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Abstract

The average eukaryotic genome contains many types of variation; from

single nucleotide polymorphisms, small, medium and large insertions

and deletions to copy number variation, translocations and inversions

to name a few. The genome is also highly non-uniform, with some

regions more variable than others. Tandem repeats are stretches of

DNA comprised of a short motif repeated end-to-end multiple times.

They are of interests to geneticists because they exhibit a high rate of

length variation and are relatively frequent in the genome. However,

until now they have been hard to assay using new sequencing tech-

nologies, which have revolutionized the study of other types of genetic

variation. In this thesis, we address this deficit by developing meth-

ods to genotype short tandem repeats from shotgun short sequencing

reads and applying them to human genome data.

To begin, I present a statistical model based on a Bayesian frame-

work which uses Illumina paired end sequencing reads to determine

the genotype of a diploid individual at a given short tandem repeat

locus. This method is applied to all triplet tandem repeats (repeat

motifs three bases in length) in the human genome for an individual

sequenced deeply from multiple libraries as part of the 1000 Genomes

project. We show that our method has good sensitivity and speci-

ficity for both homozygous and heterozygous indel genotypes measur-

ing over three bp in length.

Next, we build upon the previous chapter by utilizing our model for

genotyping across nine deeply sequenced individuals. We use the pu-

tative indel calls made in this data set to gain an understanding of



what factors of a tandem repeat have the largest effect on observing

an indel at a given locus. We look at the effect that various measures

of repeat length, repeat purity, GC content and tandem repeat motif

have on triplet repeat variation. This analysis furthers our under-

standing of tandem repeat variation.

Lastly, we reformulate our individual genotyping model to take se-

quencing data from multiple, low sequence depth individuals in a

population to understand the population distributions of variants at

tandem repeat loci. This uses machine learning approaches including

the expectation-maximization algorithm and Gibbs sampler, that help

elucidate which loci show evidence of variation in the sample popula-

tion, and allow us to explore the distribution of alternate alleles at a

locus. As well as cataloguing variation efficiently, this allows us to ex-

amine a broader picture of the contribution the previously described

factors have in influencing variation at a tandem repeat locus.
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