverage in all samples (7× or greater in

80% of each sequencing batch), and then identified appropriate variant- and genotype-level

filters using rare inherited and Mendelian inconsistent calls from the DDD study. I found that

well-calibrated threshold filters on variant- and genotype-level quality metrics (GQ, DP, and

AB) complemented well with a supervised method like GATK VQSR to produce reasonable

sensitivity and specificity for rare variant calls. A small number of common coding SNPs was

sufficient for sample-level QC aimed at reducing potential biases from ancestry, relatedness,

and contamination. Following sample and variant QC, I observed no genome-wide inflation

in rare variant tests in subsequent analyses (Section 3.3.1, 3.3.6).

To increase power of collapsing tests of missense variants, I tested the effectiveness of a

number of available in silico classifiers on a set of de novo mutations from the DDD study that

were reported back to patients and their families as clinically significant. Ensemble classifiers

(LR pred and Radial SVM) performed well when compared to commonly used tools like

SIFT and PolyPhen, but a fixed discrimination threshold could not be reliably determined.

As a second best option, I decided to annotate missense variants with a CADD score ≥ 15 as

damaging, excluding up to 80% of all benign polymorphisms while retaining up to 80% of all

diagnostic missense variants. I restricted our subsequent analyses to damaging missense and

LoF variants. Lastly, I extended the tri-nucleotide de novo model to all canonical GENCODE

transcripts, and generated mutation rates for damaging missense variants in addition to

all other functional classes. Taken together, the steps highlighted in this Chapter lay the

framework for analyses of rare variant data that should also be applicable in future exome

sequencing studies.
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whole genome and whole exome sequence data from Finnish samples and provide data

resources for the research community. Key groups of the project are from Universities of

Eastern Finland, Oulu and Helsinki and The Institute for Health and Welfare, Finland, Lund

University, The Wellcome Trust Sanger Institute, University of Oxford, The Broad Institute

of Harvard and MIT, University of Michigan, Washington University in St. Louis, and

University of California, Los Angeles (UCLA). The project is coordinated in the Institute for

Molecular Medicine Finland at the University of Helsinki.


