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6.16.16.16.1 ConclusionsConclusionsConclusionsConclusions    

In this thesis, I have introduced and discussed a multi-factorial 

methodology for modelling, predicting and analyzing mobile genetic 

elements, present in microbial genomes, termed genomic islands (GIs). 

The reason that this project was chosen, is the observation that GIs drive 

accelerated rates of evolution (Groisman and Ochman, 1996) in microbial 

populations that in return shape host-pathogen interactions, adaptations 

to specific niches and the overall population structure, in a way 

fundamentally different from the biological processes and dynamics 

shaping eukaryotic genomes. 

 In order to predict and study GIs I firstly introduced a novel 

compositional-based algorithm (chapter 2), exploiting the principle that at 

the time of insertion, horizontally acquired genomic DNA carries the 

sequence signature of its donor and often deviates compositionally from 

the sequence signature of its new host. Although this assumption might 

not hold in many cases (e.g. in the case of compositionally similar donor 

and host genomes, host genes under functional constraints and 

horizontally acquired genes that have converged to the host composition 

due to the time-dependent process of amelioration), it can be tolerated for 

the sake of developing unsupervised algorithms that can be directly 

applied on raw genomic datasets, with a minimal (if any) level of 

annotation (Table 6.1). 

The novelty of this methodology relies on the fact that it exploits a 

new compositional algorithm, i.e. the Interpolated Variable Order Motifs 

(IVOMs) that overcomes the limitations of pre-existing, fixed (low or high) 

order compositional based methodologies, by introducing an interpolated 

variable order approach in analyzing local compositional biases. Under 

this principle, no a priori assumption is made about the order of the 
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compositional distribution that best captures departures from the genome 

backbone compositional distribution. 

 Obviously relying more on a higher level of annotation (e.g. gene 

prediction and functional/structural annotation) more accurate 

algorithms, that capture more reliably the true origin of putative 

horizontally acquired genomic regions, can be devised. Exploiting this 

principle, I introduced in chapter 4 a machine learning approach that 

quantifies our posterior belief that a genomic structure is likely to be a 

true GI.   

This methodology did not make any a priori assumptions about the 

structure of GIs, but instead implemented a bottom-up search, sampling 

both putative GIs and non-GI genomic regions from Gram positive and 

Gram negative bacteria, rather than relying on a previous GI structural 

definition (Hacker et al., 1997). The data showed that GIs represent a 

superfamily of mobile elements with core and variable structural features, 

characterized by increased structural variation, approaching probably a 

structural continuum, under which families and subfamilies are 

distinguishable but also conditional on the assumptions made and the 

arbitrarily chosen criteria used. 

 The novelty of this methodology relies on the fact that traditional 

machine learning approaches were exploited under a “forward-reverse” 

concept; a training dataset was used to train structural GI models, and 

those models were exploited not only to make predictions (“forward” 

implementation) on unseen examples, but most importantly to use their 

estimated parameters (weights) in “reverse” to draw conclusions about the 

structural variation of GIs. 

 Although the benchmarking analysis showed that structural-based 

predictions of GIs can be more reliable than methodologies exploiting 

purely compositional based information, they form supervised solutions 

that require a higher level of annotation (Table 6.1). 

 A feature of GIs, independent of any a priori compositional or 

structural assumption, is their horizontal origin, i.e. GIs are horizontally 
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acquired mobile elements of limited phylogenetic distribution. Exploiting 

this principle in chapter 3 I discussed a comparative-based approach for 

the prediction of GIs, the modelling of their compositional amelioration 

over time, and the mapping of their inferred relative time of acquisition on 

the phylogenetic history of the reference genomic dataset.  

Comparative based methodologies, applied in the prediction of GIs, 

can be more accurate and reliable than structural and compositional 

based approaches, purely due to the fact that they make no a priori 

assumptions about how GIs should “look”; instead they utilize information 

about a more fundamental property, i.e. their origin. However 

comparative-based methods, require a very wide (sequenced) species 

sample, a prerequisite that might well prohibit the application of such 

approaches in the case of species with very few sequenced representatives 

(Table 6.1). 

 It becomes obvious that in the case of predicting genetic elements 

characterized by increased levels of mobility, exploiting information (e.g. 

composition) derived from a single genome sequence provides only a very 

narrow and static “snapshot” of their mobile life and history. On the other 

hand, capturing a dynamic rather than a static picture of a bacterial 

population, allowing inter- and intra-species genetic-flux (i.e. gene loss, 

gene gain, duplication, recombination and chromosomal-rearrangements), 

key evolutionary steps and host adaptations to be explicitly modelled, 

provides a more reliable description of those highly mobile genetic 

elements. Under this "genetic-flux" framework, a more comprehensive 

picture of bacterial populations can be built taking into account both static 

(e.g. sequence information) and dynamic (i.e. genetic-flux) parameters (see 

future work section below). 

 In chapter 5, I carried out a blind-test, applying, in an integrative 

fashion, the compositional and the structural-based techniques described 

in the previous chapters on a newly sequenced, un-annotated genome with 

the specific aim of performing a “real-life” implementation of this 

prediction pipeline utilizing only the minimum level of information, i.e. 
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raw genomic sequence. Exploiting an experimentally validated test 

dataset, I discussed results showing that such methodologies can be 

directly applicable on genomic datasets even at the very early stages of 

the annotation pipelines, acting as complementary tools to the currently 

existing annotation methods. 

 

Table 6.1: Properties of three different in silico methods developed and discussed in this 
thesis, for the analysis and study of Genomic Islands. 

MethodMethodMethodMethod    
Annotation Annotation Annotation Annotation 
levellevellevellevel    

InformationInformationInformationInformation    ChapterChapterChapterChapter    ProsProsProsPros    ConsConsConsCons    

Alien 
Hunter 

Low Composition 2 

� Automated 
� Fast 
� Unsupervised 
� Applicable on newly 
sampled and 
sequenced, un-
annotated genomic 
datasets 

� Composition 
might “lie” 
(compositionally 
similar donors-
hosts, genes under 
functional 
constrains, 
amelioration) 

RVM Medium Structure 4 

� Very fast 
� Reliable 
� Good generalization 
properties 

� Supervised 
� Requires known 
examples to form 
the training 
dataset 

� Requires 
structural 
annotation 

Phylogenet
ic tree 

High 
Gene content, 
phylogenetic 
distribution 

3 

� Very reliable 
predictions if the 
correct model of 
evolution is applied 

� Gives estimates about 
the relative time of 
acquisition 

� Allows mapping of 
key evolutionary 
events on the 
phylogenetic history 
of the genomes of 
interest 

� Time consuming 
(phylogenies) 

� Manual curation 
� Requires pre-
existing sequenced 
closely and 
distantly related 
genomes 

 

6.26.26.26.2 Future workFuture workFuture workFuture work    

Although methodologies exploiting the dynamic properties of bacterial 

populations have just started to emerge (Daubin and Ochman, 2004; 

Didelot et al., 2007; Fuxelius et al., 2008; Vernikos et al., 2007) providing 

a step-wise decomposition of the evolutionary history of species over time, 

and revealing key evolutionary events that drive host-adaptation and 
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pathogenicity, they are still far from being complete, efficiently 

automated, standardized and high-throughput.  

This challenge could well form the focus of a future project; to 

perform a bioinformatic whole-genome based comparative study of 

bacterial genomes in order to quantify explicitly inter- and intra-species 

differences and interactions. The results could be used to implement a 

high-throughput in silico platform for fast and reliable step-wise 

decomposition of the evolutionary history of bacterial populations, focused 

on identifying virulence genes and potential vaccine candidates (Vernikos, 

2008). In the following sections I provide a brief outline of how this 

methodology could be implemented. 

6.2.16.2.16.2.16.2.1 HighHighHighHigh----throughput modelling of genetic fluxthroughput modelling of genetic fluxthroughput modelling of genetic fluxthroughput modelling of genetic flux    

6.2.1.16.2.1.16.2.1.16.2.1.1 Selection of bacterial genomesSelection of bacterial genomesSelection of bacterial genomesSelection of bacterial genomes    

For the purposes of studying inter- and intra-species genetic-flux, a set of 

query as well as outgroup genomes is needed. Two options can be 

exploited: 

A. Manual: The user can select manually a set of species and 

outgroup representative genomes, based on prior knowledge. 

B. Composition-based: Variable-order compositional distributions 

can be used, implementing the Interpolated Variable Order Motifs 

(IVOMs) theory (Vernikos and Parkhill, 2006). IVOMs is a very powerful 

and sensitive method that can reliably estimate the relatedness, by means 

of compositional analysis, of different closely or distantly related bacterial 

chromosomes, overcoming the limitations of fixed-order compositional 

indices (e.g. % G+C content). Its increased resolution can discriminate 

even very similar genomes e.g. of the same serovar, while the fact that it 

is alignment-free makes it efficiently fast and automated. This method 

can automatically select appropriate closely and distantly related (i.e. 

outgroup) genomes for a reliable study of genetic-flux. 

 



6.2 Future work  229 

6.2.1.26.2.1.26.2.1.26.2.1.2 WholeWholeWholeWhole----gegegegenome, allnome, allnome, allnome, all----againstagainstagainstagainst----all comparative analysisall comparative analysisall comparative analysisall comparative analysis    

A. Orthologous genes: In order to identify orthologous genes, each 

genome in the dataset can be compared against all the other genomes, by 

means of a best reciprocal FASTA (Pearson, 1990) approach. Although 

this methodology has been optimized and fine-tuned to predict reliably 

orthologous genes (Bentley et al., 2007; Thomson et al., 2006; Vernikos et 

al., 2007), the best matches between genes of the different genomes may 

well be paralogs rather than true orthologs. However this limitation is a 

desired property in the current methodology; gene duplication is part of 

the genetic-flux concept and such prediction ambiguities can be analyzed 

in a second step taking into account their syntenic relationship to 

differentiate true orthologs from paralogs. 

B. Phyletic profile: From the above all-against-all comparison the 

different patterns of presence or absence (i.e. phyletic profile) of all the 

genes in the pan-genome (i.e. the genome of a bacterial species consisting 

of core and dispensable genes, (Medini et al., 2005)), can be grouped and 

coded in a binary fashion, i.e. [1,0] to denote [presence, absence] 

respectively. The phyletic profile can be analyzed for the purpose of a 

three-fold strategy: 

1. The patterns of gene presence or absence can be grouped into 

core (shared among all genomes) and dispensable (partially shared and 

strain-specific) gene sets; modelling the number of strain-specific genes in 

the pan-genome as a function of adding step-wise new genomes, could 

enable us to draw conclusions about the pan-genome properties (i.e. open 

or closed pan-genome) and its rate of growth (Tettelin et al., 2005). 

2. The phyletic profile can be used to build the phylogenetic tree of 

the dataset relying on an alignment-free, distance-based approach (Fitz-

Gibbon and House, 1999; Snel et al., 1999). The phyletic profile can be 

converted into a distance matrix, in which the distance will reflect the 

fraction of genes that two genomes have in common. This alignment-free 

methodology is key for the development of a high-throughput approach 

since it is very fast compared to sequence-based techniques, exploits the 
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entire pan-genome and takes into account the various aspects of genetic-

flux. 

3. The phylogenetic tree of the dataset can be exploited as the 

reference tree topology, in order to infer putative gene gain  and gene loss 

events, analyzing the phyletic profile by means of a maximum parsimony 

model (Mirkin et al., 2003; Vernikos et al., 2007). This methodology will 

enable us to estimate the relative time (Daubin and Ochman, 2004; 

Vernikos et al., 2007) and rate of gene-transfer events on branches of 

increasing depth within the tree, revealing potential key host-adaptation 

strategies, e.g. genome-degradation (Gomez-Valero et al., 2007; Parkhill et 

al., 2001). 

C. Recombination events: The first step for the detection of putative 

recombination events can be based on the following assumption: if the 

topology of individual gene trees is statistically different from the 

reference tree topology of the entire dataset, those genes can be considered 

candidates for inter or intra-species recombination (Dykhuizen and Green, 

1991; Feil et al., 2001). 

In a second step, a sliding window can be exploited to analyze local 

discrepancies in the sequence similarity of consecutive genes with their 

corresponding orthologs in the other genomes. Significantly different 

(higher or lower) sequence similarity not expected by chance after 

evaluating the gene neighbourhood of the query and the target genomes 

can be combined with violations of the reference tree topology (previous 

step) in order to determine the possible direction of recombination (i.e. 

inter- or intra-species). 

D. Chromosomal rearrangements: Analyzing the co-linearity of the 

orthologous gene sets between two genomes will enable us to detect 

“breaks” in the syntenic relationship between the two chromosomes and 

infer possible large-scale rearrangements (e.g. inversions) (Eisen et al., 

2000; Liu and Sanderson, 1995; Tillier and Collins, 2000); their location 

relative to the terminus and the origin of replication could reveal the level 

of selective pressure for maintaining the genome order. 
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6.2.1.36.2.1.36.2.1.36.2.1.3 Quantification of geneticQuantification of geneticQuantification of geneticQuantification of genetic----fluxfluxfluxflux    

Generalized Linear Models (GLMs) (McCullagh and Nelder, 1989) can be 

used to build species and cross-species specific models of genetic-flux, 

quantifying the genome fluidity of bacterial populations. In the current 

framework, each GLM will be the weighted sum of K basis functions, 

where K denotes the different parameters of genetic-flux (e.g. gene gain, 

gene loss, duplication, chromosomal rearrangements, and recombination) 

used to describe a bacterial population exploiting a generalized genetic-

flux alphabet; a similar approach to that described in chapter 4. 

In the current genetic-flux framework, GLMs can be trained using 

species and cross-species genomes, quantifying explicitly under a 

probabilistic framework the contribution of each of the genetic-flux 

parameters in shaping the dynamic structure of specific bacterial 

populations. Consequently each GLM will provide in a single linear 

equation a step-wise decomposition of the evolutionary history of those 

bacterial populations. The gene-flux GLMs can be used in a machine 

learning method in order to evaluate how reliably genomic datasets can be 

classified into different bacterial species, based on their genetic-flux 

profile. Misclassifications, due to overlapping genetic-flux properties of 

seemingly distinct bacterial species can be further analyzed to re-evaluate 

the relatedness of the latter. 

6.2.1.46.2.1.46.2.1.46.2.1.4 Biological significanceBiological significanceBiological significanceBiological significance    

The results of this study could be directly applicable to: 1. The 

identification and classification of different or similar adaptation 

mechanisms to the same or different hosts, respectively. 

2. The study and characterization of the genetic boundaries 

between free-living and host-adapted bacteria, as well as between 

pathogenic and commensal bacteria. 

3. Defining the minimum number of species isolates to be 

sequenced in order to have a reliable sample of the diversity of a given 

bacterial population (open or closed pan-genome). 
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4. Guiding the identification of new vaccine candidates, using the 

concept of “reverse vaccinology" (Rappuoli, 2000; Rappuoli and Covacci, 

2003); whereby comparative genomics has enabled the successful 

development of novel vaccines against major pathogens (Behr et al., 1999; 

Maione et al., 2005; Pizza et al., 2000). 

5. Quantifying explicitly the genetic-fluidity of bacterial species 

using a single, linear equation. Utilising a generalized gene-flux alphabet, 

new whole-genome based classification systems can be devised. 

6. Mapping the relative time of gene transfer events from the 

evolutionary history of bacteria to the evolutionary history of their host, 

enabling us to begin to understand how the interactions between key 

gene-transfer events in the evolution of pathogenic bacteria (Parkhill et 

al., 2001) and behavioural or demographic changes in their host 

population (Thomson et al., 2008), lead to the emergence of novel 

pathogens. 

6.36.36.36.3 Final remarksFinal remarksFinal remarksFinal remarks    

To end, I would like to make a comment on the application of quantitative 

or qualitative models in modern biology. Initially, when the very first 

steps towards understanding the rules and principles that govern 

biological systems were made, simplistic assumptions had to be 

introduced, to keep the complexity of the hypotheses low enough for 

biologists to be able to draw valuable and, most importantly, interpretable 

conclusions. During the last ten years, or so, the transition from single-

isolate genomics to comparative genomics of entire biological populations, 

has introduced new (previously unknown) parameters that in some cases 

threaten to question or even to reject our initial assumptions about 

fundamental biological concepts and definitions. For example, in the 

current context of increased microbial genome fluidity, the fundamental 

definition of the biological species (Mayr, 1942), does not provide a 

realistic and representative description of the dynamic relationships that 

shape microbial evolution. Moving from intuition-driven or even 
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macroscopic observation-driven hypotheses to data-driven hypotheses 

represents a more realistic approach in the study of biological systems, 

even when this requires revisiting and perhaps rejecting our initial, 

intuitively correct but biologically erroneous assumptions and definitions; 

a recent example, derived from microbial populations that extensively 

exchange genetic material, involves the rejection of the strictly bifurcating 

tree of life (Darwin, 1859) by a more realistic model-structure, that of the 

reticulate phylogenetic network (Huson and Bryant, 2006). 


