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4.14.14.14.1 IntroductionIntroductionIntroductionIntroduction    

Horizontally acquired DNA sequences that contain functionally related 

genes with limited phylogenetic distribution, i.e. present in some bacterial 

genomes while being absent from closely related ones, are often referred to 

as genomic islands (GIs). The location of those mobile elements often 

correlates with distinct structural features such as tRNA genes, direct 

repeats (DRs) and mobility genes, which has lead to a definition of the GI 

structure that includes these features (Table 4.1), (Hacker et al., 1997; 

Hacker and Kaper, 2000; Schmidt and Hensel, 2004). 

GIs present in Gram-positive bacteria may differ structurally from 

those present in Gram-negative bacteria; overall they do not exhibit 

specific junction sites (e.g. DRs), they are rarely inserted adjacent to RNA 

loci and they are often stably integrated in the host genome due to the lack 

of mobility genes (Hacker et al., 1997). 

Several web-based suites exploit the GI structural definition (Table 

4.1) with the aim of implementing and automating the in silico prediction 

of genomic regions that share some or all of the GI-related signatures; 

those regions are subsequently annotated as novel GIs.  For example 

Islander (Mantri and Williams, 2004) and IslandPath (Hsiao et al., 2003), 

two web-based suites, combine and overlap several GI-related features 

trying to predict genomic regions as close as possible to the GI structural 

definition. 

Although a large number of mobile elements fall well within the GI 

definition, there are several concerns about the structural consensus of 

GIs:  Firstly, the current definition of the GI structure was put forward 11 

years ago (Hacker et al., 1997) when only 12 complete bacterial genomes 

were available; in May 2007 there were 558 complete published genomes 

and 1144 ongoing, enabling a more realistic sampling of the GI structural 
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space for any potential structural variation to be captured. Secondly, there 

are a large number of GIs that deviate strongly from the GI definition 

(Table 4.2). Thirdly, in silico prediction methods that assume a full or 

partial structure similar to the GI structural definition, or search for GIs 

with some level of similarity to already known GI structures, bias the 

sampling of the GI structural space towards “well-structured” GIs. 

 

 

 

Table 4.1: Common features of Genomic Islands. 

Large inserts of horizontally acquired DNA (10 to 200kb) 

Sequence composition different from the core backbone composition 

Insertion usually adjacent to RNA genes 

Often flanked by direct repeats or insertion sequence (IS) elements 

Limited phylogenetic distribution i.e. present in some genomes but absent from closely 
related ones 

Often mosaic structures of several individual acquisitions 

Genetic instability 

Presence of mobility genes (e.g. integrase, transposase) 

 

 

 

A fundamental property of GIs, independent of any a priori 

structural definition, is their origin: GIs are horizontally acquired mobile 

elements of limited phylogenetic distribution. Based on this concept, a 

search of the GI structural space is feasible in a hypothesis-free 

framework without the need to make any a priori assumptions about the 

GI structure which rely on previously seen examples of GIs. 

The aim of this analysis is to study the structural variation of GIs 

and revisit the GI definition, taking into account only the fundamental 

property of GIs i.e. their horizontal origin. Instead of exploiting a top-down 

approach searching for GIs that follow the GI structural definition, I 
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reverse this framework by pursuing a hypothesis-free, bottom-up search 

(Vernikos and Parkhill, 2008); in a first step GIs are defined as genomic 

regions with limited phylogenetic distribution consistent with recent 

acquisition (as identified by maximum parsimony), and in a second step 

those regions are structurally annotated. In a third step, the structural 

features sampled from this hypothesis-free search are exploited in a 

machine learning approach with the aim of explicitly quantifying and 

modelling their contribution to the GI structural definition. 

A similar approach of a hypothesis-free identification of GIs, defined 

as genomic regions with limited phylogenetic distribution, was applied in 

eight Streptococcus agalactiae strains (Tettelin et al., 2005). Gene loss and 

gene gain are two distinct mechanisms that can both lead to limited 

phylogenetic distribution of a DNA sequence. However, Tettelin et al. did 

not apply any restriction (e.g. maximum parsimony) in order to 

differentiate gene gain from gene loss and defined as putative GIs any 

region (>5kb) that was absent from at least one of the eight reference 

genomes. 

In the current study I focus on three different bacterial genera i.e. 

Salmonella, Staphylococcus and Streptococcus for four major reasons: 

there are enough (>10) sequenced genomes for each genus, this collection 

of strains covers both Gram-negative and Gram-positive groups and has 

both commensal and pathogenic representatives, and HGT plays a key 

role in the evolution of those three lineages (Broker and Spellerberg, 2004; 

Lawrence and Ochman, 1997; Novick and Subedi, 2007; Rosini et al., 2006; 

Tettelin et al., 2005; Towers et al., 2004; Vernikos et al., 2007; Waterhouse 

and Russell, 2006). 
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Table 4.2: A selection of annotated Genomic Islands that show structural variation. 
Features of GIs that deviate from the GI structural definition (Table 4.1) are highlighted 
in grey. For the G+C% deviation (GC ––––    GCmean), GIs that deviate less than 1% from the 
average G+C% content are highlighted as compositionally non-deviating regions. The 
representation of the repeats, integrase and RNA features is binary: “1” if present, “0” if 
absent. 

CoordinatesCoordinatesCoordinatesCoordinates    HostHostHostHost    GIGIGIGI    SizeSizeSizeSize    
G+C% G+C% G+C% G+C% 
deviationdeviationdeviationdeviation    

RepeatsRepeatsRepeatsRepeats    IntegraseIntegraseIntegraseIntegrase    RNARNARNARNA    GramGramGramGram    

839352..853808 S. aureus MW2 vSa3 14457 -4.49 1 1 1 + 

1891660..1923796 S. aureus MW2 vSaß 32137 -4.24 0 0 1 + 

1932974..1959426 S. aureus Mu50 vSaß 26453 -4.16 0 1 1 + 

2133112..2148791 S. aureus Mu50 vSa4 15680 -2.56 1 1 0 + 

2251120..2266138 S. epidermidis RP62A vSe1 15019 -1.43 1 0 0 + 

1519667..1558081 
S. epidermidis 
ATCC15305 

vSe2 38415 -6.4 1 1 1 + 

1012154..1023023 
S. haemolyticus 
JCSC1435 

vSh1 10870 -2.87 1 1 0 + 

2117669..2133994 
S. haemolyticus 
JCSC1435 

vSh2 16326 -4.06 1 1 1 + 

2578642..2593348 
S. haemolyticus 
JCSC1435 

vSh3 14707 -1.74 0 1 0 + 

385739..432833 S. agalactiae NEM316 PAI3 47095 1.64 1 0 0 + 

711791..759003 S. agalactiae NEM316 PAI7 47213 1.62 1 0 0 + 

1013026..1060093 S. agalactiae NEM316 PAI8 47068 1.66 0 0 0 + 

1163554..1197443 S. agalactiae NEM316 PAI10 33890 2.04 0 0 1 + 

1255736..1261279 S. agalactiae NEM316 PAI11 5544 -6.37 1 1 1 + 

302172..361067 S. typhi CT18 SPI-6 58896 -0.57 0 0 1 – 

605515..609992 S. typhi CT18 SPI-16 4478 -9.98 1 1 1 – 

1085156..1092735 S. typhi CT18 SPI-5 7580 -8.52 0 1 1 – 

1625084..1664823 S. typhi CT18 SPI-2 39740 -4.91 0 0 1 – 

2460780..2465939 S. typhi CT18 SPI-17 5122 -13.39 0 0 1 – 

2742876..2759156 S. typhi CT18 SPI-9 16281 4.62 0 0 1 – 

2859262..2899034 S. typhi CT18 SPI-1 39773 -6.22 0 0 0 – 

3053654..3060017 S. typhi CT18 SPI-15 6364 -3.01 1 1 1 – 

3132606..3139414 S. typhi CT18 SPI-8 6809 -14.03 1 1 1 – 

3883111..3900458 S. typhi CT18 SPI-3 17348 -5 0 0 1 – 

4321943..4346614 S. typhi CT18 SPI-4 24672 -7.74 0 0 0 – 

4409511..4543072 S. typhi CT18 SPI-7 133562 -2.42 1 1 1 – 

4683690..4716539 S. typhi CT18 SPI-10 32850 -5.51 0 1 1 – 
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4.24.24.24.2 MethodsMethodsMethodsMethods    

The methodology followed throughout this analysis is summarized as 

flowchart in (Figure 4.1), and described in the following sections. 

 

 

Figure 4.1: Flowchart summarizing the major steps in the methodology followed 

throughout this analysis: A phylogenetic analysis using both whole-genome sequence (if 

applicable) and the amino acid sequence of the core gene products was carried out 

enabling the construction of the reference tree topology for each genus. In a second step, 

a comparative analysis (genome-wise) was performed between the chromosomes of each 

genus and the corresponding outgroups, leading to the identification of regions with 

limited phylogenetic distribution. In a third step, a maximum parsimony model (based on 

the reference tree topology) was applied in order to differentiate gene gain from gene loss 

events and exclude regions with limited phylogenetic distribution due to a gene loss 

event. The remaining regions formed the positive control dataset (i.e. putative 

horizontally acquired – PHA regions) of this analysis. The negative control dataset (i.e. 

non GIs), was built implementing a random sampling approach, sampling regions only 

within the inter-GI parts of the chromosome; both positive and negative examples were 

annotated structurally. In a final step, the structural features of each region were used 

as input vectors to a machine learning method (Relevance Vector Machine – RVM) 

leading to the construction of structural GI models. 
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4.2.14.2.14.2.14.2.1 Genomic DatasetGenomic DatasetGenomic DatasetGenomic Dataset    

A list of all the 49 strains used in this comparative analysis is provided in 

Table 4.3. Throughout this analysis, I focused on the analysis of 37 

reference bacterial strains from three different genera, namely 

Salmonella, Staphylococcus and Streptococcus. In order to differentiate a 

limited phylogenetic distribution pattern due to a gene gain or a gene loss 

event (under a maximum parsimony evaluation), 12 more distantly related 

bacterial strains that formed outgroups for the three reference genera 

were also included in this analysis.  

The 12 outgroup genomes were used only in the maximum 

parsimony evaluation of the predicted regions and do not form part of the 

actual dataset for which the data were produced. Briefly, 11 Salmonella 

strains with four outgroups (E. coli, Shigella), 13 Staphylococcus strains 

with four outgroups (Bacillus, Listeria) and 13 Streptococcus strains with 

four outgroups (Lactobacillus, Lactococcus, Enterococcus) were analyzed. 

4.2.24.2.24.2.24.2.2 Best reciprocal FASTABest reciprocal FASTABest reciprocal FASTABest reciprocal FASTA    

For each of the three genera, all genomes were (pair-wise) compared 

against the others including the four outgroups. In order to infer the 

orthologous genes in each pair of genomes compared, I applied a best 

reciprocal FASTA (Pearson, 1990) method (details of the best reciprocal 

FASTA algorithm are given in section 2.2.5 of chapter 2). Overall 1952, 

741 and 429 orthologous genes were identified in the Salmonella, 

Staphylococcus and Streptococcus datasets (including the corresponding 

four outgroups) respectively (Figure 4.2). 
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Table 4.3: The list of 49 strains used in this comparative analysis. 

Organism Organism Organism Organism     ReferenceReferenceReferenceReference    
Accession Accession Accession Accession 
NumberNumberNumberNumber    

Escherichia coli K-12 MG1655 (Blattner et al., 1997) U00096 

E.coli O157:H7 EDL933 (Perna et al., 2001) AE005174 

E. coli CFT073 (Welch et al., 2002) AE014075 

Shigella flexneri serotype 2a 301 (Jin et al., 2002) AE005674 

Salmonella bongori 12419 http://www.sanger.ac.uk/Projects/Salmonella/ N/A 

S. arizonae RSK2980 http://genome.wustl.edu/genome_index.cgi N/A 

S. enterica serovar Typhi CT18 (Parkhill et al., 2001) AL513382 

S. enterica serovar Typhi TY2 (Deng et al., 2003) AE014613 

S. enterica serovar paratyphi A SARB42 (McClelland et al., 2004) CP000026 

S. enterica serovar paratyphi A 
AKU_12601 

http://genome.wustl.edu/genome_index.cgi N/A 

S. enterica serovar Typhimurium SL1344 http://www.sanger.ac.uk/Projects/Salmonella/ N/A 

S. enterica serovar Typhimurium LT2 (McClelland et al., 2001) AE006468 

S. enterica serovar Typhimurium DT104 http://www.sanger.ac.uk/Projects/Salmonella/ N/A 

S. enterica serovar Enteritidis PT4 http://www.sanger.ac.uk/Projects/Salmonella/ N/A 

S. enterica serovar Gallinarum 287/91 http://www.sanger.ac.uk/Projects/Salmonella/ N/A 

Bacillus subtilis 168 (Kunst et al., 1997) AL009126 

Bacillus anthracis Ames http://cmr.tigr.org/tigr-scripts/CMR/GenomePage.cgi?org=gba  AE017334 

Listeria innocua Clip11262 (Glaser et al., 2001) AL592022 

Listeria monocytogenes EGD-e                                (Glaser et al., 2001) AL591824 

Staphylococcus saprophyticus ATCC 15305 (Takeuchi et al., 2005) AP008934 

Staphylococcus haemolyticus JCSC1435                        (Takeuchi et al., 2005) AP006716 

Staphylococcus epidermidis ATCC 12228                       (Zhang et al., 2003) AE015929 

Staphylococcus epidermidis RP62A                     (McGillivary et al., 2005) CP000029 

Staphylococcus aureus MRSA252                  (Holden et al., 2004) BX571856 

Staphylococcus aureus RF122                                 (Herron-Olson et al., 2007) AJ938182 

Staphylococcus aureus Mu50                     (Takeuchi et al., 2005) BA000017 

Staphylococcus aureus N315      (Takeuchi et al., 2005) BA000018 

Staphylococcus aureus MSSA476   (Holden et al., 2004) BX571857 

Staphylococcus aureus MW2       (Takeuchi et al., 2005) BA000033 

Staphylococcus aureus USA300    (Diep et al., 2006) CP000255 

Staphylococcus aureus COL       (McGillivary et al., 2005) CP000046 

Staphylococcus aureus NCTC 8325 http://www.genome.ou.edu/staph.html  CP000253 

Lactobacillus johnsonii NCC 533         (Pridmore et al., 2004) AE017198 

Lactobacillus plantarum WCFS1           (Kleerebezem et al., 2003) AL935263 

Enterococcus faecalis V583              (Paulsen et al., 2003) AE016830 

Lactococcus lactis IL1403 (Bolotin et al., 2001) AE005176 

Streptococcus pneumoniae R6             (Hoskins et al., 2001) AE007317 

Streptococcus pneumoniae TIGR4          (Tettelin et al., 2001) AE005672 

Streptococcus suis P1/7                 http://www.sanger.ac.uk/Projects/S_suis/  N/A  

Streptococcus thermophilus CNRZ1066     (Bolotin et al., 2004) CP000024 

Streptococcus thermophilus LMG 18311    (Bolotin et al., 2004) CP000023 

Streptococcus agalactiae NEM316         (Glaser et al., 2002) AL732656 

Streptococcus agalactiae A909           (Tettelin et al., 2005) CP000114 

Streptococcus uberis 0140J              http://www.sanger.ac.uk/Projects/S_uberis/  N/A  

Streptococcus equi 4047                 http://www.sanger.ac.uk/Projects/S_equi/  N/A  

Streptococcus pyogenes MGAS10750        (Beres et al., 2006) CP000262 

Streptococcus pyogenes MGAS2096         (Beres et al., 2006) CP000261 

Streptococcus pyogenes MGAS9429         (Beres et al., 2006) CP000259 

Streptococcus pyogenes Manfredo    (Ramsden et al., 2007) AM295007 
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Figure 4.2: Venn diagram illustrating the orthologous genes shared between each of the 
three reference genera and the corresponding outgroup strains: 473 Salmonella-specific 
and 1952 core genes (genes shared between the Salmonella and the four outgroup 
strains) (top), 688 Staphylococcus-specific and 741 core genes (middle), 283 
Streptococcus-specific and 429 core genes (bottom). 
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4.2.34.2.34.2.34.2.3 Multiple SequenMultiple SequenMultiple SequenMultiple Sequence Alignmentsce Alignmentsce Alignmentsce Alignments    

Whole genome sequence alignments were made using the MAUVE 

algorithm (Darling et al., 2004); for details about this algorithm see 

section 3.2.1 of chapter 3. The complete chromosome sequence of the 11 

Salmonella strains and the four outgroups were aligned. For the 

Staphylococcus dataset, only the 13 Staphylococcus chromosomes were 

aligned, excluding the four outgroup sequences due to the overall low 

sequence similarity to the Staphylococcus genomes.  

For the Streptococcus dataset the overall low sequence similarity 

between the different strains did not allow the construction of whole 

genome sequence alignments. Moreover, for each genus, amino acid 

sequence alignments of the core gene (i.e. orthologous genes shared by all 

the strains of a given genus and the corresponding outgroups) products 

were also built using the CLUSTALW (Thompson et al., 1994) software; 

the alignments were manually inspected and curated. 

4.2.44.2.44.2.44.2.4 Phylogenetic analysisPhylogenetic analysisPhylogenetic analysisPhylogenetic analysis    

For the construction of the reference tree topology, modules of the PHYLIP 

package version 3.65 (Felsenstein, 1989) were implemented. More 

specifically, for the whole genome sequence alignments (Salmonella and 

Staphylococcus datasets), the DNADIST module with the method for 

correcting the rate heterogeneity among sites was used. I also used the 

NEIGHBOR module, which implements the Neighbor-Joining (NJ) 

method (Saitou and Nei, 1987) and the DNAML module which implements 

the Maximum Likelihood (ML) method for DNA sequences (Felsenstein 

and Churchill, 1996); the models of nucleotide substitution were those 

described in chapter 3, i.e. F84 (Kishino and Hasegawa, 1989), K80 

(Kimura, 1980) and JC (Jukes and Cantor, 1969); for details about the NJ 

and the ML methods, see section 3.2.2 of chapter 3.  

For the construction of NJ and the ML tree topologies utilizing the 

amino acid sequence alignment of the core gene products for each genus 

(and the corresponding outgroups) the PROTDIST, NEIGHBOR and 
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PROML modules of the PHYLIP package were used, exploiting two models 

of evolution (see next paragraph), i.e. the JTT model (Jones et al., 1992) 

and the approximation method proposed by Kimura (Kimura, 1983). 

Different tree topologies for a given lineage were evaluated further 

through the PROML module of PHYLIP and the TREE-PUZZLE (Schmidt 

et al., 2002) software, exploiting the model with the highest number of 

parameters; for each genus the tree topology with the highest likelihood 

was selected as the reference. All the parameters were determined from 

the data using the TREE-PUZZLE software. 

 Models of amino acid substitution, as opposed to nucleotide 

substitutions, are mainly based on empirically derived parameters. Such 

empirical models describe the amino acid substitutions by analyzing 

multiple sequences from existing protein sequence databases; i.e. sequence 

alignments between very similar proteins are used to obtain estimates of 

the relative substitution rates between different amino acid pairs. In other 

words these empirical models, as opposed to mechanistic models, do not 

model explicitly the dynamics driving the amino acid substitution, e.g. 

mutational biases, translation of codons into amino acids and constraints 

at the amino acid level.  

The first attempt to construct an empirically derived amino acid 

substitution model was that described by Dayhoff et al. (Dayhoff et al., 

1978). Phylogenetic trees were constructed exploiting the sequences of 71 

protein families available at that time; their ancestral protein sequences 

were reconstructed implementing a parsimony method and the most likely 

residues at each position in the ancestral sequences were inferred.  

In order to reduce the impact of multiple substitutions, the authors 

focused only on very similar protein sequences, i.e. each pair of sequences 

differed in less than 15% of their residues. The frequencies of all pairing of 

residues between sequences and their (reconstructed) ancestral sequences 

were counted and extrapolated to longer times to derive substitution 

probabilities. Dayhoff et al. approximated the transition-probability 

matrix by defining the substitution matrix to be 1 PAM (i.e. point accepted 
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mutations) matrix if the expected number of substitutions per site was 

0.01. Therefore, the unit “1 PAM” can be seen as the amount of evolution 

which changes, on average, 1% of amino acids in a protein sequence; for 

different sequence distances, e.g. t = 1 or 2.5 substitutions per site, 

different PAM matrices (i.e. PAM100 or PAM250, respectively) can be 

derived. 

Later on, Jones et al. (Jones et al., 1992) exploiting the same 

principle as did Dayhoff et al. (Dayhoff et al., 1978) updated the Dayhoff 

matrix analyzing a much larger collection of proteins sequences and this 

updated matrix is known as the JTT matrix. 

An approximation of the PAM distance was proposed by Kimura 

(Kimura, 1983), and this is simply a distance formula that measures the 

proportion (p) of different amino acid residues between two sequences, as 

follows: 

 

 

 

 

The Kimura distance has the advantage of being very fast, but does not 

take into account the different types of amino acid residue and 

substitution; furthermore, the distance between two sequences becomes 

infinite if more than 85.41% of their amino acid residues are different. 

4.2.54.2.54.2.54.2.5 Comparative analysisComparative analysisComparative analysisComparative analysis    

The genomic sequences of each genus and the corresponding outgroups 

were compared using a genome-wide, all-against-all BLAST (Altschul et 

al., 1997) comparison; the results were visualized through ACT (Carver et 

al., 2005) and manually inspected. Genomic regions (≥ 2 coding sequences 

– CDSs) of limited phylogenetic distribution that are present in some of 

the strains while being absent from the rest are processed further (at this 

stage core genomic regions, shared by all strains, are excluded).  

2ln(1 0.2 )D p p= − − −
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In a second step regions of limited phylogenetic distribution are 

analyzed applying a maximum parsimony model (for details see section 

3.2.4 of chapter 3), in order to differentiate gene gain (HGT) from gene 

loss; the maximum parsimony model is based on the reference tree 

topology of each genus (Figure 4.3, Figure 4.4 and Figure 4.5). Genomic 

regions identified under this framework as being putative horizontally 

acquired, formed the positive control set of this analysis; overall 331 

putative GIs were sampled from the 37 reference chromosomes (Table 4.4, 

Figure 4.6). 

 

 

 

Table 4.4:    A list of the positive (putative GIs) and the negative (non-GIs) control regions, 
sampled from the 37 reference chromosomes used in this analysis. 

DatasetsDatasetsDatasetsDatasets    Positive examplesPositive examplesPositive examplesPositive examples    Negative examplesNegative examplesNegative examplesNegative examples    TotalTotalTotalTotal    

Salmonella 211 210 421 

Streptococcus 54 53 107 

Staphylococcus 66 74 140 

Gram – 211 210 421 

Gram + 120 127 247 

Gram +/– 331 337 668 
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Figure 4.3: A.A.A.A. The phylogenetic relationship between the 11 Salmonella and the four outgroup 
genomes (ignoring branch length), is shown as cladogram. Bootstrap values (proportions out of 

100) are given for each node. The tree topology is based on the amino acid sequence of 1952 core 

gene products shared by the 15 genomes. B.B.B.B. Phylogenetic tree topologies using the ML (left) and 

the NJ (right) method, based on the alignment of the 1952 core gene products (top) and the whole 

chromosome sequences (bottom) of 11 Salmonella and four outgroup genomes. C.C.C.C. Differences 
between the tree topologies (core gene products) given by the ML and the NJ methods are 

highlighted; the only difference in terms of node topology lies within the Typhimurium lineage.

In the ML topology, DT104 and LT2 are grouped together, while in the NJ topology DT104 is 

grouped together with SL1344. The bootstrap value of 50 supports the observed ambiguity. 

C. 
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Figure 4.4: A.A.A.A. The phylogenetic relationship between the 13 Staphylococcus and the four 
outgroup genomes (ignoring branch length), is shown as cladogram. Bootstrap values are given 
for each node. The tree topology is based on the amino acid sequence of 741 core gene products 
shared by the 17 genomes. B.B.B.B. Phylogenetic tree topologies using the NJ (left) and the ML
(right) method, based on the alignment of the 741 core gene products (top) and the whole
chromosome sequences (bottom) of 13 Staphylococcus and four outgroup genomes.  
C.C.C.C. Differences between the tree topologies given by the ML and the NJ methods are 
highlighted. The likelihood (Ln) for each tree topology, under a JTT model with four categories  
of sites (4c) and a Gamma distribution for modelling the rate variation among sites (gamma), is 
provided for each topology. Based on TREE-PUZZLE, the best tree topology is the one given by 
the NJ method (JTT, 4c, gamma). Based on the tree topology evaluation of PROML, the NJ 
(Kimura model) method gives the best tree topology (highest Ln); however the other three 
topologies are not significantly worse (p-value: 0.628, 0.157 and 0.273 respectively), suggesting 
that the observed differences are close to the systematic error of those methods. 
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Figure 4.5: A.A.A.A. The phylogenetic relationship between the 13 Streptococcus and the four outgroup 
genomes (ignoring branch length), is shown as cladogram. Bootstrap values are given for each node. 
The tree topology is based on the amino acid sequence of 429 core gene products shared by the 17 
genomes. B.B.B.B. Phylogenetic tree topologies using the NJ (left) and the ML (right) method, for the 429 
core gene products of the 13 Streptococcus and the four outgroup genomes. C.C.C.C. Differences in the tree 
topology given by the ML and the NJ methods are highlighted: based on the tree topology evaluation 
(TREE-PUZZLE and PROML) the NJ method (left) gives the topology with the highest likelihood (best 
tree). 
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Figure 4.6: Circular map of the Salmonella (A), Staphylococcus (B) and Streptococcus (C) 
“mobilome”, illustrating the phylogenetic distribution of the putative GIs identified in the 

three reference lineages (red: presence, pink: partial presence, white: absence). The list of 

strains (outwards-inwards orientation relative to the map) is embedded at the centre of 

the circular map. The regions are arbitrarily numbered based on the strain first found.  
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4.2.64.2.64.2.64.2.6 Random samplRandom samplRandom samplRandom samplinginginging    

For the construction of the negative control dataset, i.e. genomic regions 

that are not GIs, a random sampling approach was followed. For each 

genome with identified putative GIs, an equal number of non-GI regions 

were randomly sampled, sampling the size distribution of the 

corresponding genus-specific GIs (Figure 4.7). Overall, this analysis 

yielded 337 non-GIs, giving a total number of 668 training sets (Table 4.4 

and Appendix E, F and G). Random sampling was “forced” to occur only 

within inter-GI regions of each chromosome. The results of the random 

sampling approach were manually curated, removing randomly sampled 

regions that had been already sampled from other chromosomes of 

different strains of the same genus; the manual curation filtered out any 

redundancy in the training set that could possibly affect the training and 

evaluation process. For theses reasons, the numbers of positive and 

negative examples for each genus are slightly different. 

4.2.74.2.74.2.74.2.7 Structural annotationStructural annotationStructural annotationStructural annotation    

4.2.7.14.2.7.14.2.7.14.2.7.1 Integrase(Integrase(Integrase(Integrase(----like)like)like)like)    protein domainsprotein domainsprotein domainsprotein domains    

Each query genome (six frame translation) was searched against 15 

integrase(-like) Pfam (Sonnhammer et al., 1998) Hidden Markov Models 

(HMMs), using the HMMER software (http://hmmer.janelia.org/). 

Throughout this analysis, 15 protein domains (Appendix H) that are 

frequently found in proteins involved in the mobilization of DNA are 

referred to as integrase-like domains, or simply “integrase”. 

4.2.7.24.2.7.24.2.7.24.2.7.2 PhagePhagePhagePhage----related protein domainsrelated protein domainsrelated protein domainsrelated protein domains    

In order to predict CDSs of putative phage origin, the hmmpfam search 

option of the HMMER package was used and each query genome (six 

frame translation) was searched against a manually constructed database 

of 191 phage-related Pfam HMMs (Appendix H). 
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Figure 4.7: Size distribution of the putative Genomic Islands identified in this analysis 
for the three reference genera. 
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4.2.7.34.2.7.34.2.7.34.2.7.3 NonNonNonNon----coding RNAcoding RNAcoding RNAcoding RNA    

Each query genome was searched against the non-coding RNA families of 

the Rfam database (Griffiths-Jones et al., 2003). This methodology was 

followed in order that putative associations of GIs with other non-coding 

RNA families (apart from the tRNA and tmRNA genes) could be captured. 

4.2.7.44.2.7.44.2.7.44.2.7.4 Compositional analysCompositional analysCompositional analysCompositional analysisisisis    

For all the 668 regions identified in this analysis, their Interpolated 

Variable Order Motif (IVOM) score (Vernikos and Parkhill, 2006) was 

calculated, using the Alien_Hunter algorithm. The IVOM frequency is a 

weighted sum of compositional biases derived from different size (1 ≤ k ≤ 

8) k-mers that captures both low and high order compositional deviation 

from the backbone composition. The IVOM score is expressed as the 

relative entropy between the query and the genome-backbone (variable 

order) compositional distribution, i.e. the higher the IVOM score is, the 

stronger the compositional deviation. 

4.2.7.54.2.7.54.2.7.54.2.7.5 Repeat analysisRepeat analysisRepeat analysisRepeat analysis    

Repeat analysis at the boundaries of each of the 668 regions was 

performed, using the REPuter software (Kurtz and Schleiermacher, 1999). 

The REPuter parameters used are as follows: Type of repeats (= Forward, 

Complemented), minimum size of repeats (= 18bp), number (hamming 

distance) of mismatches for degenerate repeats (= 3). 

4.2.7.64.2.7.64.2.7.64.2.7.6 OtherOtherOtherOther    

All 668 regions were further annotated in terms of size (bp), gene density 

(number of genes per kb) and their insertion point; in the latter case two 

distinct (binary) states were evaluated: insertion point within a CDS locus 

(disrupting the corresponding CDS) or insertion within an intergenic part 

of the chromosome. 

4.2.84.2.84.2.84.2.8 Machine LearningMachine LearningMachine LearningMachine Learning    

In order to build structural models of GIs, eight features were taken into 

account: The IVOM score (relative entropy), insertion point (1 if within a 
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CDS locus, 0 otherwise), size of each region (bp), gene density (genes/kb), 

repeats (binary: 1 if present, 0 otherwise), phage-related protein domains 

(binary), integrase(-like) protein domains (binary) and non-coding RNA 

(binary). Furthermore, the RNA feature was further divided into tRNA 

and misc_RNA subcategories; the same applies for the repeats feature that 

was further divided into DRs and inverted repeats (IRs) subcategories. 

The aim of the machine learning in this analysis is dual: GI 

structural models will be trained in order to quantify (i.e. assign weights 

to) the relative contribution of each feature to the GI structure and in a 

second step the derived models will be used to classify previously unseen 

examples (GIs and non-GIs) enabling evaluation of the generalization 

properties of each model and capturing of any potential variation in the GI 

structure. For this purpose, 668 training sets were used to train 11 GI 

models using a Biojava (http://www.biojava.org) implementation of the 

Relevance Vector Machine (RVM) (Tipping, 2001).  

The RVM is a method for sparse, Bayesian-based learning with 

applications in classification and regression analysis; sparse learning 

algorithms are methods that integrate the selection of features with 

learning of the optimal model parameters. The RVM is a model of identical 

functional form to the well-known Support Vector Machine (SVM) 

(Schölkopf et al., 1999) that nonetheless overcomes a few of the limitations 

of the latter (Tipping, 2001). The RVM models exploit overall fewer basis 

functions relative to an SVM model, offering the advantage of increased 

sparsity, building simpler models with better generalization properties on 

unseen data. Moreover the RVM exploits a probabilistic Bayesian learning 

framework, i.e. the model gives estimates of the posterior probability of 

membership in one of the two classes (in classification analysis) rather 

than trying to make an "absolute" binary decision (as in the case of the 

SVM). The RVM method has been previously applied in detecting binding 

sites in human protein-coding sequences (Down et al., 2006), in the 

identification of transcriptional start sites in mammalian DNA (Down and 
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Hubbard, 2002) and in a vertebrate gene finding method (Carter and 

Durbin, 2006).  

Given a set of N examples (training set) along with their 

corresponding class (i.e. GI, non-GI) we are trying to build a model of how 

the input vectors 1{x }Ni i=  affect the corresponding classification 1{ }Ni ic = , 

with the aim of making predictions of the class for unseen input data, 

based on the model parameters (weights) 1{ }Kj
j

w =  calculated during the 

training; K denotes the number of basis functions (in our case structural 

features e.g. repeats, RNA, IVOM, etc) used to describe the data. 

Throughout this analysis, I will refer to the RVM model parameters w as 

"weights" because they quantify the relative contribution of each feature to 

the model, i.e. the higher the feature weight the higher its contribution to 

the model; note that for the model parameters w there is no actual upper 

or lower bound. In order to build structural GI models, the Generalized 

Linear Models (GLMs) (McCullagh and Nelder, 1989), a form of model 

suitable for classification and regression analysis, are exploited. A GI 

structural model (Si) is the weighted sum of K basis functions of the form:  

 

1

K

i j ij

j

S U w x⋅
=

= +∑                  (4.1) 

 

For two-class classification (in our case class 1 corresponds to GI 

and class 0 to non-GI) the aim is to predict the posterior probability that a 

given input x is a true GI, given the model. In the case of a binary 

classification task, a commonly used link function for the GLMs is the 

logistic function:  

1
)
1 i

i
S

S
e

σ
−

( =
+

                 (4.2) 

The logistic function (Figure 4.8) normalizes (0 ≤ σ(Si) ≤ 1) the output of 

model Si and can be considered as an estimate of the probability that a 

given structure is a true GI, given the model. In function 4.1, U is a 
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constant that controls the output of this function, in such a way that the 

final score (assuming the logistic function) can take any value between 0 

and 1. 

The feature weight w is indicative of the actual feature contribution 

to the given model, (i.e. the higher the weight the higher the feature 

contribution), however it does not take into account the dispersion of the 

actual values of a given feature in the training set. A more reliable 

estimate of the actual feature importance can be calculated through the 

following function: 

 

j j jR w SD= ⋅                   (4.3) 

where Rj is the “importance” of feature j with weight wj and standard 

deviation SDj (the standard deviation of the actual values of a given basis 

function in the training set). Under this framework, a basis function with 

significant SDj will be more important (higher R) than a basis function 

with comparable weight but with lower SDj.  

Details about the training and technical aspects of the RVM are 

discussed in detail in (Down and Hubbard, 2003; Tipping, 2001). Briefly, 

the probability that a given dataset is correctly classified given the model 

is given by the following function: 

1

1

( | , ) ( ) (1 ))i i

N
c c

i i

i

P c x w S Sσ σ −

=

= − (∏                                  (4.4) 

where Si  is the output of the linear model for the i-th data in the training 

set; note that for binary classification {0,1}c∈ . 

Exploiting Bayes’ theorem (for details see section 3.2.2.3 of chapter 

3), we can use the likelihood function 4.4 to infer possible weight values 

given the training dataset: 

 

( | , ) ( ) ( | , )P w x c P w P c x w∝                (4.5) 

where P(w) is the prior probability distribution over the weight values. 

Generally, the prior distribution can be a very broad, non-informative 
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distribution, however in the case of the RVM, we are more interested in 

very sparse models (in order to avoid substantial over-fitting to the 

training set), as such we aim to favour simple over complex models. For 

this reason a new vector of parameters α is introduced that controls the 

width of the prior (i.e. Gaussian distribution G) over each weight: 

 

1( ) ( | 0, )i i

i

P w w a
−=∏G
                (4.6) 

Moreover, for the purposes of the Bayesian inference, a very broad (non-

informative) Gamma distribution is used as the hyperprior over the α 

parameter. Note that the α parameter can be seen as the inverse variance 

of the Gaussian distribution (equation 4.6). 

During the training process, the RVM is estimating appropriate 

values of the model weights in an iterative fashion, with the aim of 

maximizing the likelihood function (4.4). If a given basis function is 

informative when classifying the training dataset, then by setting its 

weight to a non-zero value, will increase the number of correctly classified 

data, which in turn will increase the likelihood function (4.4), and 

therefore the probability of the model given the training set. On the other 

hand, if a basis function is not informative (or has redundant information) 

for the classification task, there is no actual weight value that would 

increase the likelihood. 

However, by setting the α parameter to a large value, the prior 

distribution becomes peaked around zero; as such the posterior probability 

of the model is maximized by setting the corresponding weight value to 

zero. When the value of the α parameter of a basis function is sufficiently 

high the corresponding basis function becomes irrelevant, and is removed 

from the model. Under this increased sparsity framework, RVM models 

avoid efficiently overfitting to the training dataset, selecting only a small 

number of “relevance” vectors, with good generalization properties on 

unseen datasets. 
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The issue of finding optimal model parameters, exploiting equation 

4.5, can be solved by different approaches e.g. Maximum Likelihood 

estimation (Tipping, 2001) or the Metropolis-Hastings (Hastings, 1970; 

Metropolis et al., 1953) algorithm; for details see section 3.2.2.3 of  chapter 

3. 

 

 

4.2.94.2.94.2.94.2.9 ROC curveROC curveROC curveROC curve    

In order to evaluate the performance of the RVM classifier under different 

GI models, I implemented a receiver operating characteristic (ROC) curve 

analysis (Appendix I). The ROC curve illustrates graphically the 

performance of a classifier, under different cut-off values showing the 

trade-off between sensitivity and specificity. More specifically, in a ROC 

curve the True Positive rate (Sensitivity) is plotted against the False 

Positive rate (1-Specificity) for increasing values of the score cut-off of a 

binary classifier. The area under the (ROC) curve (AUC) is a measure of 

accuracy: The closer the curve follows the left-hand and the top border of 

the ROC space, the more accurate the classification model. A perfect 

classifier (AUC=1) would predict correctly all the True Positives 
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Figure 4.8: The logistic function f (x) = 1/(1+e–x). 
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(Sensitivity = 1) giving no False Positives (Specificity = 1). A classifier that 

makes a random guess would result in an AUC of 0.5. 

4.2.104.2.104.2.104.2.10 CrossCrossCrossCross----ValidationValidationValidationValidation    

Cross-validation is a method for estimating generalization error based on 

resampling. It provides an indication of how well the classifier performs in 

making new predictions for previously unseen data. Some of the data is 

removed prior to the training; after the training, the data that was 

removed is used to test the performance of the learned model on unseen 

data. That involves the division of the data into m subsets of 

(approximately) equal size; then training the method m times, each time 

leaving out one of the subsets from the training and using that (omitted) 

subset for testing; in this analysis I pursued a five-fold cross validation 

approach dividing each dataset into five subsets. 

4.34.34.34.3 ResultsResultsResultsResults    

Implementing a whole-genome based comparative analysis between 37 

reference strains of three different genera and 12 outgroup genomes, a 

training set of 668 regions was built (Table 4.4). This training set, that 

includes both putative GIs (differentiated from gene loss events by a 

maximum parsimony approach) and randomly sampled regions (non-GIs), 

was used to study the structural variation of GIs and quantify the 

contribution of each feature to a GI structural model. As a starting point, 

GI structural models for each genus were built implementing the RVM 

method (Tipping, 2001). In addition, in order to capture potential genus-

specific signatures as well as to evaluate the ability of the RVM models to 

make generalizations on unseen data from different lineages, cross-genus 

GI models were built using different mixtures of training and test 

datasets. Overall 11 structural GI models were built and analyzed (Table 

4.5); the structural details of each model are discussed in detail in the 

following sections. 
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Table 4.5: A list of 11 structural GI models, built based on different training sets: 1) 421 
Salmonella regions, 2) 107 Streptococcus regions, 3) 140 Staphylococcus regions 
(including 2 regions overlapping rRNA operons), 4) 138 Staphylococcus regions (no rRNA 
operons), 5) 245 Staphylococcus-Streptococcus regions, 6) 559 Salmonella-Staphylococcus 
regions, 7) 528 Salmonella-Streptococcus regions, 8) 666 Salmonella-Staphylococcus-
Streptococcus regions. Training sets 9-11 include three subsets of approximately 140 
different Salmonella-specific regions combined with the Staphylococcus and 
Streptococcus-specific regions. Each model, expressed through function Si, is the weighted 
sum of eight basis functions (structural features): The Interpolated Variable Order Motif 
(IVOM) score that measures both low and high order compositional deviation from the 
backbone composition and is expressed as the relative entropy between the query and the 
genome-backbone (variable order) compositional distribution, the insertion point (INSP) 
of each genomic region; two states were (binary) evaluated: insertion point within a CDS 
locus (disrupting the corresponding CDS) or insertion within an intergenic part of the 
chromosome, the size (SIZE) of each genomic region, the gene density (DENS = number of 
genes per kb) of each region, presence or absence (binary) of direct/inverted repeats 
(REPEATS) flanking the boundaries of each genomic region, presence or absence (binary) 
of integrase  and/or integrase-like (INT) protein domains, presence or absence (binary) of 
phage-related protein domains (PHAGE), presence or absence (binary) of non-coding RNA 
(RNA) in the proximity of each region. 

1)   Si = -0.764 + 6.203  (x)IVOM + 0.000(x)INSP + -4.956(x)SIZE + 0.000(x)DENS + 0.635(x)REPEATS + 0.995(x)INT + 2.086(x)PHAGE + 1.968(x)RNA 

2)   Si = -2.978 + 4.151  (x)IVOM + 3.219(x)INSP +  0.000(x)SIZE + 0.000(x)DENS + 2.185(x)REPEATS + 3.351(x)INT + 0.000(x)PHAGE + 0.000(x)RNA 

3)   Si = -0.005 + 0.000  (x)IVOM + 0.000(x)INSP + -4.324(x)SIZE + 0.000(x)DENS + 0.360(x)REPEATS + 1.303(x)INT + 3.995(x)PHAGE + 0.000(x)RNA 

4)   Si = -4.583 +12.752 (x)IVOM + 0.000(x)INSP + -2.843(x)SIZE + 2.486(x)DENS + 0.000(x)REPEATS + 1.552(x)INT + 2.157(x)PHAGE + 0.000(x)RNA 

5)   Si = -1.544 + 3.756  (x)IVOM + 2.842(x)INSP + -2.583(x)SIZE + 0.000(x)DENS + 1.297(x)REPEATS + 1.892(x)INT + 2.554(x)PHAGE + 0.000(x)RNA 

6)   Si = -0.923 + 6.528  (x)IVOM + 0.000(x)INSP + -4.462(x)SIZE + 0.000(x)DENS + 0.771(x)REPEATS + 1.404(x)INT + 2.441(x)PHAGE + 1.159(x)RNA 

7)   Si = -0.763 + 4.330  (x)IVOM + 2.516(x)INSP + -4.941(x)SIZE + 0.000(x)DENS + 1.030(x)REPEATS + 1.630(x)INT + 2.027(x)PHAGE + 1.842(x)RNA 

8)   Si = -0.879 + 4.659  (x)IVOM + 2.795(x)INSP + -4.434(x)SIZE + 0.000(x)DENS + 0.897(x)REPEATS + 1.553(x)INT + 2.433(x)PHAGE + 1.319(x)RNA 

9)   Si = -1.293 + 5.285  (x)IVOM + 3.072(x)INSP + -3.914(x)SIZE + 0.000(x)DENS + 1.007(x)REPEATS + 1.668(x)INT + 2.847(x)PHAGE + 0.000(x)RNA 

10) Si = -1.057 + 4.234  (x)IVOM + 3.003(x)INSP + -3.396(x)SIZE + 0.000(x)DENS + 0.927(x)REPEATS + 1.722(x)INT + 1.664(x)PHAGE + 1.539(x)RNA 

11) Si = -1.627 + 3.552  (x)IVOM + 0.000(x)INSP + -4.138(x)SIZE + 0.727(x)DENS + 1.449(x)REPEATS + 1.728(x)INT + 3.685(x)PHAGE + 0.000(x)RNA 

 
 

4.3.14.3.14.3.14.3.1 GI structural modelsGI structural modelsGI structural modelsGI structural models    

Each GI model (Table 4.5) is the weighted sum of K basis functions, where 

K denotes the number of features used to describe a GI structure. In this 

analysis, eight structural features were used (IVOM, INTEGRASE, 

PHAGE, SIZE, RNA, DENSITY, REPEATS and INSP). Each feature is 

evaluated during the training process of the RVM, and its overall 

contribution to the structural model is expressed by the corresponding 

feature weight.  

For example a feature frequently related to GI structures (but 

absent from randomly sampled regions), receives typically higher weight 

(i.e. contributes more to the model) compared to a feature found equally 
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frequently both in GIs and non-GIs; in the latter case the feature weight 

will be lower or even zero (i.e. feature ignored). 

In the following section the contribution of each structural feature 

to the corresponding GI model is evaluated through a function (R) that 

quantifies the relative feature importance, rather than the actual feature 

weight (w). Briefly the importance R of each feature is expressed as the 

product of the corresponding weight w and the corresponding standard 

deviation (SD) of the feature values in the training set.  

I prefer to assess the feature contribution to the model, through the 

R rather than the w value, because R takes into account the variability of 

the dataset, normalizing the values with the corresponding SD. Consider 

for example two different structural features; the values of the first 

feature in the training set have higher dispersion relative to the values of 

the second feature. If both features have comparable w values, then the 

first feature will be more important than the second one meaning that, 

because of its variability, it is more informative than the second feature. 

Based on that, it is not unusual for some features to have a very high 

value of w but a low value of R. 

4.3.1.14.3.1.14.3.1.14.3.1.1 GenusGenusGenusGenus----specificspecificspecificspecific    

4.3.1.1.14.3.1.1.14.3.1.1.14.3.1.1.1 SalmonellaSalmonellaSalmonellaSalmonella    

Using 211 positive (putative GIs) and 210 negative (randomly sampled) 

examples (Table 4.4, Appendix E) a model that describes the structure of 

GIs present in the Salmonella lineage was built (Figure 4.9, Table 4.5). 

Overall under this model, the most “important” (informative) features are: 

IVOM (RIVOM = 0.65), SIZE (RSIZE = 0.38), PHAGE (RPHAGE = 0.27), RNA 

(RRNA = 0.26), INTEGRASE (RINT = 0.13) and REPEATS (RREPEATS = 0.085); 

in this model, the DENSITY and INSP features were ignored. Note that 

the SIZE feature received a negative weight (WSIZE = -4.956); the same 

applies for all the other GI models apart from the one built based on the 

Streptococcus dataset (see below) in which the SIZE feature is completely 
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ignored (WSIZE = 0). A more detailed discussion about the negative weight 

of the SIZE feature is provided in section 4.4. 

In order to investigate further the structural variation of GIs, in 

terms of preference for insertion within a specific locus and for different 

type of repeats flanking their boundaries, the RNA feature was further 

subdivided into tRNA and misc_RNA (any kind of non-coding RNA apart 

from tRNA) features; the same applies for the REPEATS feature that was 

further divided into DRs and IRs. The relative “importance” of those six 

structural features was evaluated pair-wise: (RNA, INSP), (tRNA, 

misc_RNA) and (DRs, IRs) (Figure 4.10).  

The results show that for GIs present in Salmonella chromosomes, 

insertion within an RNA (RRNA = 0.72) rather than a CDS locus (RINSP = 

0.0) is the most informative feature when classifying unknown regions as 

GIs. In the case of RNA locus, insertion of GIs within a tRNA (RtRNA = 

0.60) is slightly more informative than insertion within a misc_RNA locus 

(RmiscRNA = 0.51). In terms of type of repeats flanking the boundaries of 

GIs, DRs (RDRs = 0.63) rather than IRs (RIRs = 0.0) is the most informative 

feature. 
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Figure 4.9:    Radar diagram illustrating the feature weight (A) and “importance” (B) of the 

eight structural features under different GI models, based on 11 training datasets. Features: 

IVOM (feature composition), INSP (insertion point), SIZE (the size of each region), DENSITY 

(gene density), REPEATS (repeats flanking each region), INTEGRASE (integrase-like 

protein domains), PHAGE (phage-related protein domains), RNA (non-coding RNAs). Each 

apex in the octagon-like diagram corresponds to one of the eight structural features, while 

the height of the plot at the corresponding apex is indicative of the actual feature weight (A) 

or importance (B). 
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4.3.1.1.24.3.1.1.24.3.1.1.24.3.1.1.2 StaphylococcusStaphylococcusStaphylococcusStaphylococcus    

The model that describes the structure of GIs present in Staphylococcus 

genomes was built based on 66 putative GIs and 74 randomly sampled 

regions (Table 4.4, Appendix F). Overall under this model, the most 

predictive informative structural features are: PHAGE (RPHAGE = 0.65), 

SIZE (RSIZE = 0.51), INTEGRASE (RINT = 0.25) and REPEATS (RREPEATS = 

0.07); the remaining features were ignored. Two randomly sampled 

regions had the two highest IVOM scores in this dataset of 140 examples. 
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Figure 4.10: Bar chart illustrating the feature weight (top) and “importance” (bottom) of six 
structural features (evaluated pair-wise), under three different dual-featured GI models, 
trained on: Salmonella, Staphylococcus and Streptococcus-specific regions respectively. 
Features: [RNA, INSP], [tRNA, misc_RNA], [DRs, IRs]. 
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These two regions (Staph.Epid_RP62.non.12 and Staph.MRSA252.non.21 

in Appendix F) overlap with two rRNA operons. rRNA operons often 

deviate compositionally from the genome backbone composition mainly 

due to specific, well-preserved functional constraints rather than their 

horizontal origin (Vernikos and Parkhill, 2006; Vernikos et al., 2007). 

Excluding those two regions and repeating the training, the GI model 

assigned weights to previously ignored features and modified each weight 

overall: DENSITY (RDENS = 0.92), IVOM (RIVOM = 0.74), PHAGE (RPHAGE = 

0.35), SIZE (RSIZE = 0.34), INTEGRASE (RINT = 0.30); the rest of the 

features were ignored (Figure 4.9, Table 4.5). 

When GI models are trained (pair-wise) only on selected structural 

features, insertion within a CDS locus (RINSP = 1.1) is more informative 

than insertion within an RNA locus (RRNA = 0.26). Between the different 

type of non-coding RNAs, insertion within a tRNA (RtRNA = 0.64) rather 

than a misc_RNA (RmiscRNA = 0.0) is the most informative feature. In terms 

of type of repeats, again DRs is the most informative feature (RDRs = 0.85, 

RIRs = 0.0) (Figure 4.10). It is worth noting that under these three partial 

GI models, some previously ignored (under the full GI model above) 

structural features, i.e. RNA, INSP and REPEATS, are now informative 

predictors, further suggesting those features were redundant predictors 

under the full model in which all eight features were evaluated. 

4.3.1.1.34.3.1.1.34.3.1.1.34.3.1.1.3 StreptococcusStreptococcusStreptococcusStreptococcus    

The training set for the Streptococcus genus consists of 54 and 53 positive 

and negative control examples respectively (Table 4.4, Appendix G). Under 

this model, the most informative GI structural features are: INTEGRASE 

(RINT = 0.67), IVOM (RIVOM = 0.56), INSP (RINSP = 0.53) and REPEATS 

(RREPEATS = 0.48). The remaining four features were ignored (Figure 4.9, 

Table 4.5), giving the highest sparsity GI model that exploits only four (of 

the eight) basis functions. 

In terms of pair-wise evaluation of selected structural features 

(Figure 4.10), GIs present in Streptococcus genomes follow the same 

pattern of insertion point preference with the Staphylococcus GIs, i.e. 
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insertion within a CDS locus (RINSP = 1.84) is more informative than 

insertion within an RNA locus (RRNA = 0.45); the same applies for the type 

of non-coding RNAs (RtRNA = 0.013, RmiscRNA = 0.0) and the type of repeats 

(RDRs = 1.33, RIRs = 0.0). 

4.3.1.24.3.1.24.3.1.24.3.1.2 CrossCrossCrossCross----genusgenusgenusgenus    

4.3.1.2.14.3.1.2.14.3.1.2.14.3.1.2.1 StaphylococcusStaphylococcusStaphylococcusStaphylococcus----StreptococcusStreptococcusStreptococcusStreptococcus    

Combining 138 Staphylococcus and 107 Streptococcus genomic regions, a 

dataset of 245 (Gram positive) examples was built in order to study the 

structural variation of GIs across genus/species boundaries. In this cross-

genus GI model the most informative features are: PHAGE (RPHAGE = 

0.41), INSP (RINSP = 0.39), IVOM (RIVOM = 0.374), INTEGRASE (RINT = 

0.37), SIZE (RSIZE = 0.272) and REPEATS (RREPEATS = 0.270); the 

remaining structural features were ignored (Figure 4.9, Figure 4.11 and 

Table 4.5). 

4.3.1.2.24.3.1.2.24.3.1.2.24.3.1.2.2 SalmonellaSalmonellaSalmonellaSalmonella----StaphylococcusStaphylococcusStaphylococcusStaphylococcus    

A cross-genus dataset of 421 Salmonella and 138 Staphylococcus specific 

regions was built and used to train a GI structural model; under this 

model the most informative features, are: IVOM (RIVOM = 0.62), SIZE 

(RSIZE = 0.40), PHAGE (RPHAGE = 0.34), INTEGRASE (RINT = 0.21), RNA 

(RRNA = 0.15) and REPEATS (RREPEATS = 0.12). The remaining features 

were ignored (Figure 4.9, Figure 4.11 and Table 4.5). 

4.3.1.2.34.3.1.2.34.3.1.2.34.3.1.2.3 SalmonellaSalmonellaSalmonellaSalmonella----StreptococcusStreptococcusStreptococcusStreptococcus    

Combining the Salmonella and Streptococcus-specific regions, a dataset of 

528 examples was built. Under this cross-genus GI model, the most 

informative structural features are: IVOM (RIVOM = 0.48), SIZE (RSIZE = 

0.39), PHAGE (RPHAGE = 0.28), INTEGRASE (RINT = 0.25), RNA (RRNA = 

0.24), INSP (RINSP = 0.20) and REPEATS (RREPEATS = 0.16) (Figure 4.9, 

Figure 4.11 and Table 4.5). 
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Figure 4.11: Radar diagram illustrating the “importance” of eight structural features under 

different genus-specific and cross-genus (2 genera) GI models: Staphylococcus-Streptococcus 
(top), Salmonella-Staphylococcus (bottom-left) and Salmonella-Streptococcus (bottom-right). 
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4.3.1.2.44.3.1.2.44.3.1.2.44.3.1.2.4 All three generaAll three generaAll three generaAll three genera    

In order to study the structural variation of GIs across the three genera, 

taking into account the difference in the dimensionality of the three genus-

specific datasets (421 Salmonella, 138 Staphylococcus and 107 

Streptococcus-specific regions), two different approaches were followed: In 

the first approach a training set (N = 666) was built combining the full 

Salmonella and the other two genus-specific datasets; in the second 

approach the Salmonella dataset was split into three subsets (N ≈ 140 

each) each of which was combined with the full Staphylococcus and 

Streptococcus datasets giving three training sets (namely set1, set2 and 

set3) of approximately 385 examples each; in each set the three different 

genera contribute approximately the same number of examples. 

Training the RVM on the full (N = 666) cross-genus dataset (all), 

the most informative GI structural features are: IVOM (RIVOM = 0.48), 

SIZE (RSIZE = 0.39), PHAGE (RPHAGE = 0.35), INTEGRASE (RINT = 0.25), 

INSP (RINSP = 0.24), RNA (RRNA = 0.17) and REPEATS (RREPEATS = 0.15) 

(Figure 4.9, Figure 4.12 and Table 4.5). 

Using each of the three smaller datasets (set 1-3) to train the RVM, 

the most informative features under the three GI models are (for each 

model, respectively): IVOM [RIVOM = 0.49, 0.43, 0.39], PHAGE [RPHAGE = 

0.42, 0.25, 0.56], SIZE [RSIZE = 0.37, 0.32, 0.41], INTEGRASE [RINT = 0.29, 

0.30, 0.31], INSP [RINSP = 0.34, 0.34, 0.0], REPEATS [RREPEATS = 0.19, 0.17, 

0.27], DENSITY [RDENS = 0.0, 0.0, 0.26] and RNA [RRNA = 0.0, 0.19, 0.0]. 

Based on the four RVM trainings (all, set1, set2 and set3), the four models 

that capture the structural variation of GIs across the three genera have 

converged over fairly similar GI structures, with the exception of genus-

specific features, i.e. the RNA feature for Salmonella, the INSP feature for 

Streptococcus and the DENSITY feature for Staphylococcus (see 

discussion and Figure 4.12). 
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Figure 4.12: Radar diagram illustrating the “importance” of eight structural features under 
different genus-specific and cross-genus (3 genera) GI models: The Salmonella complete 
dataset (A), set1 (C), set2 (D) and set3 (E) are combined with the complete Staphylococcus and 
Streptococcus training datasets. The above four cross-genus GI models are shown together in
the same diagram (B) for ease of comparison. 
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4.3.24.3.24.3.24.3.2 Prediction accuracyPrediction accuracyPrediction accuracyPrediction accuracy    

In order to evaluate the prediction accuracy of the RVM classifier each 

dataset was split into five smaller subsets of approximately the same size 

and the RVM was trained on the 4/5 of the dataset and tested on the 

remaining 1/5; this process was repeated five times (for each dataset), 

classifying each time non overlapping test sets (five-fold cross validation). 

Moreover, in order to evaluate further the generalization properties of 

each GI structural model I performed six “genus-blind” cross validations, 

training a model only on examples of one genus and testing it on examples 

of the other two. This blind test was performed in order to investigate how 

different genus-specific models would perform in classifying regions from 

unknown taxa. In order to estimate the relative accuracy and 

generalization properties of each model, I performed a ROC curve 

analysis, evaluating the AUC. 

Overall, throughout the 10 five-fold cross validations the different 

GI models made good generalizations on unseen data, classifying with 

high accuracy (AUC: 0.82-0.94) unknown examples (GIs and non-GIs) 

(Figure 4.13 and Appendix I). Between the three different genus-specific 

GI models, the Streptococcus (Strep) model is the most accurate, followed 

by the Salmonella (Salm) and the Staphylococcus (Staph) models (AUC: 

0.94, 0.83 and 0.82 respectively). 

Between the three different GI models, trained on a mixture of 

examples from two different genera, the Staph-Strep (Gram-positive) 

model is the most accurate, followed by the Salm-Staph and the Salm-

Strep models (AUC: 0.88, 0.85 and 0.84 respectively). Overall the Salm-

Staph model performs better than the corresponding two genus-specific 

Salm and Staph models (Figure 4.13); similarly the Salm-Strep and Staph-

Strep models are overall more accurate than the Salm and Staph models 

respectively. 

GI models trained on a mixture of examples from all the three 

genera show fairly similar performance (AUC: 0.84-0.88). More specifically 

the three GI models trained on datasets in which the three genera are 
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equally represented (i.e. set1, set2 and set3), perform equally well (AUC: 

0.87, 0.86, 0.88) and slightly better than the model trained on all (N = 666) 

examples (AUC: 0.84), underlining the increased sparsity property of the 

RVM method. 

 

 

 

The evaluation of the three genus-specific GI models, under a 

“genus-blind” cross-validation framework indicates that the RVM 

classifier can very accurately predict unseen examples from close or 

distantly related genera that are not included in the training set (Figure 

4.13). More specifically, using the Salm model to classify Staphylococcus 

and Streptococcus-specific regions can be overall more (AUC: 0.87 vs 0.82) 

or similarly (AUC: 0.91 vs 0.94) accurate compared to the corresponding 
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Figure 4.13: A Bar chart illustrating the average performance of the RVM classifier, 
under different training and test datasets. Each dataset is split into five subsets of 
approximately equal size; four of the five subsets are used to train an RVM model while 
the omitted subset is used to test the performance of this model. This process is 
repeated five times on non overlapping test sets (five-fold cross-validation). The 
performance of the RVM models was evaluated through the receiver operating 
characteristic (ROC) curve. The average value and ±1 S.D. of the AUC over the five 
subsets of the five–fold cross-validation is calculated for the first ten datasets. The AUC 
values for the last six datasets (with the asterisk) summarize the performance of the 
RVM, when trained on the whole dataset of the first genus and tested on the whole 
dataset of the second genus, e.g. for the Salm-Strep* dataset, the 421 Salmonella-
specific regions were used to train a GI model that was tested on the 107 Streptococcus-
specific regions. 
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genus-specific models, respectively. The Staph model shows high accuracy 

(AUC: 0.81 and 0.89) in classifying Salmonella and Streptococcus-specific 

regions respectively; overall this model is slightly less accurate than the 

corresponding genus-specific models (AUC: 0.83 and 0.94 respectively). 

Similar conclusions can be drawn for the performance (AUC: 0.79 and 

0.85) of the Strep model when classifying Salmonella and Staphylococcus-

specific regions respectively. Again this model is more accurate in 

classifying Staphylococcus-specific regions than the Staph model (AUC: 

0.85 and 0.82 respectively), but is less accurate in classifying Salmonella-

specific regions than the Salm model (AUC: 0.79 and 0.83 respectively). 

4.44.44.44.4 DiscussionDiscussionDiscussionDiscussion    

The aim of this analysis was to study the structural variation of GIs, 

quantifying and modelling the “importance” of genetic features that can be 

informative when classifying GIs and non-GI regions, enabling a 

quantitative rather than a descriptive definition of the actual GI structure 

to be proposed. The basic principle behind this analysis is a hypothesis-

free framework, in which no a priori assumptions are made about the GI 

structure. 

Implementing a machine learning oriented approach, genomic 

regions (both GIs and randomly sampled regions) from 37 chromosomes of 

three different genera were exploited in order to build genus-specific as 

well as cross-genus GI structural models. Overall the three genus-specific 

GI models show both core and variable structural features with distinct 

genus-specific signatures. For example, the IVOM and INT features are 

informative in all three GI models; on the other hand the RNA, INSP and 

DENSITY features are Salmonella, Streptococcus and Staphylococcus-

specific features respectively (Figure 4.9, Table 4.5).  

Moreover, in the Strep model apart from the INSP feature, the INT 

and REPEATS features contribute more to the overall structural model 

compared to the other two genus-specific models, while the SIZE and 
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PHAGE features seem to be informative only in the Salm and Staph 

structural GI models. 

Care should be taken when interpreting the “importance” of each of 

the eight structural features. In this analysis the GI models are built by 

evaluating how informative each feature is, taking into account cross-

feature relationships and information redundancy. Mapping the eight 

features in a high dimensional space enables cross-feature relationships to 

be captured: if some features contain information present already in other 

features (redundant information) then for the sake of model-sparsity those 

features (basis functions) will be ignored by setting their weight to zero 

value. That however does not necessarily mean that those features may 

not be informative when seen on their own, i.e. in single-featured GI 

models (Figure 4.14).  

Therefore it is more intuitive to interpret the “importance” of each 

feature as its relative (in combination with the rest of the features) rather 

than its absolute “importance” under a GI model. For example in the Strep 

model, the PHAGE feature is ignored when building a model evaluating 

all the eight features. However when the PHAGE feature is evaluated in a 

single-featured model, it turns out to be the second most informative 

feature (Figure 4.14); this observation is in line with previous studies 

showing the impact of bacteriophage elements in the evolution of 

Streptococci (Banks et al., 2003; Broudy et al., 2001; Fischetti, 2007). 

Perhaps some of the information in the PHAGE feature is already present 

in some other features (e.g. phage integrase protein domains of the 

INTEGRASE feature) making the PHAGE feature a redundant predictor 

under a multi-featured GI model. 

The same observation applies for the SIZE feature. In a multi-

featured model, SIZE is a very informative feature for the Salm and Staph 

models; however in a single-featured model (i.e. evaluated on its own) the 

SIZE feature is ignored in all three genera models (Figure 4.14). This 

further suggests that in multi-featured models some structural features 

correlate with the SIZE feature. Moreover throughout this analysis, the 
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SIZE feature received a negative weight in all GI models apart from the 

Strep model. Generally, during the training process some features may 

correlate positively or even negatively (e.g. the SIZE feature) with class 

membership. This does not necessarily suggest that true GIs are always of 

small size, but rather that the SIZE feature is negatively correlated with 

some other features.  

This observation becomes much clearer in the case of the Strep 

model in which both the SIZE and the PHAGE features received a weight 

of zero. However in the other 10 models, the same two features received a 

negative and a positive weight respectively (Table 4.5). Perhaps the SIZE 

feature is inversely correlated with the PHAGE feature, suggesting that 

GIs of phage origin are on average larger than GIs of different origin. 

Indeed for the Salmonella and the Staphylococcus dataset the average size 

of GIs of phage origin is significantly larger than the size of GIs of 

different origin (p-value = 1.17 x 10-7 and 1 x 10-5 respectively). In order for 

the reverse correlation of the SIZE and some features to be captured in the 

model, the SIZE feature has to have a negative weight. 

The fact that in the Strep GI model, three structural features (i.e. 

INTEGRASE, REPEATS and INSP) are unusually highly informative 

(relative to the other two genus-specific models) while at the same time 

those three features are frequently involved in the mobilization of genomic 

DNA (i.e. integration/excision), leaves open the possibility of a GI model 

that is capturing a distinct Streptococcus-specific mechanism of genetic 

element integration preferably within CDS loci.  

It is worth noting that the Strep GI model shows the highest 

sparsity exploiting only half of the basis functions (4 out of the 8 structural 

features), compared to the Staph (5 out of 8) and the Salm (6 out of 8) GI 

models, proposing a much simpler structural model, in order to describe 

GIs in the Streptococcus lineage (Table 4.5); this observation is in line 

with the outstanding classification accuracy of the Strep GI model (AUC: 

0.94 − Figure 4.13).  
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Figure 4.14: Bar chart illustrating the “importance” of eight structural 

features under a Salmonella, Staphylococcus and Streptococcus GI model. 
Grey-coloured bars show the “importance” of every feature, in a (multi-

featured) GI model in which all eight features are taken into account (relative 

importance). Gradient black-coloured bars show the “importance” of each 

feature, in a (single-featured) GI model with only one structural feature 

evaluated each time (absolute importance). 
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The distinct structural feature with the highest contribution to the 

Staph GI model, while being ignored in the other two genus-specific 

models, is the DENSITY feature (Figure 4.9, Figure 4.15). Overall the 

average gene density of GIs present in Staphylococcus genomes, is 

significantly (p-value = 1.4 x 10-6) higher than that of randomly sampled 

regions; in Salmonella and Streptococcus lineages this feature is less 

informative when predicting GIs (p-value = 1.7 x 10-3 and 1.3 x 10-2 

respectively).  

Again, it is possible that this genus-specific GI model is capturing 

the underlying origin of GIs present in Staphylococcus genomes, 

suggesting chromosomes of higher gene density than that characterizing 

the Staphylococcus lineage as the potential source of those GIs; one 

obvious possibility being bacteriophage genomes. For example, the 

staphylococcal pathogenicity islands (SaPIs) represent members of a 

structurally very well conserved family of phage-related GIs (Novick and 

Subedi, 2007); the structure of SaPIs is discussed in section 1.2.1 of 

chapter 1. 

Increasing further the resolution within certain GI structural 

features (i.e. insertion within a CDS or RNA locus, tRNA or misc_RNA 

and DRs or IRs), training the RVM pair-wise only on those selected 

features, the genus-specific signatures of each model become more evident 

(Figure 4.10). For the prediction of GIs in the Salmonella lineage, 

integration within a non-coding RNA locus is much more informative than 

within a CDS locus.  

The opposite observation can be made for the Staphylococcus and 

Streptococcus models. In the case of non-coding RNA, insertion within a 

tRNA or a misc_RNA locus are almost equally informative for the 

prediction of Salmonella GIs, while in Staphylococcus and Streptococcus 

lineages, insertion within a tRNA locus is much and slightly more 

informative than insertion within a misc_RNA respectively. In all three 

genera the predominant type of repeats associated with GIs are DRs. 
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Figure 4.15: Gene Density of class “1” (GIs) and class “0” (randomly sampled) regions 

in Salmonella (top, p-value = 1.7 x 10-3), Staphylococcus (middle, p-value = 1.4 x 10-6) 
and Streptococcus (bottom, p-value = 1.3 x 10-2) genera. The p-value has been
calculated using a two-tailed t-test.  
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Although the three genus-specific GI structural models show 

distinct signatures, suggesting well-defined GI families with core and 

variable regions, when the RVM training takes place on a mixture of 

cross-genus examples, the various GI models converge over fairly similar 

GI structures (Figure 4.9). This observation supports further the idea that 

GIs overall represent a superfamily of mobile elements with significant 

structural variation, rather than a well defined family when looking across 

genus boundaries.  

When the predictive accuracy and generalization properties of the 

cross-genus models are evaluated, many of those models perform overall 

equally well or better compared to the corresponding genus-specific models 

(Figure 4.13). This observation perhaps suggests that in some cases the 

RVM method has overfitted slightly on a subset of a genus-specific 

training dataset, misclassifying the remaining subset; when more training 

examples from other genera are included in the training dataset, models 

with much lower degree of overfitting are trained. 

Between the cross-genus GI models, trained on a mixture of two 

different genera examples, the Staph-Strep model shows the highest 

accuracy compared to the Salm-Staph and Salm-Strep. Perhaps this cross-

genus GI model is capturing structural properties of GIs found in Gram 

positive bacteria that are less or not informative for the prediction of GIs 

in Gram negative bacteria (Hacker et al., 1997). 

Even when the cross validation is based on a GI model that is 

trained on a genus-specific dataset and tested on examples of a different 

genus, the prediction accuracy remains remarkably high, further 

supporting the concept of the GI superfamily. For example, the accuracy of 

the model trained on Salmonella examples and tested on Streptococcus 

examples, is very similar to that of the Streptococcus-specific model. 

Moreover, the genus-specific GI model with the highest sparsity i.e. the 

Strep model discriminates remarkably well GIs from randomly sampled 

regions when tested on examples from the other two genera (Figure 4.16). 
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Figure 4.16: Scatter plot showing the posterior probability of a given region of being a true 
GI, given the model. Each genus specific dataset (e.g. Salm) is used to train an RVM 
model (e.g. Salm-train) that is then tested on the dataset of one of the other two genera 
(e.g. Strep-test). Each point in the scatter plot represents the posterior probability of 
either a GI (class 1, blue coloured) or a randomly sampled region (class 0, red coloured) of 
being a true GI given the model. For example in scatter plot A, a model trained on the 
Salmonella dataset was tested on the Streptococcus dataset: GIs (blue coloured points) in 
the test-set were correctly classified with a high probability very close to 1 while randomly 
sampled regions (red coloured points) in the test-set received on average a much lower 
probability. 
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Overall, the evaluation of the eight structural features across the 11 

training datasets shows that the IVOM, PHAGE, SIZE and INTEGRASE 

features are on average the most informative ones, followed by the INSP, 

REPEATS, DENSITY and RNA features (Figure 4.17). It seems that the 

four most informative structural features are important predictors when 

classifying GIs from any of the three genera, suggesting that there are 

core features of a superfamily of mobile elements, whereas the other four, 

less informative features are capturing genus-specific properties of GIs 

(being informative only when predicting GIs from a single genus), 

suggesting these may be variable features of distinct genus-specific GI 

families.  

 

The analysis carried out in this chapter forms the first attempt to 

quantify the actual GI structure in a probabilistic framework taking into 

account the contribution of all the informative structural features. Instead 

of vaguely describing putative GIs we can explicitly quantify our level of 

confidence that they fit an empirically-derived structure. This probabilistic 

Figure 4.17: Bar chart illustrating the average “importance”, across 11 structural GI 
models, of the eight structural features evaluated in this analysis. The eight features have 
been sorted (in decreasing order) based on their average “importance”. Error bars show 1 
SD. 
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scoring framework enables a systematic description of GI elements, which 

can be ranked based on their underlying structural information and 

subsequently classified into distinct structural families. 

Although this methodology provides some new insights about the 

structural variation of GIs, there are some limitations that have to be 

taken into account: 1) the RVM method shows increased sparsity, 

providing simple models that can very accurately capture the underlying 

structural variation in some cases (e.g. the Strep model). On the other 

hand, the RVM method overfitted twice, to some extent, to the 

Staphylococcus dataset: firstly, the two Staph models (with and without 

the two rRNA operons in the control dataset) show significantly different 

weights, and secondly the Staph model models the Staphylococcus dataset 

more poorly than any of the other two genus-specific models (Salm and 

Strep), perhaps overfitting to the DENSITY feature. To test whether this 

is indeed the case for the Staph model, the DENSITY feature was removed 

from the training and test datasets and the cross validation was repeated 

using the three models (Salm, Staph, Strep), re-evaluating their 

performance on the Staphylococcus dataset.  

The data supports the suggestion that the poorer performance of the 

Staph model on the Staphylococcus dataset, relative to the other two 

genus-specific models, is due to overfitting of the model to 20% of the 

dataset that had examples with significantly higher gene density than the 

rest of the dataset. The new Staph model outperforms the other two 

models when tested on the Staphylococcus dataset; more specifically, the 

AUC before and after the removal of the DENSITY feature for the three 

models, is as follows: (Staph = 0.824, 0.875), (Salm = 0.872, 0.865), (Strep 

= 0.850, 0.850). 2) The RVM method, as implemented in the current study, 

gave an error margin of 10-20%.  

Possible sources of this error margin include: Significant structural 

intersection of the GIs and the randomly sampled regions; some randomly 

sampled regions were sampled close to classical GI-related structural 

features (e.g. tRNA) simply by chance while a few GIs lack most (or all) of 
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the classical GI-related features (since no a priori structural assumptions 

were made). Moreover, the phylogenetic sample used in the current study 

strongly affects the validity of the training datasets; overall 11-13 strains 

and four outgroups were analyzed for each reference genus.  

Regions of limited phylogenetic distribution (under a maximum 

parsimony evaluation) were defined as GIs, while inter-GI chromosomal 

regions were randomly sampled. Under this framework there are two 

possibilities to be taken into account: Firstly, some predicted GIs might 

not actually represent true GIs, if the phylogenetic resolution is further 

increased, i.e. including more reference strains and more distantly related 

outgroups. Secondly, some randomly sampled regions might have been 

sampled over “ancient” GIs that were acquired prior to the divergence of 

the reference and the outgroup lineages. Consequently, care should be 

taken when interpreting the results of this analysis; the parameters of the 

RVM models and the validity of the actual training datasets directly affect 

the conclusions drawn about the structural variation of GIs. These 

conclusions are specific only for the three datasets analyzed, the structural 

annotation methodology and the machine learning method implemented in 

this study. 

The species sample used in this analysis is inevitably small in the 

context of a wide, representative sampling of the GI structural space. 

However, it forms a proof of concept showing that the components of a GI 

structure can explicitly be quantified through a probabilistic framework. 

Under this concept more species and many more structural components 

(e.g. the distance of GIs from the origin of replication oriC, their relative 

time of acquisition, number of pseudogenes per island and coding strand 

bias) can be taken into account and evaluated, enabling the construction of 

more sophisticated and more detailed structural models. 

Overall in this analysis, I showed that GIs tend to fall within 

structural families with well defined signatures when looking within 

certain lineage boundaries, but when the taxa resolution decreases, i.e. 

looking at GIs across different species, universally distributed structural 
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GI components emerge. Perhaps overall, GIs should be seen as a 

superfamily of mobile elements with unifying and variable structural 

features rather than a single, well-defined family. 


