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2.12.12.12.1 IntroductionIntroductionIntroductionIntroduction    

There is a growing literature on the detection of Horizontal Gene Transfer 

(HGT) events by means of compositional-based, non-comparative methods 

(Garcia-Vallve et al., 2003; Hsiao et al., 2003; Karlin, 2001; Lio and 

Vannucci, 2000; Merkl, 2004; Sandberg et al., 2001; Tsirigos and 

Rigoutsos, 2005). Such approaches rely only on sequence information and 

utilize different low (e.g. G+C% content) or high order (e.g. 8mers) indices 

to capture deviation from the genome backbone composition. The 

superiority of high order over lower order indices, in detecting local 

compositional bias, has been shown previously (Sandberg et al., 2001; 

Tsirigos and Rigoutsos, 2005). 

More specifically Tsirigos et al. (Tsirigos and Rigoutsos, 2005) 

simulated HGT events by inserting (in silico) genes from a gene pool into a 

query genome and analyzed the sensitivity of increasing order indices in 

predicting the simulated, manually inserted genes. Overall, using low 

order indices (e.g. single-nucleotides or di-nucleotides), 40-55% of the 

manually inserted genes were correctly predicted as HGT events, whereas 

higher order indices e.g. 8mers showed overall a much higher sensitivity, 

predicting correctly 50-65% of those genes, depending on the number of 

simulated HGT events. Another example showing the increased sensitivity 

of high order indices is shown in Figure 2.1; two compositionally very 

similar sequences (seq1 and seq2) can only be predicted as compositionally 

distinct, if indices of order two (i.e. tri-nucleotides) or higher are exploited, 

while zero or first order compositional analysis predicts those two 

sequences to be compositionally identical. However, given the increased 

dimensionality of the compositional alphabet, in a fixed-order based 

implementation of compositional distributions even high order indices may 

actually be poor estimators of the local sequence composition; this is likely 
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to be the case when insufficient information is available, e.g. in short 

sequence samples or sliding windows, or when local, low-order 

compositional biases exist (Figure 2.2). Consequently methods exploiting 

multiple, different order indices can be more powerful in detecting 

compositional biases at various levels (Karlin, 2001). 

 

 

In this chapter I describe a novel algorithm for the prediction of 

putative horizontally transferred regions by means of variable order 

compositional distributions with the aim of overcoming the limitations of 

fixed-order compositional approaches and exploiting the advantages of 

both low order (small-alphabet) and high order (increased sensitivity) 

compositional indices. This approach does not require pre-existing 

annotation (e.g. gene prediction), and can therefore be applied directly to 

newly sequenced genomes and used as a supplementary tool in the 
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Figure 2.1:    An example of two different sequences (seq1 and seq2) and the 
discrimination efficiency of increasing order indices. Only second (or higher) order 
indices can discriminate the two sequences as compositionally distinct. 
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annotation pipelines. Moreover I discuss the application of two different 

methods for determining a genome-specific score threshold, as well as the 

implementation of region specific two-state, second-order Hidden Markov 

Models (HMMs) to optimize the localization of the boundaries of the 

predicted regions. Finally I describe the pipeline followed to obtain a test 

dataset of manually curated putative horizontally transferred regions, the 

performance benchmarking against other, existing methods and the 

biological significance of the in silico predictions. 

 

2.22.22.22.2 MethodsMethodsMethodsMethods    

2.2.12.2.12.2.12.2.1 Interpolated Variable Order MotifsInterpolated Variable Order MotifsInterpolated Variable Order MotifsInterpolated Variable Order Motifs    

Usage of low order compositional indices may not provide sufficient 

discrimination of regions with atypical high order (e.g. 6mers) 

composition. The total number of all different possible motifs (or indices) 

increases exponentially with the size k of the motifs. For k-mers of size k 

Figure 2.2: Pseudomonas aeruginosa PAO1 genome. The G+C% content and the di-
nucleotide signature δ* (Karlin, 2001) have been plotted genome-wide, with a window 
size of 50kb. A region carrying CDSs encoding products involved in the 
lipopolysaccharide (LPS) biosynthesis is shown as a red coloured feature. The LPS 
region deviates from the backbone composition mainly due to low order compositional 
bias (enriched in Adenine and Thymine); a compositional bias not captured by higher 
order indices e.g. di-nucleotides. 
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(e.g. k=6) there are 4k (e.g. 4096) different possible k-mers (parameters). 

Consequently, because a much higher number of parameters are exploited,  

utilizing high order motifs is more likely to capture deviation from the 

genome background compositional distribution, as long as there is enough 

data to produce reliable probability estimates. However for high order 

motifs in short or biased sequences, a significant amount of data is likely 

to be missing. For example, using 8mers in a sliding window of 5kb, 

approximately 60,000 out of 65,536 (48) different possible 8mers will have 

an observed frequency of zero. Even for 8mers of non-zero frequency the 

information may not be enough to provide reliable estimates of the local 

sequence composition of a region, e.g. most 8mers will be present only once 

in a 5kb window.  

An Interpolated Variable Order Motif (IVOM) approach (Vernikos 

and Parkhill, 2006) overcomes this problem, implementing variable order 

k-mers, "preferring" information derived from high order motifs, but when 

this information is insufficient, relying more on lower order motifs. Let B 

be the DNA alphabet, defined as: B = {a, t, g, c}. In an IVOM approach all 

k-mers with 1 ≤ k ≤ 8 are exploited. Each k-mer can be seen as a linear 

combination of its component lower order motifs including itself. In a first 

step, for each k-mer mk in the sequence S, its observed frequency ( )
k
mP S is 

calculated as follows: 
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where ( )
k
mA S  is the number of occurrences of mk in the sequence S and N 

is the size of S. Generally a high order motif occurs less frequently (small 

number of occurrences) in a sequence compared to motifs of lower order, 

given that the total number of all different possible motifs is higher (larger 

alphabet) in the first case. In order to use in combination the different 

order k-mers, both the difference in the number of occurrences and in the 

total number of different possible k-mers have to be taken into account. 
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For each m8 a weight is calculated for all (1 ≤ k ≤ 8) its interpolated k-

mers, including itself, as follows: 
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where 
8m

km  denotes the interpolated k-mer mk starting at position 8-k+1 

and ending at position 8 in m8;|B|k denotes the total number of all 

different possible motifs of size k. In this framework a high and a low 

order motif have equal chances of producing bias given that both number 

of counts and dimensionality have been taken into account. For example, 

for a given 8mer if the number of occurrences of the corresponding 

interpolated 3mer (|B|3 = 64) and 5mer (|B|5 = 1,024) is 128 and 8 

respectively, an IVOM approach treats the two k-mers as equally reliable 

estimates (64 x 128 = 1,024 x 8) of the local sequence composition of a 

region. Having computed the weights for each k-mer, in a second step the 

IVOM frequency for each 8mer m8, as well as all its interpolated k-mers 

8m

km , in the sequence S is calculated as follows: 
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The IVOM frequency of each interpolated k-mer is calculated step-wise, 

starting with the shortest interpolated k-mer (i.e. 1mer) and progressively 

moving towards longer k-mers all the way up to the 8mer itself. Using the 

above equation, it is possible for the observed frequencies of all the 

interpolated motifs to be combined linearly in such a way that if high 

order motifs are reliable (sufficient counts) estimates of the local sequence 

composition, then the corresponding weight will be high enough for the 

contribution of the lower motifs to be ignored and vice versa.  

A similar equation is implemented by Salzberg (Salzberg et al., 

1998) in GLIMMER, a widely used gene prediction method. In GLIMMER 

however the above equation is used in a Markov model-based context i.e. 
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Interpolated Markov Models (IMMs). Moreover GLIMMER uses two 

different criteria in order to calculate the weight for each k-mer. The first 

is number of occurrences; if that number exceeds a pre-determined 

threshold value, then the weight is set to 1.0 (the default threshold value 

is 400). The second is a predictive value determined by a X2 test comparing 

the observed base frequencies with the IMM probabilities derived from the 

immediately shorter context. In the IVOM algorithm however through 

equation 2.2 the weight for each k-mer is determined on-the-fly directly 

from the underlying local compositional landscape avoiding the 

incorporation of arbitrary threshold values (Table 2.1). 

2.2.22.2.22.2.22.2.2 Relative entropyRelative entropyRelative entropyRelative entropy    

In order to predict putatively horizontally transferred regions in microbial 

genomes, it is assumed that each genome exhibits a reasonably constant 

(although exceptions may apply – e.g. the rRNA operon) background 

sequence composition that is the result of the same mutational pressure 

applied throughout its sequence. Consequently regions of “atypical” 

composition within a genome are likely to have been horizontally acquired 

from a donor genome of different composition.  

In order to detect compositionally deviating regions, a sliding 

window approach over raw genomic sequence is applied. In this framework 

the analysis of atypical regions can be applied both on annotated and 

newly sequenced genomes without any level of annotation (e.g. pre-

existing gene prediction). 

Obviously in a sliding window based approach, different window 

sizes and moving steps can be exploited. In order to converge over the 

optimal sliding window size L, I experimented on different L values, 

implementing a Receiver Operating Characteristic (ROC) curve analysis 

and the results (Appendix A) showed that the greatest Area Under the 

Curve (AUC), which is a measure of the accuracy of the classifier, for k-

mers of k ≤ 8 is achieved when the sliding window size and step is set to 

5kb and 2.5kb respectively. 
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Table 2.1: Example of two different 8mers, present in the sequence of Salmonella 
Pathogenicity Island (SPI)-7 inserted in the chromosome of Typhi CT18. The 
interpolated, variable order motifs of each 8mer are shown along with their 
observed frequency A, calculated based on the compositional analysis of SPI-7. 
The weight W of each interpolated k-mer has been also calculated. In the first 
8mer (GCCAGCGC), the interpolated k-mer with the highest compositional 
information is the 8mer itself whereas for the second 8mer (AAAACATG) the 
most informative interpolated k-mer is the di-nucleotide ‘TG’. 

8888mermermermer    Interpolated Interpolated Interpolated Interpolated kkkk----mermermermer AAAA    ||||BBBB||||kkkk    AAAA        x |x |x |x |BBBB||||kkkk WWWW    

GCCAGCGC 24 48 1572864 42.142.142.142.10000    

CCAGCGC 49 47 802816 21.51 

CAGCGC 116 46 475136 12.73 

AGCGC 238 45 243712 6.53 

GCGC 738 44 188928 5.06 

CGC 2452 43 156928 4.20 

GC 9784 42 156544 4.19 

GCCAGCGC 

C 33854 41 135416 3.63 

AAAACATG 1 48 65536 7.38 

AAACATG 6 47 98304 11.08 

AACATG 26 46 106496 12.00 

ACATG 81 45 82944 9.35 

CATG 474 44 121344 13.67 

ATG 2110 43 135040 15.21 

TG 9243 42 147888 16.6616.6616.6616.66    

AAAACATG    

G 32499 41 129996 14.65 

 

It should be noted that increasing the order of the utilized k-mers 

causes the optimal window size to increase too (Wu et al., 2005). The same 

authors concluded that for symmetric Kullback-Leibler discrepancy as a 

similarity measure and 2550 ≤ L ≤ 4950 the optimal word size k is 8, 

confirming the rationale behind the selection of a 5kb sliding window used 

in the current analysis. The step of the sliding window is set to 2.5kb; 

however, increasing the step size too much will increase the uncertainty 

about the real boundaries of the predicted “atypical” regions. This 

technical issue and how it can be handled efficiently will be discussed in 

the next section. Both for the sliding window w and the genome G a 

compositional vector, defined as: 
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is built. This vector extends over all (|B|8) the different possible 8mers m8 

in the sequence S. In order to compare the two vectors (of w and G) a 

distance similarity measure has to be applied. In the current methodology, 

the relative entropy (Kullback-Leibler – KL distance), defined as: 
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is implemented. The KL distance is a reasonable similarity measure in 

this case, since the task at hand is to compare two probability 

distributions; moreover KL is always non-negative and equals zero only if 

the two distributions are identical. Implementing equation 2.5, a sequence 

region of “atypical” composition will have high relative entropy while 

native-typical regions will have relative entropy close to zero 

(compositional distribution closer to the genome); it should be noted that 

the compositional vector of the genome IVOM(G,m8), extends over all 

8mers present in the genome sequence, including those of the current 

sliding window w. 

2.2.32.2.32.2.32.2.3 Score thresholdScore thresholdScore thresholdScore threshold    

Given that the current implementation of the Alien_Hunter algorithm is 

unsupervised, the very specific compositional landscape of different query, 

previously unseen genomic sequences will determine the exact value of the 

score threshold; above this threshold value, regions that deviate from the 

backbone composition of the query chromosome will be reported as 

putative horizontally acquired candidates. Consequently a pre-determined 

value of a score threshold, based on a supervised training on a test dataset 

is not applicable in the case of chromosomal compositional analysis, given 

that some chromosomes may consist of almost zero (Tamas et al., 2002) up 

to 24% of alien DNA (Nelson et al., 1999); moreover some bacterial 

chromosomes, that contain several HGT events, show a fairly constant 
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backbone composition (e.g. Salmonella) while other genomes (e.g. 

Staphylococcus) display a highly mosaic composition. 

Generally, for a typical microbial chromosome, the compositional 

distribution is a long-tail one of the form shown in Figure 2.3. The 

majority of the regions present in a bacterial genome will have a 

compositional distribution very close to the genome backbone composition 

(low IVOM score – blue coloured in Figure 2.3), a few will deviate (red 

colour) and very few will deviate strongly (green colour). A reasonable 

value for the score threshold is a value close to the point in the 

distribution where the transition from the “typical” (backbone – blue 

coloured) to the “atypical” (compositional deviating – red coloured) 

compositional score population occurs. 

There are different approaches for capturing dynamically the 

optimal score threshold for any given, previously unseen microbial 

chromosome. In the current implementation of Alien_Hunter, I exploit two 

different methods. The first relies on a derivative-based approach, similar 

to the one exploited by Tsirigos and Rigoutsos (Tsirigos and Rigoutsos, 

2005); in this approach, the transition, in the compositional score 

distribution f , from the “typical” to the “atypical “scores can be captured 

by calculating the derivative f’ of the distribution.  

Starting from the highest scoring regions moving (sliding window 

based) towards low-scoring ones, the point in the distribution, where the 

value of f’ (calculated through the current sliding window) starts to 

remain steady (after several iterations) represents a good score threshold 

value that discriminates compositional deviating from non-deviating 

regions within a chromosome; the score threshold can be dynamically 

determined on-the-fly for each query genome. However, this approach can 

be quite sensitive to data noise depending on the actual shape of the 

compositional distribution. Moreover a derivative-based threshold often 

over-predicts (i.e. very low threshold); for example in the distribution 

shown in Figure 2.3 the point in the score distribution where the 

derivative starts to remain steady results in a score threshold of 7.6 well 
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below the value of 13.2 where a much stronger transition from the 

“typical” to “atypical” scores occurs (see next paragraph). 

 

 

The second approach for determining dynamically the score 

threshold is based on the K-means clustering algorithm (MacQueen, 

1967). K-means clustering is a non-hierarchical, supervised method, given 

that the initial number K of clusters is fixed and determined prior to the 

learning process. In the current implementation, in order to model 

properly the three distinct compositional populations (backbone, atypical 

and very atypical) a K-means clustering with three different clusters is 

exploited. The pseudocode describing the K-means clustering 

implementation is shown below. 

 

 

Figure 2.3: An example of the compositional score distribution of E. coli MG1655 
chromosome. The IVOM score of all the sliding windows is plotted, sorted by increasing 
order. A three-colour scheme has been used to highlight the three distinct compositional 
populations, blue (backbone), red (intermediate compositional deviation), green (high 
compositional deviation). The dashed and solid, vertical grey line represents the score 
threshold determined by a derivative based (T=7.6) and a K-means clustering method 
(T=13.2), respectively. The derivative of the score distribution is plotted in the inset, 
with an arrow highlighting the value of the derivative used to determine the score 
threshold. 
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Algorithm:Algorithm:Algorithm:Algorithm: K-means clustering. 

C: number of re-initializations. 

F: objective function. 

i = 1. 

1.1.1.1. Determine the number of clusters, K = 3. 

2.2.2.2. Initialize the value of the 3 centroids. 

3.3.3.3. Assign each point to the cluster with the nearest centroid value. 

4.4.4.4. When all points have been assigned to one of the 3 clusters, update the new centroid 

values. 

5.5.5.5. Re-iterate steps 3 and 4 until the 3 centroids do not change; 

convergence criteria: Last_Fi –Current_Fi < 0.1. 

6.6.6.6. IfIfIfIf i < C dodododo 

  ifififif Fi > Fi_max then Fi_max = Fi 

  i++ 

  ggggotootootooto step 2 re-initializing the 3 centroids with different values. 

7.7.7.7. Set the score threshold to the value where the transition from cluster 1 → 2 occurs, 

for the iteration with Fi_max. 

endendendend    

 

Although the K-means clustering algorithm always converges, the 

final clustering strongly depends on the values used to initialize the 

centroids of the three clusters. For those reasons different starting points 

are used to initialize the centroids and the iteration with the maximum 

(i.e. the one that separates the three clusters the most) objective function 

value is used to determine the score threshold. Through steps 1-5, the 

algorithm is trying to minimize the following objective function: 

 

2

1 1

K n

i j

j i

F x c
= =

= −∑ ∑                         (2.6) 

where, K is the number of clusters (i.e. 3), n the total number of sliding 

windows, xi the IVOM score of each sliding window and cj the centroid 

value. As the clustering algorithm proceeds, the value of the F function 

decreases and converges over a minimum value; at this stage the 

clustering terminates.  
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Table 2.2: Performance benchmarking of the Alien_Hunter 
algorithm implementing a derivative and a K-means clustering 
based algorithm to determine the score threshold (6.1 and 11.3 
respectively) for the genome of Typhi CT18. 

 

 

 

 

 

 

Overall, the K-means clustering determines more accurately the 

optimal score threshold (Figure 2.3) and is less affected by the noise in the 

compositional data and the shape of the distribution. The accuracy of the 

Alien_Hunter algorithm, implementing the derivative-based and the K-

means clustering algorithm, was benchmarked using a manually curated 

(see below) dataset of 1560 putative horizontally acquired genes in Typhi 

CT18 (Table 2.2); the data confirm the higher accuracy of the second 

method compared to the first one, although a derivative-based threshold 

results in an overall more sensitive method, capable of detecting older 

HGT events with composition very close to the genome backbone.  

2.2.42.2.42.2.42.2.4 ChangeChangeChangeChange----point detectionpoint detectionpoint detectionpoint detection    

As mentioned in section 2.2.2 the choice of the step for the sliding window 

approach is crucial, given that the window slides over raw genomic 

sequence (consequently the gene boundaries are unknown), decreasing the 

window step will increase the computation required, and increasing the 

window step will reduce the accuracy of the localization of the predicted 

“atypical” regions. For these reasons, upon the completion of the first 

round of the window-based prediction, a second-order, two-state HMM is 

implemented in a change-point detection framework. HMM is a statistical 

model widely used in speech and music recognition (Rabiner, 1989; 

Raphael, 1999) as well as in several bioinformatics tasks, e.g. gene 

prediction (Burge and Karlin, 1997). HMMs can be thought as finite state 

Performance metricPerformance metricPerformance metricPerformance metric    DerivativeDerivativeDerivativeDerivative    KKKK----meansmeansmeansmeans    

Specificity 0.653 0.746 

Sensitivity 0.649 0.511 

Accuracy 0.764 0.775 

Matthews correlation coefficient 0.473 0.473 
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machines in which each state emits symbols governed by an emission 

probability distribution over a given alphabet of allowed symbols; at each 

stage, the model can either stay in the same state, or make the transition 

to a new one, a process governed by a distribution of transition 

probabilities; both the emission and transition probability distributions 

are state-specific. 

HMMs can be described by two sequences (Durbin et al., 1998). The 

hidden state sequence π = (π1,…,πL) also known as the “path” and the 

observed sequence x = (x1,…,xL) which corresponds to the observed 

symbols; in our case the bases of a DNA sequence. In an n-th order HMM 

each base xi depends on the previous (xi-n,…, xi-1) bases as well as on the ith 

state πi in the path. In the current study, two states are exploited: the 

“native” (N) state that corresponds to regions of typical (i.e. close to the 

genome backbone) composition and the “alien” (A) state that models 

compositionally deviating, “atypical” regions. Under this framework, a 

change-point corresponds to switching from one state to the other; in the 

current implementation the aim is to infer the boundaries of the predicted 

regions, where a state transition occurs. This change-point will represent 

the new optimized boundary of each prediction, offering higher predictive 

accuracy in terms of boundary localization (see results section). In order to 

detect the point where the transition from the native to the alien state 

occurs and vice versa, the following approach is pursued. 

Each predicted “atypical” region is extended further upstream in 

order to incorporate sequence of typical composition. This hybrid sequence 

of one typical and one atypical subsequence, is used to train the HMM on-

the-fly (the same approach is also applied on the downstream boundary –

Figure 2.4). Implementing the Baum-Welch (BW) algorithm (Baum, 1972), 

the parameters (transition and emission probabilities) of the model are 

trained, in an iterative fashion until some convergence criteria are met. 

The BW algorithm is an Expectation Maximization (EM) technique that 

estimates transition and emission probabilities calculating the expected 

number of times each transition and emission is used, given the training 
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sequence; this is done iteratively, until convergence, by considering 

probable paths within the sequence exploiting each time the 

current/updated parameters of the model. However different starting 

parameter values strongly affect the local maxima which the BW will 

converge over. One straightforward solution to this problem is to start 

multiple times from different initial model parameters, an approach that 

is implemented in this analysis.  

 

 

 

 

 

 

 

 

 

Given that we do not know beforehand for how long the system 

remains in the native state before it makes the transition to the alien 

state (and vice versa for the downstream boundary) the algorithm starts 

with multiple starting points (prior expectations) over the transition 

probability: 

   

              (2.7) 

where αΝΑ denotes the transition probability from the native (N) to the 

alien (A) state; for each starting point, the model is trained using the BW 

algorithm until convergence.  

In a change-point detection framework with a single change-point, 

once the αΝΑ transition occurs, the model persists at the alien state until 

the end. For this reason only the αΝΑ transition probability is trained, 

while the transition probability from the alien to the native state is set to 

be zero (αAN = 0, un-trainable). For the emission probabilities, given that 

the composition of the native and the alien DNA sequence is not known a 
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Figure 2.4: Two side-specific HMMs trained for the left (HMML) 
and for the right (HMMR) boundary of each predicted GI. 
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priori, two trainable, uniform, second-order compositional distributions 

are exploited (Figure 2.5). 

In a second step for each starting point, upon BW training, the 

Viterbi algorithm (Viterbi, 1967) is implemented with the updated-trained 

parameters. The Viterbi algorithm is a dynamic programming algorithm 

widely used in inferring the most probable state path π* (in our case the 

most probable sequence of native/alien hidden states) given the 

observations (DNA bases) and the model parameters (emission and 

transition probabilities): 

Algorithm:Algorithm:Algorithm:Algorithm: Viterbi. 

1. Initialisation (i = 0):   v0 (0) =1, vN (0) = 0 for N > 0. 

2. Recursion (i =1...L):   vA (i) = eA(xi )maxN(vN(i −1)αNA);              (2.8) 

ptri(A) = argmaxN(vN(i −1)αNA). 

3. Termination:   P(x,π *) = maxN(vN(L)αN0); 

πL* = argmaxN(vN(L)αN0). 

4. Traceback (i = L...1):  πi−1* = ptri(πi*). 

          Source: (Durbin et al., 1998). 

 

Briefly a score vA(i) for each DNA base xi in the state A (with the 

previous base xi-1 being in state N ) is calculated (equation 2.8). The first 

part of this equation consists of the emission probability eA(xi) of xi in state 

A; the second part consists of the maximum value (over all values of N) of 

the product of the maximal score at the previous (i-1) base position and the 

transition probability from state N to A. The optimal path can be found by 

backtracking over an array of pointers (ptri (A)) that keep track, at each xi 

in state A, of the maximum score of the previous state thus revealing the 

most probable sequence of hidden states that gave “birth” to the observed 

sequence. 

In the Alien_Hunter algorithm, keeping track of the probability of 

the most probable path predicted by the Viterbi algorithm, the iteration 
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(over different starting points of αΝΑ) with the highest probable path, 

among all the most probable state paths, will be the one which best 

describes the data (the true transition point). An example is given in 

(Table 2.3) and the algorithm is summarized in the following pseudocode: 

Algorithm:Algorithm:Algorithm:Algorithm: Change-point detection. 

C: number of iterations 

Init: i = 1; 

α’ΝΑ: initial starting point for αΝΑ 

1.1.1.1. extend the predictions upstream and downstream 

2.2.2.2. set initial model: 

2.1. prior distribution for the emission probabilities: 

2.1.1. N state: trainable second order uniform (eN) distribution 

2.1.2. A state: trainable second order uniform (eA) distribution 

2.2. prior transition probabilities: 

2.2.1. αΝΑ = α’ΝΑ (multiple starting points - trainable) 

2.2.2. αΑN = 0 (untrainable) 

3.3.3.3. BW training until convergence: 

3.1. stopping criteria: LastScore - CurrentScore < 0.001 

3.2. updated-trained emission, transition probabilities 

4.4.4.4. Viterbi: most probable path π*, with score Si 

4.1.1. if if if if Si > Simax then Simax = Si  

5.5.5.5. ifififif i < C dodododo  

5.1.1. i++; 

5.1.2. new starting point α’ΝΑ 

5.1.3. gotogotogotogoto step 2 

6.6.6.6. report the path π* with Simax 

7.7.7.7. set predicted boundary = transition point in the path π* with Simax 

endendendend 

 

 

Table 2.3: An example of multiple starting points for the transition 
probability αΝΑ and the corresponding score of the most probable path π* 
predicted by the Viterbi algorithm for a test hybrid sequence. 

    

 

 

 

 

 

 

iterationiterationiterationiteration    score Sscore Sscore Sscore Siiii of path  of path  of path  of path ππππ****    priorpriorpriorprior over  over  over  over ααααΝΑΝΑΝΑΝΑ    changechangechangechange----point (bp)point (bp)point (bp)point (bp)    

1 -9643.868804 500-1 1720 

2 -9643.868873 1000-1 1720 

3 -9627.033373 2000-1 4870 

4 -9627.033077 2500-1 4870 

5 -9627.033131 3000-1 4870 
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In the example described in Table 2.3 the best model (highest scored π*) 

for estimating the position in the sequence where the transition from the 

N to the A state occurs, is the one in which the prior expectation over the 

αΝΑ value is 2500-1. In the first two starting points, the predicted change-

point occurs at 1720bp (starting from the 5’ end of the test hybrid 

sequence) whereas in the remaining cases the change-point is predicted at 

4870bp. In the current version of the Alien_Hunter software 

(http://www.sanger.ac.uk/Software/analysis/alien_hunter/) the BW and the 

Viterbi algorithms are implemented using the relevant Biojava libraries 

(http://www.biojava.org). 

 

 

2.2.52.2.52.2.52.2.5 Reciprocal FASTAReciprocal FASTAReciprocal FASTAReciprocal FASTA    

In order to evaluate the performance of Alien_Hunter, a test dataset of 

putative horizontally transferred genes was built. Previous approaches 

Figure 2.5: The architecture of the two-state (Native, Alien), second order HMM, used 
in a change-point detection framework. 
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(Azad and Lawrence, 2005; Tsirigos and Rigoutsos, 2005) involved 

simulation of HGT events by inserting genes from various donor genomes 

into the genome under study; such approaches simulate only very recent 

HGT events, thus they do not take into account the amelioration 

(Lawrence and Ochman, 1997) of horizontally acquired DNA, a time-

dependent process. For this reason I chose to build a test dataset of 

putative HGT events, based on real data. 

The genome of S. typhi CT18, a well-studied prokaryote in terms of 

HGT events, was used as the reference genome. S. typhimurium LT2 was 

selected as a sister lineage to Typhi while the genome of E. coli MG1655 

was chosen as an outgroup of Typhi and Typhimurium. The main idea is 

that genes that are present in all the three genomes form a set of core 

genes, while the rest of the genes represent either species or strain specific 

genes thus are considered putative candidates for HGT. The choice of two 

sister lineages and one outgroup increases the chances of capturing older 

HGT events, which otherwise might be indistinguishable; for example SPI-

1 and SPI-2 are species-specific, but not strain-specific islands. Moreover a 

comparative analysis between two sister taxa and one outgroup, enables a 

more reliable discrimination between gene loss and gene gain, two events 

that can equally explain a limited phylogenetic distribution of a gene, 

within a lineage. E. coli seems to form a good outgroup organism, given 

that the estimated divergence of E. coli and S. enterica from the common 

ancestor occurred approximately 100-140 Myr ago (Doolittle et al., 1996; 

Ochman and Wilson, 1987). In order to extract all the putative 

horizontally transferred genes in Typhi, the following approach was 

pursued. 

Each CDS (a) from the genome (A) was searched, with FASTA, 

against the CDSs of the other genome (B). If the top hit covered at least 

80% of the length of both sequences with at least 30% identity, a reciprocal 

FASTA search of the top hit sequence (b) was launched against the CDSs 

of the first genome. If the reciprocal top hit is the same as the original 

query CDS then (a) and (b) are considered orthologous genes of (A) and 
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(B). Genes that are unique in, or are orthologs between Typhi and 

Typhimurium but do not have an ortholog in E. coli form the initial 

dataset of putative HGT events. In a second step, in order to validate the 

results, a BLASTN and TBLASTX comparison between the three genomes 

was carried out, to check for a syntenic relationship among the putative 

orthologs and the results were visualized using ACT (Carver et al., 2005). 

It should be recognized that this procedure will also identify genes that 

have been uniquely deleted in E. coli as putative HGT events (see results 

section). 

2.32.32.32.3 ResultsResultsResultsResults            

2.3.12.3.12.3.12.3.1 Manually curated HGT datasetManually curated HGT datasetManually curated HGT datasetManually curated HGT dataset    

Implementing the reciprocal FASTA approach described above, four 

different groups of genes present in Typhi were identified: The first group 

involves 725 genes that are unique in Typhi. The second and third group 

includes orthologous genes between Typhi and E. coli (52) and Typhi and 

Typhimurium (903). In the last group are 2920 core genes that are shared 

between all the three genomes (Figure 2.6).  

 

 

Figure 2.6: Venn diagram illustrating the unique and the orthologous genes present in 
the genome of E. coli (ECO), S. typhi (STY) and S. typhimurium (STM). 
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Excluding the 2920 predicted core genes and the 52 Typhi and E. coli 

unique orthologs, the remaining gene set (1628 genes) forms the initial 

dataset of putatively horizontally transferred genes in Typhi. In a second 

step, the above dataset was manually curated for gene position consistency 

using ACT, and the initial number was reduced to 1560 manually curated 

putative horizontally transferred genes which form the basis of the 

analysis described in the following sections.  

It should be noted that this analysis yields a significantly high 

number of putative HGT events in the genome of Typhi CT18. The reliable 

estimation of true HGT events strongly depends on the evolutionary 

sample at hand; going well back in the evolutionary history of an organism 

offers more reliable detection of sequences that have been transferred 

horizontally from other sources. For example, some of the Salmonella 

lineage-specific genes might not necessarily represent HGT events (gene 

loss in E. coli). However this analysis provides a more reliable estimation 

of putative HGT events (taking into account the amelioration process), 

given that it is based on real data rather on simulated events. A more 

robust approach of discriminating putative gene gain from gene loss 

events will be described and discussed in chapter 3. 

2.3.22.3.22.3.22.3.2 Three novel SPIsThree novel SPIsThree novel SPIsThree novel SPIs    

Running the Alien_Hunter algorithm on the genome of Typhi CT18, all the 

previously annotated SPIs (SPI-1 to SPI-10) and bacteriophages were 

successfully predicted. Moreover this analysis revealed three novel 

putative SPIs, SPI-15, SPI-16 and SPI-17 (Table 2.4); SPI-11, 12 and SPI-

13, 14 have been previously described is other Salmonella serovars (Chiu 

et al., 2005; Shah et al., 2005). SPI-15 represents an insertion of 

approximately 6.3kb, inserted in the 3’ end of a tRNAGly; the insertion has 

duplicated a 22bp tRNA fragment, which forms the downstream boundary 

of SPI-15. Adjacent to the tRNA, there is an integrase gene of putative 

phage origin and further downstream four hypothetical protein-coding 

genes. Among the eight Salmonella genomes analyzed, SPI-15 is only 
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present in Typhi CT18 (Figure 2.7); in Typhi TY2, there is a similar 

insertion of different gene content, at the same position, which is also 

flanked by two DRs, 22bp long. 

 

 

Although SPI-15 is a 6.3kb island, Alien_Hunter predicts a much 

larger (~18kb) region overlapping the SPI-15 locus. The predicted region 

starts at the exact 5’ end of SPI-15, at the insertion point within the tRNA 

locus, but extends the 3’ end 12kb further to the left (Figure 2.8), 

questioning the accuracy of the predicted boundaries. SPI-15 represents a 

very recent insertion, present only in the genome of Typhi CT18; however 

the comparison between Typhi CT18 and E. coli MG1655 suggests that the 

entire (~18kb) predicted region is absent from the genome of the latter. 

Possibly, it represents a mosaic region of more than one independent HGT 

events; a fairly old insertion (~12kb, G+C content = 50.1%) upstream of 

SPI-15 and a very recent insertion (SPI-15, G+C content = 48.9%). This 

observation suggests that Alien_Hunter shows increased sensitivity, 

Figure 2.7: ACT screenshot: BLASTN comparison between E. coli and 8 Salmonella
genomes (from top to bottom): E. coli MG1655, S. typhi CT18, S. typhi TY2, S. paratyphi A, 
S. typhimurium LT2, S. gallinarum 287/91, S. enteritidis PT4, S. arizonae RSK2980, S. 
bongori 12419. Regions within the nine genomes with sequence similarity are joined by red 
coloured bands that represent the matching regions. The three novel SPIs are illustrated 
as white coloured features (from left to right: SPI-16, SPI-17, SPI-15). The above 
screenshot is a mosaic picture of three individual screenshots at different locations along 
the genomes that have been concatenated for ease of visualization. 
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predicting correctly even old HGT events or regions of mosaic 

compositional profile. A closer look at the 5’ end of the entire 18kb region 

reveals that the predicted boundary starts immediately downstream of 

CDS STY3169 (encoding a histidine rich hypothetical protein); STY3169 is 

a pseudogene with an in-frame stop codon at position 110.  

 

Table 2.4: Characteristics of the three novel predicted SPIs (SPI-15, SPI-16 and SPI-17) 
in the genome of Typhi CT18. 

SPISPISPISPI    LocationLocationLocationLocation    
Insertion Insertion Insertion Insertion 

sitesitesitesite    
RepeatsRepeatsRepeatsRepeats    IntIntIntInteeeegrasegrasegrasegrase    ScoreScoreScoreScore    Size (bp)Size (bp)Size (bp)Size (bp)    

Potential virulence Potential virulence Potential virulence Potential virulence 
determdetermdetermdetermiiiinantsnantsnantsnants    

SPI-15 3053654..3060017 tRNAGly 22nt (DR) 
phage 

integrase 
18.893 6364 unknown 

SPI-16 605515..609992 tRNAArg 43nt (DR) 
phage 

integrase 
20.949 4478 

serotype conversion by 
O-antigen 
glucosylation 

SPI-17 2460793..2465914 tRNAArg - - 23.953 5122 
serotype conversion by 
O-antigen 
glucosylation 

 

 

The overall G+C content of STY3169 is 52.6% (genome average 

52.09%), while the G+C contents from the 5’ end up to the in-frame stop 

codon, and from the stop codon to the 3’ end of this CDS are 49.8% and 

54.3% respectively. Based on the comparison between Typhi CT18 and E. 

coli MG1655 the true 5’ boundary of the 18kb locus is upstream of 

STY3169, suggesting perhaps that STY3169 is expected to be part of the 

18kb locus. Perhaps, STY3169 as a non functional CDS, carrying an 

internal in-frame stop codon, has been subject to accelerated amelioration, 

a likely scenario, taking into account its mosaic composition (upstream 

and downstream of the stop codon) and the nonetheless very similar 

overall composition to the genome average (52.6% and 52.09% 

respectively). This further explains why the boundary predicted by the 

Alien_Hunter algorithm does not encompass the STY3169 CDS. 

 The second novel SPI, SPI-16 is a 4.5kb long island, inserted in a 

tRNAArg gene. Two DRs of 43bp form the boundaries of SPI-16 while a 

phage integrase (pseudogene) is located near the tRNA gene. Encoded 

within this island are two bactoprenol-linked glucose translocases (gtrA 
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and gtrB) that along with the integrase pseudogene show high percentage 

identity (93%, 97% and 78% respectively) to homologous genes in the 

genome of bacteriophage P22 (Figure 2.9). gtrA and gtrB have been 

previously described to be involved in serotype conversion through O-

antigen glycosylation mediated by bacteriophages (Guan et al., 1999; 

Mavris et al., 1997).  

 

 

This observation leaves open the possibility that SPI-16 and SPI-17 

(see next paragraph) are GIs probably involved in driving the variation of 

the cell surface structure of Typhi and perhaps the way this bacterium 

SPI-15 

Figure 2.8: ACT screenshot: BLASTN between E. coli MG1655, Typhi CT18 and 
Typhimurium LT2 (from top to bottom) at the genomic locus encompassing SPI-15 (flanked 
by DRs – red-coloured joined features). Plots (from top to bottom): G+C% content, di-
nucleotide bias (δ* difference) (window size = 1kb) and IVOM score. Regions within the 
three genomes with sequence similarity are joined by red coloured bands that represent the 
matching regions. The brown coloured CDS (STY3169), encoding for a histidine rich 
hypothetical protein, is a pseudogene with an in-frame stop codon at position 110. 
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interacts with its host (i.e. humans) or “parasitic” mobile elements, e.g. 

bacteriophages. 

Also present in SPI-16 is STY0605 that encodes a putative 

membrane protein with nine predicted transmembrane segments (TMs). 

Although there is no sequence similarity to the gtrC gene in P22 

bacteriophage (data not shown), both genes encode proteins with TMs in 

equivalent positions (the same applies for STY2629 of SPI-17 – see next 

paragraph). It seems possible that those proteins have similarity on the 

structural rather on the sequence level which might indicate similar 

function. Moreover the DR at the 5’ end of SPI-16 has significant sequence 

similarity (74% in 23nt) with the 23bp P22 bacteriophage attP attachment 

site (alignment in Figure 2.9).  

 

 

These data support the phage origin of SPI-16 and indicate that this 

island seems to have been originated from a phage that shares similarities 

with P22 bacteriophage family. SPI-16 is absent from E. coli, S. bongori 

and S. arizonae while it is present in the rest of the Salmonella lineage 

(Figure 2.7). Interestingly in S. bongori at the same tRNA location, there 

is a different insertion (8155bp) with a phage integrase gene, suggesting 

Figure 2.9: ACT screenshot: BLASTN comparison between bacteriophage P22 and Typhi
CT18 (from top to bottom). The highlighted yellow band represents the sequence 
similarity between the P22 phage integrase and the integrase pseudogene in SPI-16. 
Within the grey text box the sequence alignment between the DR of SPI-16 and the P22 
bacteriophage attP is provided; identical bases are indicated with an asterisk. 
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that this tRNA locus might represent a hotspot for integration of different 

GIs in the Salmonella lineage. 

The third novel island, SPI-17 is 5.1kb long, inserted in a tRNAArg 

gene. An integrase gene and DRs/IRs seem to be absent from this island, 

which is present in all the Salmonella genomes used in this study, apart 

from S. bongori, S. arizonae, and S. typhimurium; this observation may 

indicate a possible recent deletion event that took place in the genome of 

S. typhimurium (Figure 2.7). SPI-17 seems to belong to the same phage 

family as SPI-16 given that the two serotype converting genes (gtrA and 

gtrB) are also present in the former island and both show high similarity 

with homologous genes in P22 bacteriophage; moreover in SPI-17 there is 

a pseudogene (STY2631a) with sequence similarity to the P22 phage 

bifunctional tail protein coding gene (TSPE_BPP22), suggesting an island 

of phage origin with two well defined boundaries (gtrA and the phage tail 

protein coding gene). 

2.3.32.3.32.3.32.3.3 Predicted Predicted Predicted Predicted bbbboundary optimizatoundary optimizatoundary optimizatoundary optimizationionionion    

As mentioned earlier, given that the current method is sliding window-

based, the step of the window significantly affects the accuracy of the 

localization of the predicted boundaries.  

The implementation of a HMM model in a change-point detection 

framework seems to provide an effective way of dealing with this problem 

(Table    2.5). Indeed the average absolute error δx for the predicted 

boundaries with the implementation of the HMMs is much lower (3830bp) 

than that without the boundary optimization (4936bp). Interestingly the 

HMM-based approach gives an average δx quite close to the W8 method 

(Tsirigos and Rigoutsos, 2005) (3543bp); W8 is a gene-based method, thus 

it is expected to provide quite accurate predicted boundaries of HGT 

events.  

Overall this indicates that the implementation of HMMs in a 

change-point detection framework significantly improves (22%) the 

localization of the predicted boundaries; an example is illustrated in 
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Figure 2.10. This region is absent from the genome of E. coli and S. 

typhimurium and the BLASTN comparison indicates a well defined 

putative horizontally transferred region, 5223bp long,  consisting of four 

genes (STY3343, STY3344, STY3345, STY3347: putative membrane and 

putative hypothetical genes of no significant database hits). As illustrated 

in the score plot in Figure 2.10, the unoptimized boundaries (green 

coloured plot) were predicted in the middle of STY3343 and STY3349 

genes.  

 

Table 2.5: Absolute error of the Alien_Hunter algorithm for the predicted boundaries with 
(optimized) and without (unoptimized) the implementation of HMMs in a change point 
detection framework. In addition the absolute error of the W8 (gene-based) method is 
provided as a control set.  The absolute error is defined as δx = | x - x0 |, where x is the 
annotated boundary and x0 is the predicted one.    

Annotated HGTAnnotated HGTAnnotated HGTAnnotated HGT    Boundaries(bp)Boundaries(bp)Boundaries(bp)Boundaries(bp)    Absolute Error (bp)Absolute Error (bp)Absolute Error (bp)Absolute Error (bp)    

    AnnotatedAnnotatedAnnotatedAnnotated    Optimized (HMM)Optimized (HMM)Optimized (HMM)Optimized (HMM)    UnoptimizedUnoptimizedUnoptimizedUnoptimized    W8W8W8W8    OptimizedOptimizedOptimizedOptimized    UnoptimizedUnoptimizedUnoptimizedUnoptimized    W8W8W8W8    

 left right left right left right left right left right left right left right 

SPI-6 302172 361067 302445 358919 302500 362500 306935 360757 273 2148 328 1433 4763 310 

Prophage10 1008747 1051266 999914 1053088 1000000 1055000 1001995 1055793 8833 1822 8747 3734 6752 4527 

SPI-5 1085156 1092735 1081688 1091828 1082500 1095000 1085337 1094839 3468 907 2656 2265 181 2104 

Bacteriophage 1538899 1572919 1539019 1572916 1537500 1577500 1538899 1574581 120 3 1399 4581 0 1662 

SPI-2 1625084 1664823 1624923 1650692 1622500 1652500 1622537 1667392 161 14131 2584 12323 2547 2569 

Bacteriophage 1887450 1933558 1872930 1933953 1870000 1937500 1870173 1939495 14520 395 17450 3942 17277 5937 

SPI-9 2743495 2759190 2743818 2754300 2742500 2755000 none 2759190 323 4890 995 4190 none 0 

Bacteriophage 27 2759733 2782364 2759506 2787702 2757500 2787500 2759733 2783554 227 5338 2233 5136 0 1190 

SPI-1 2859262 2899034 2862660 2900872 2860000 2902500 2861845 2900586 3398 1838 738 3466 2583 1552 

SPI-8 3132606 3139414 3133940 3151951 3130000 3152500 3134156 3149714 1334 12537 2606 13086 1550 10300 

Bacteriophage 3515397 3549055 3514572 3558310 3512500 3562500 3512700 3552416 825 9255 2897 13445 2697 3361 

SPI-3 3883111 3900458 3888383 3904602 3887500 3907500 3888370 3902214 5272 4144 4389 7042 5259 1756 

SPI-4 4321943 4346614 4321935 4348906 4320000 4350000 4321410 4349963 8 2292 1943 3386 533 3349 

SPI-7 4409511 4543072 4402961 4541642 4402500 4545000 4401582 4542913 6550 1430 7011 1928 7929 159 

SPI-10 4683690 4716539 4685054 4723629 4682500 4727500 4683853 4728101 1364 7090 1190 10961 163 11562 

ALL (left/right)  3112 4548 3811 6061 3731 3356 

ALL (left+right)  3830383038303830    4936493649364936    3543354335433543    

 

 

Applying the HMM approach, the true transition points were 

successfully identified (red plot), predicting the exact downstream and 

upstream boundaries of this region, diminishing the uncertainty of the 

localization of the predicted regions caused by the sliding window 

approach. The reason why I chose not to apply a purely HMM-based 

approach in the first place was the fact that a significant number of GIs 

(e.g. SPI-2) show a very mosaic structure, a result of several individual 

acquisitions, perhaps of different origin. Given that a HMM 
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implementation requires the properties of the regions modeled to remain 

constant throughout their whole length, such an approach is not readily 

applicable to the prediction of GIs in microbial genomes. 

 

 

 

 

2.3.42.3.42.3.42.3.4 Performance benchmarkingPerformance benchmarkingPerformance benchmarkingPerformance benchmarking    

In order to test the performance of the Alien_Hunter algorithm, a dataset 

of 1560 manually curated putative horizontally transferred genes in the 

genome of Typhi was used. Alien_Hunter was compared against four other 

published methods for the prediction of putative HGT events (Table 2.6): 

Islander (Mantri and Williams, 2004), IslandPath (Hsiao et al., 2003), 

HGT-DB (Garcia-Vallve et al., 2003), and the W8 method (Tsirigos and 

Figure 2.10: ACT screenshot: BLASTN comparison between (from top to bottom): E. coli
MG1655, S. typhi CT18 and S. typhimurium LT2. An example of a predicted putative 
horizontally transferred region in the genome of S. typhi is indicated with two peaks in 
the IVOM score plot (above S. typhi). This region seems to be absent in the other two 
genomes compared. The red and the green coloured IVOM score plots represent the 
predictions of Alien_Hunter with optimized (HMM) and unoptimized boundaries 
respectively. 
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Rigoutsos, 2005). Furthermore the above methods and the method for the 

prediction of PAIs introduced by Yoon et al. (Yoon et al., 2005) were tested 

in terms of percentage coverage of the 10 previously described SPIs (SPI-1 

to SPI-10) and the five annotated bacteriophages (Table 2.7).  

Overall, Alien_Hunter shows the highest predictive accuracy 

(AC=0.764) compared with the other four methods (Table 2.6). 

Interestingly, the second most accurate method is W8, which utilizes 

higher order motifs (i.e. 8mers). These data suggest that the utilization of 

interpolated variable order motifs, improves both the sensitivity (SN) 

(Alien_Hunter: 0.649, W8: 0.62) and the specificity (SP) (Alien_Hunter: 

0.653, W8: 0.643) compared with fixed-order methods; similarly this 

analysis confirms the superiority of higher order motif methods, discussed 

in the introduction.  

 

Table 2.6: Performance comparison of the Alien_Hunter algorithm with other prediction 
methods. The comparison was based on the manually curated dataset of 1560 putative 
horizontally transferred genes, described in the text. TP: true positives, FP: false 
positives, TN: true negatives, FN: false negatives, SN: sensitivity, SP: specificity, AC: 
accuracy, CC: Matthews correlation coefficient. The performance of IslandPath was 
evaluated based on two compositional indices: G+C% content and di-nucleotide bias (δ* 
difference). 

MethodMethodMethodMethod    TPTPTPTP    FPFPFPFP    TNTNTNTN    FNFNFNFN    
Number of Number of Number of Number of 
PredictionsPredictionsPredictionsPredictions    SNSNSNSN    SPSPSPSP    ACACACAC    CCCCCCCC    

Alien_Hunter 1013 539 2501 547 1552 0.649 0.653 0.764 0.473 

W8 968 538 2502 592 1506 0.620 0.643 0.754 0.447 

HGT-DB 435 116 2924 1125 551 0.279 0.789 0.730 0.351 

Islander 275 89 2951 1285 364 0.176 0.755 0.701 0.258 

IslandPath (GC) 611 467 2573 949 1078 0.392 0.567 0.692 0.266 

IslandPath ( δ* ) 301 492 2548 1259 793 0.193 0.380 0.619 0.039 

 

 

The sensitivity of Alien_Hunter is much higher compared to the 

other four methods which in turn reflects an increased ability to predict 

novel, putative horizontally transferred regions as well as already known 

examples. In terms of specificity Alien_Hunter is third from the top, 

following the Islander and the HGT-DB. Perhaps this can be attributed to 
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the increased number of predictions provided by Alien_Hunter (1552) 

compared to the Islander (364) and HGT-DB (551) as well as to the fact 

that Alien_Hunter runs on raw genomic sequence without gene position 

information. Compared to the W8 method, although Alien_Hunter 

provides higher number of predictions, both its sensitivity and specificity 

are higher. In the second performance analysis, based on the percentage 

coverage of previously described HGT events, the Alien_Hunter 

predictions overlap with 91.2% of the CDSs present in SPIs and 

bacteriophages giving the highest number of complete GIs in Typhi, 

followed by the W8 method with 80.7% coverage.   

 

Table 2.7: Performance comparison of the Alien_Hunter algorithm with other prediction 
methods based on a dataset of 10 previously described SPIs (SPI-1 to SPI-10) and five  
annotated bacteriophages (SopE and P4 bacteriophages were ignored because they 
overlap with SPI-7 and SPI-10 respectively). For each annotated island or phage the % 
CDS coverage by each method has been calculated. The genomic locations of annotated 
bacteriophages (from top to bottom) are: 1008747..1051266, 1538899..1572919, 
1887450..1933558, 2759733..2782364 and 3515397..3549055. 

IslandPathIslandPathIslandPathIslandPath    Annotated Annotated Annotated Annotated 
HHHHGTGTGTGT    

# CDS# CDS# CDS# CDS    Alien_HunterAlien_HunterAlien_HunterAlien_Hunter    IslanderIslanderIslanderIslander    

GCGCGCGC    δ*δ*δ*δ*    

HGTHGTHGTHGT----DBDBDBDB    W8W8W8W8    Yoon Yoon Yoon Yoon et al.et al.et al.et al.    

SPI-6 60 81.7 0.0 51.7 41.7 40.0 70.0 0.0 

Prophage10 63 81.0 100.0 23.8 39.7 25.4 96.8 0.0 

SPI-5 8 100.0 100.0 75.0 100.0 100.0 100.0 100.0 

Bacteriophage 53 100.0 0.0 39.6 5.7 34.0 86.8 0.0 

SPI-2 44 77.3 0.0 61.4 18.2 68.2 77.3 100.0 

Bacteriophage 71 88.7 0.0 33.8 8.5 35.2 94.4 0.0 

SPI-9 4 25.0 0.0 25.0 50.0 0.0 25.0 0.0 

Bacteriophage  19 89.5 0.0 36.8 0.0 5.3 73.7 26.3 

SPI-1 44 95.5 0.0 54.5 25.0 77.3 88.6 40.9 

SPI-8 16 100.0 0.0 68.8 0.0 68.8 68.8 0.0 

Bacteriophage 46 89.1 0.0 37.0 6.5 23.9 60.9 0.0 

SPI-3 14 85.7 0.0 28.6 0.0 14.3 42.9 100.0 

SPI-4 7 100.0 0.0 85.7 0.0 100.0 100.0 100.0 

SPI-7 149 100.0 31.5 31.5 32.2 28.2 81.2 10.1 

SPI-10 29 100.0 44.8 44.8 62.1 6.9 72.4 0.0 

ALL 627 91.2 20.9 40.5 25.0 36.8 80.7 17.7 
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These data suggest that Alien_Hunter is capable of detecting not 

only novel GIs but also of identifying the majority of the already known 

regions of "alien" origin. Overall Alien_Hunter predicts six complete 

structures (SPI-5, the bacteriophage at 1538899..1572919, SPI-8, SPI-4, 

SPI-7 and SPI-10), while in the case of SPI-2 it predicts 34 out of 44 genes; 

it has been shown previously (Hensel et al., 1999) that SPI-2 is a mosaic 

island of at least two independent  acquisitions (see chapter 3). The mosaic 

nature of this SPI is also apparent in the G+C content (44.08% and 52.85% 

for the two parts of the island). This observation might explain the 

fragmented prediction for this SPI by all the methods except for the 

method of Yoon et al. (Yoon et al., 2005). The latter combines a method for 

capturing sequence deviation and similarity matches to already known 

PAIs to predict PAIs instead of GIs in general. Such methods can be 

powerful approaches in the detection of complete PAI structures of similar 

gene content with previously annotated ones, but are not directly 

applicable in the detection of novel PAIs or GIs. 

Overall the W8 method only outperforms the Alien_Hunter 

algorithm twice: in the first case it predicts 96.8% (Alien_Hunter: 81%) of 

the complete structure of prophage10 and in the second case 94.4% 

(Alien_Hunter: 88.7%) of the bacteriophage located at position 

1887450..1933558. The Islander provides the lowest number of predictions 

(364) perhaps due to the fact that it is restricted to predict only complete 

GI structures. In the case of known Typhi islands, Islander predicts three 

SPIs (SPI-5, SPI-7, SPI-10) and one bacteriophage (prophage 10); the rest 

of the already known SPIs were not predicted by this method although 

some of them (e.g. SPI-8) have identifiable tRNA and integrase genes. 

2.42.42.42.4 DiscussionDiscussionDiscussionDiscussion    

In this chapter, I introduced and described a novel computational method 

for the prediction of putative horizontally transferred regions. This 

method, IVOM, exploits compositional biases at various levels (e.g. codon, 

di-nucleotide and amino acid bias, structural constraints) by implementing 
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variable order motif distributions. Under this framework, the local 

sequence composition can be captured more reliably, compared to fixed-

order methods. The IVOM approach relies more on higher order motifs to 

make more accurate predictions, but when the underlying information is 

insufficient for high order motifs, it takes into account information 

obtained from lower order motifs.  Moreover, an IVOM approach can be 

applied even on newly sequenced genomes, given that it does not require 

any level of pre-existing annotation or gene position information.  

I also discussed the implementation of a HMM-based approach in a 

change-point detection framework for the optimization of the boundaries 

of the predicted regions and showed that the uncertainty of the 

localization of the predictions caused by a sliding window method can be 

sufficiently handled by such an approach enabling more accurate 

localization of putative HGT events. Applying the IVOM method on the 

genome of Typhi, all the previously annotated SPIs and bacteriophages 

were successfully predicted; moreover, the analysis of Typhi revealed the 

presence of three novel SPIs, SPI-15 to SPI-17, that have not been 

previously described. SPI-16 and SPI-17 represent islands of putative 

phage origin that may be implicated in serotype conversion by O-antigen 

glycosylation. 

The performance benchmark of the Alien_Hunter algorithm against 

four published methods indicates that this method is more sensitive in 

detecting compositionally deviating, putative HGT regions. On the other 

hand Alien_Hunter shows fairly poor specificity compared with HGT-DB 

and Islander. This observation seems to indicate that the last two methods 

are more reliable in terms of SP compared to Alien_Hunter. One obvious 

reason behind the lower SP of Alien_Hunter is the increased number of 

predictions (1552). HGT-DB and Islander show the highest SP due to the 

low number of predictions (551 and 364 respectively); in other words they 

sacrifice SN for SP, predicting only a small fraction of the already 

annotated HGT regions (Table 2.7).  
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However if both SP and number of predictions are taken into 

account, Alien_Hunter provides the highest number of predictions and at 

the same time its SP is even higher than W8's, although the latter 

provides a lower number of predictions (1506). Overall this indicates that 

Alien_Hunter can be more sensitive and accurate compared to other 

methods that provide equally high number of predictions. It should be 

noted that this performance benchmark is based on a reciprocal FASTA 

approach that might penalize older HGT regions that were inserted prior 

to the divergence of E. coli and Salmonella lineages and were predicted by 

the Alien_Hunter algorithm. Such cases are considered False Positives 

based on this analysis, although they might represent true HGT events, 

and significantly affect the assigned SP of this algorithm.  

Furthermore, the approach for the identification of orthologous 

genes, exploiting a reciprocal FASTA methodology, would in theory fail to 

correctly predict true orthologs in the following cases: A. One or both 

orthologs are pseudogenes, B. one of the orthologs has been deleted in one 

of the two genomes, C. a gene duplication event has created extra copies of 

the corresponding ortholog(s), D. one of the orthologs has not been 

annotated in one of the two genomes – although being present, E. one of 

the orthologs has been mis-annotated (truncated or extended) to such an 

extend that the condition of the minimum length of the region being 

similar in the two sequences is violated, and F. one or both orthologs are 

fast evolving, to such an extend that it is impossible, relying purely on 

sequence information, to predict them as true orthologs. With the 

exception of case F, all the other cases can be manually inspected and 

corrected, exploiting the genome annotation and gene position 

information; therefore, the results discussed in this chapter as well as in 

chapters 3 and 4, relative to the number of horizontally acquired genes, 

should be treated as an upper bound to the true number of HGT events, 

since fast evolving orthologs, could in theory be incorrectly classified as 

horizontal acquired genes.  
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The prediction of the three novel SPIs in Typhi CT18, raises the 

following question: What is the minimum size of PAIs or GIs that still 

maintain their ability to mobilize (integrate-excise)? Usually GIs are 

expected to be large (≥ 10kb), distinct chromosomal regions (Schmidt and 

Hensel, 2004).  The three novel SPIs described in this analysis seem to 

represent exceptions to this rule, with a size of 4-6kb. For example SPI-17 

is a minute PAI, and is absent from the genome of Typhimurium LT2, 

possibly indicating a recent deletion or recombination event. The size of 

these regions may be the reason why they have not been previously 

reported. 

SPI-15 encodes four hypothetical protein-coding genes with 

unknown function. Moreover while SPI-15 is only present in Typhi CT18 

and TY2, it can also be found in Shigella flexneri serovar 2a, strains 301 

and 2457T. Given that SPI-15 or similar structures are present in S. 

flexneri and S. typhi but not in E. coli (MG1655, EDL933, O157:H7 and 

CFT073) or other Salmonella, it would be interesting to further investigate 

the functionality of SPI-15 with respect to the biology of S. typhi and S. 

flexneri, given that both organisms are human-restricted enteric 

pathogens. 

  The annotation of horizontally transferred regions (e.g. GIs, phages) 

is a key task in annotation pipelines, especially in the case of pathogens 

since it can reveal pathogenic aspects and characteristics of newly 

sequenced genomes. Prediction methods that reliably detect regions of 

“alien” origin, requiring a minimum level of annotation, can form a 

powerful tool for the understanding and analysis of the biology for the 

genome at hand, revealing key evolutionary steps in becoming a 

“successful” pathogen (see chapter 3). 


