
Chapter 1

Introduction

Revolutions in science have often been preceded by revolutions in measurement.

– Sinan Aral, a business professor at New York University (The Economist [2010]).

1.1 New age of technology

The age of modern technology has led to a paradigm shift in regards to how sci-

entific exploration is conducted. Where once data collection limited our ability

to answer pressing questions about highly complex systems, we are now capable

of generating far greater amounts of data at a fraction of the time and cost. As

the capacity of digital devices increase while the price decreases, the amount of

information we are now privy to is magnitudes in size larger than before. Simply,

the amount of digital information increases approximately tenfold every five years

while Moore’s law states that processing power and storage capacity of computer

chips double (or their prices halve) roughly every 18 months (Moore et al. [1998])

which in turn drives our current accumulation of data. However, along with all

the benefits of this data comes the problem of how we make inference about the

underlying systems at play.

With magnitudes more data at hand, it has become an important goal of sci-

ence to develop algorithms and models which can make sense of all this new

information. When utilized to their full potential, large data sets can provide
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fresh insights into many natural systems. The intrinsic make up of many of these

systems lend themselves perfectly to a highly computational and statistical ap-

proach: from analysing high energy physics data to forecasting weather. While

each system has its own intricacies, the prevailing concepts on the underlying

mechanisms are closely related to one another such that advancements in one

field can benefit another field’s exploration (Cohen [2004]). One system which

has enjoyed many advancements through both direct design and from crossover

synergies is DNA sequencing. Where it once took ten years for the first few human

genomes to be sequenced (International Human Genome Sequencing Consortium

[2001], Levy et al. [2007]), the time frame has been lowed to approximately a

single week to sequence an entire human individual’s genome. The per base cost

of DNA sequencing has lowered to about 100,000x cheaper than it was a decade

ago (Nature Jobs [2011]). This abundance of data has increased the need of com-

putational approaches, algorithms and statistical models to make new discoveries

which rely less on the biochemistry of the system and more on the complexities

that arise from such large data sets. Given the raw data from DNA sequencing,

geneticists have endeavored to develop algorithms and models which can reveal

new insight into the complexities of the genome that would previously have re-

mained hidden. This new world of genomic sequencing has given credence to the

belief that genomic medicine has a bright future once geneticists and bioinfor-

maticians decipher the context of the genome. It is only a matter of time before

the “base pairs to bedside” concept is a reality (Green et al. [2011]).

1.2 Sequencing technology and bioinformaticians

The emergence of new sequencing platforms has chauffeured in a new type of

geneticist: a scientist with proficiency in both computer science and statistical

theory who is able to disambiguate the needle of truth from the haystack of data.

The paradigm shift from benchtop to laptop has changed the way genetic re-

search is conducted. The need for these newly trained scientists far outstrips the

current supply which necessitates the migration of individuals into this field (Na-

ture Jobs [2011]). However, the need for quantitatively trained geneticists hasn’t

always been the case in the field of sequencing whose history stretches back over
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four decades.

As with all technological movements, sequencing has experienced a number of

periods that are described by the technology and knowledge of the time. Starting

with the sequencing of RNA by Frederick Sanger (Brownlee et al. [1967]) and the

subsequent sequencing of DNA (Sanger et al. [1982]), this process has been an

archetypal example of exponential technology growth. After Sanger sequencing

came high throughput DNA sequencing that was conducted using electrophoretic

methods in miniaturized systems; such as capillaries, capillary arrays, and mi-

crochannels (Carrilho [2000]). We are now in what is known as the the next

generation sequencing era which is comprised of a number of platforms, processes

and chemistries (Metzker [2009]). These new sequencing technologies have ef-

fected a change within genetics; one where the sequencing of a full genome to a

reasonable depth is no longer prohibitively expensive. The speed and low cost has

led to a number of resequencing projects aimed at demarcating variants within

multiple species’ genomes.

1.3 Genomic variation

Single nucleotide polymorphism (SNPs) represent the largest class of variation

within the human genome, but a large number of ‘structural variations’ have

been uncovered as well. Small insertions and deletions (indels) represent the sec-

ond most frequent class of variation in the human genome followed by deletions,

duplications, inversions, translocations and other large-scale copy-number vari-

ants. An important class of indels within short tandem repeats or microsatellites

(characterized by having multiple exact or near exact tandem copies of a 1-20

bp sequence motif) will be the main subject of this thesis which we will return

to later. While indels exhibit a greater potential to disrupt functional elements

compared to SNPs, they have been characterized to a lesser extent. Because of

this, they are under represented in public variation databases; while there are

24,359,333 unique SNPS in the dbSNP database (version 132), there are only

5,617,945 short indels. Furthermore, resequencing projects have also shown that

structural variants can comprise megabases of nucleotide heterogenity within a
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given genome and are likely to make an important contribution to human diver-

sity as well as disease susceptibility (Feuk et al. [2006]).

1.4 Detecting small scale insertions and dele-

tions

Whole genome sequencing using next generation sequencing technologies has

shown that several hundred thousand indels are located in a single individual’s

genome compared to the reference genome (Wheeler et al. [2008]; Bentley et al.

[2008]; Wang et al. [2008]; McKernan et al. [2009]). Various methods have been

proposed in locating these sites with the most common being based on the align-

ing of sequenced reads directly to the reference and searching for specific signals

that are indicative of a breakpoint. This can be accomplished directly by the

split alignment (or gapped alignment) of reads which span across a breakpoint.

Essentially, if a read from a sequenced individual contains inserted or deleted

sequence relative to the reference sequence, the read will not map exactly to the

genome. Reads whose prefix and suffix match a specific region in the reference to

some identity can then either have sequence removed – with the ends appended to

one another (deletions) – or be split at some distance in the reference (insertions)

to determine if the read then matches the reference genome. Variations of this

approach have been used by numerous sequence alignment algorithms (Li et al.

[2008]; Homer et al. [2009]; Li and Durbin [2009]; Rumble et al. [2009]) which

have located many of these small indels within a resequenced genome. This is

not a perfect method, however. Reads that span a break point close to its end

have been shown to be difficult to align and can lead to misalignment and in turn

false SNP calls (Krawitz et al. [2010]). This problem has been mitigated through

the local realignment of reads which span a putative break point (McKenna et al.

[2010]; Homer et al. [2009]; Albers et al. [2011]). Further, many of these tools do

not permit gaps above a certain size in their split alignments. The maximum gap

size is due in part to the computational cost it would require to search for larger
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and larger gaps and in part because allowing larger gaps can lead to errors. De-

pending on the algorithm, the cost to search possible gap sizes grows non-linearly.

Some aligners will use the Smith-Waterman algorithm to map reads which on the

first pass are not mapped correctly to the genome. Most aligners allow user input

to dictate the aggressiveness of resolving gaps. These values can be tweaked to

allow larger gaps, but run the risk of having more false indel discoveries. However,

if the deletion is too large, then the flanking sections will be shorter and there

will be too many places within the genome the two end lengths of a read (split by

a deletion) can be placed. Similarly, the size of detectable insertions is only a few

base pairs, as every inserted base reduces the fraction of the read that matches

the genome (Medvedev et al. [2009]). Because of this, most indels of more than

a few bases in size are not detected by standard split alignment methods.

A few methods, such as PolyScan, have been developed to locate short indels

of size ≤ 100 bp by analysing long reads from capillary sequence data (Chen

et al. [2007]). As with the previously mentioned alignment tools, PolyScan aligns

reads to the reference genome and infers indels from gaps in the alignments. This

can be used to infer indels in many of the unique regions of the genome. However,

as well as the size of the indel, the efficacy of calling indels is contingent upon the

reads being mapped uniquely to the reference genome. In unique regions of the

genome this is not a problem, but as the uniqueness of DNA decreases, so does

an aligner’s ability to map a read correctly to a specific position on the refer-

ence genome. Nowhere is this more problematic than in repetitive copies of DNA

which take various forms within a genome. Copy number variation (or CNV)

represents the largest type of repeating patterns where whole regions of DNA are

duplicated throughout the genome. Mapping to these regions is difficult as it is

usually unknown which copy the sequenced read is coming from.
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1.5 Tandem Repeats

A particular form of repeat region that is prevalent in the genome and contains

length variation that is hard to type is tandem repeats (minisatellites). These

regions are characterized by 21-60 bp repeat units that are repeated in a tandem

end-to-end fashion some number of times in the genome consisting of both full or

truncated repeat patterns as well as pure and impure repeat tracts. The smaller

equivalent of tandem repeats – and the more prevalent form – are known as short

tandem repeats (or microsatellites). Short tandem repeats (STRs) are repetitive

segments of DNA that are characterized by 1-20 bp repeat units. As with tandem

repeats, they can be both full or truncated repeat units consisting of both pure

and impure repeat tracts. Altogether, there are over 2.1 million STR loci of motif

lengths 1-10,15 and 20 located in the human reference genome.

The STR sites were located by running Tandem Repeats Finder (TRF) ver-

sion 4.00 (Benson [1999]) across the entire human reference genome (NCBI build

36). TRF is able to locate both pure and impure (interrupted) repeats using

a probabilistic model of tandem repeats. Essentially, TRF aligns two tandem

repeat copies of some motif pattern of length n by a sequence of n independent

Bernoulli trials. A Bernoulli trial is defined as a number of independent repeated

trials of an experiment with only one of two outcomes: success or failure (or

match and mismatch in our case). The probabilities of these outcomes are then

defined as p for the probability of success and q = 1−p for the probability of fail-

ure. A series of Bernoulli trials which consists of n trials is known as a binomial

experiment. The probability of k success out of n trials can then be written as

P (k) =

(
n

k

)
pkqn−k

For TRF’s purposes, the probability of a base matching the pattern (success),

P (match), is representative of the average percent identity between copies. For

mismatches (SNPS), insertions or deletions, a second probability is described,

P (mismatch). This denotes the average percentage of mismatches, insertions

and deletions between the copies. TRF uses the distribution of the Bernoulli se-
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quences to locate tandem repeats within the genome to some stringency defined

by the properties of the alignment (P (match) and P (mismatch)). These bounds,

P (match) and P (mismatch), serve as a type of extremal limit – a quantitative

description of the most divergent copies TRF will report.

TRF is broken down into two components: detection and analysis. The program

first locates candidate regions in the genome which can be described as tandem

repeats and then the analysis component attempts to produce an alignment at

each of the candidate sites and if successful, produces a number of statistics about

the alignment and sequence (percent identity, percent indels, composition and en-

tropy measure).

The detection step is broken down into a series of algorithms which scan through

the genome looking for repetitive patterns known as k − tuples. A k − tuple

is a window of k consecutive characters from a nucleotide sequence. Matching

k− tuples are two windows with identical contents and if aligned in the Bernoulli

model would produce a run of k successes. Once these sites are identified, the

candidate pattern corresponding to some positions in the genome are selected

from the nucleotide sequence and aligned with adjacent sequence. If at least two

copies of this pattern are aligned correctly, the tandem repeat is reported. After

these patterns are matched, an initial candidate pattern P is drawn from the

sequence. TRF then iterates through possible patterns from the sequence until

a consensus pattern by majority rule is found from the alignment of P copies

back to the candidate region. This consensus sequence is then used to realign

the sequence and the final alignment is reported with the respective period size

of the repeat motif.

TRF uses a number of parameters which the user can define in regards to the

stringency of locating tandem repeats within a genome. The parameters corre-

spond to the alignment weights for match, mismatch and indels, the matching

probability and indel probability, a maximum period size for patterns to report

and a minimum alignment score to report a tandem repeat. In our analysis, we

left most parameters in the out-of-box configuration. We did, however, iterate
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through each repeat motif length we were interested in looking at. We also set

the minimum alignment score to report a repeat to 30, which corresponded to

a 15 bp perfect triplet repeat or a longer impure triplet repeat. In addition to

this criteria, all repeats (independent of their motif length) were required to be

at least 15 bp in length. In total, TRF identified 2,136,510 repeats in the human

reference genome that met this criteria. This amounted to over 58 Mb of genomic

sequence in the human genome. The results of our TRF run are summarized in

table 1.1 and figure 1.1.

Loci, base count and statistics for STRs in the human genome
Motif size Loci count Bases Mean Std Dev

1 447847 9705850 21.672 6.684
2 209248 7655889 36.588 45.909
3 86401 2391275 27.676 41.335
4 267055 9232626 34.572 53.215
5 168674 4892872 29.008 240.971
6 218574 4949601 22.645 22.739
7 291167 5910812 20.300 29.382
8 207127 4986481 24.075 26.304
9 151583 4067068 26.831 85.026
10 39215 1505968 38.403 56.680
15 28833 1533692 53.192 94.687
20 20786 1533188 73.761 121.431

total 2136510 58365322 27.318 102.788

Table 1.1: Counts of all tandem repeat loci found by TRF within the human
reference genome that correspond to a given repeat motif with corresponding
mean and standard deviation statistics. The first column represents the motif
size and the second and third column represents the number of loci and total
bases, respectively, corresponding with the motif length in the human genome.
The fourth and fifth columns are the calculated mean and standard deviations
for all loci in that row, respectively.
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(a) Histogram of lengths of STR loci in human
genome

(b) Histogram of lengths of STR loci greater
than 35 bp in the human genome

Figure 1.1: Histogram of number of loci of each length across the human genome
with loci longer than 150 bp binned in the last bin. The number of STR loci
(motifs of 1-10, 15 and 20 bp) across the genome are mostly of lengths <40 bp
(1,926,168 of 2,136,510, roughly 90%). Even the shortest paired end reads (36
bp) are almost able to extend across these repeat loci to make indel calls by
alignment possible (given the indel is not an insertion that increases the repeat
length above the length of the short paired end read). This limits the amount
of sites which our model is applicable (see table 1.3) for high coverage data sets.
However, samples sequenced with paired end reads at a lower coverage will have
much lower chance of reads being sequenced exactly so that they can expand
across an STR locus (see figure 1.4).

Aside from their prevalence in the human genome, STRs come in a variety of

lengths within the genome. While the average length of STRs is around 27

bp, the standard deviation is extremely large as shown in table 1.1. This large

discrepancy in the sizes of the standard deviations – specifically for motifs of

lengths 5 and 9 bp – are most readily explained by extremely long loci. While

most motifs’ longest loci are anywhere from two to six thousand bp in length, the

motifs of lengths 5 and 9 bp have loci that are as long as sixty-five and twenty-five

thousand bps in length, respectively (see table 1.2).
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Ten longest loci for each motif length
Motif size Ten longest loci

1 92, 93, 97, 98, 99, 101, 113, 128, 396, 415
2 1620, 1636, 1645, 1710, 1740, 1741, 1801, 1838, 1844, 4760
3 1314, 1321, 1354, 1509, 1528, 1722, 1804, 2594, 3148, 3925
4 2027, 2093, 2162, 2173, 2531, 2963, 3144, 4101, 5656, 6240
5 4863, 4927, 6585, 7433, 26557, 26771, 28286, 29067, 46493, 65350
6 1383, 1428, 1436, 1509, 1537, 1589, 1780, 1826, 1835, 2403
7 1989, 1996, 2045, 2065, 2067, 2295, 2339, 2365, 3024, 4816
8 1328, 1357, 1494, 1497, 1577, 1613, 1835, 1919, 2180, 2779
9 2331, 2531, 2892, 3783, 3861, 4107, 5651, 6235, 10241, 25733
10 1348, 1358, 1414, 1504, 1527, 1632, 2086, 2182, 2229, 2266
15 2305, 2309, 2366, 2403, 2590, 2713, 2830, 2837, 2865, 4327
20 2032, 2205, 2362, 2432, 2533, 2555, 2600, 2784, 4139, 4360

Table 1.2: Lengths of the ten longest loci in each tandem repeat length motif.

1.6 Small scale insertions and deletions in tan-

dem repeats

1.6.1 Background significance of tandem repeat indels

While also being extremely prevelant in the human genome, tandem repeat

loci are highly variable between populations and individuals due to their rela-

tively high mutation rate compared to the rest of the genome (Pearson et al.

[2005]). They commonly undergo indel mutations of single or multiple repeat

units (Di Rienzo et al. [1994]), thus the two copies of a locus in an individual

may easily differ by up to 100 bp from that in the reference genome. Small indels

have been shown to be more prevalent in tandem repeat regions of exons than

in non-tandem repeat regions of exons. Tandem repeat loci that lie within exons

have been shown to be significantly over-represented in disease-related genes in

both human and mouse (Madsen et al. [2008]). Indels in both coding and non-

coding tandem repeat loci have been linked to diseases such as spinocerebellar

ataxia (SCA types 1, 2, 3, 6, 7), Huntingtons disease, fragile X syndrome, and

myotonic dystrophy (Ball et al. [2005]; Hamosh et al. [2005]). To date, tandem

repeat instability has been implicated as the causative factor in more than forty
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neurological, neurogenerative and neuromuscular disorders (Pearson et al. [2005])

by pathogenic mechanisms involving the loss or gain of function at the protein or

RNA level (Gatchel and Zoghbi [2005]). While tandem repeat loci of all repeat

unit sizes are susceptible to mutations, triplet repeats have come to the forefront

of tandem repeat research due to the high number of diseases caused by indels

at triplet repeat loci (Pearson et al. [2005]). We note that triplet repeats are

relatively rarer in the sequence than other short motif tandem repeats (see table

1.1) and wonder whether it is possible that this is due to some form of selection.

Tandem repeat loci evolve mainly through replication slippage-mediated gain and

loss of single repeat units (Ellegren [2000]; Mahtani and Willard [1993]). Recent

studies have shown that, in addition to replication slippage, expansions and con-

tractions at tandem repeat loci can also be caused by faulty repair of DNA lesions

(Kovtun and McMurray [2008]; Lenzmeier and Freudenreich [2000]). Given their

abundance and high mutation rates, tandem repeat loci play an important role

in the ongoing evolution of the human genome (Ellegren [2004]). It is very likely

that some indels in tandem repeat loci are the cause of normal phenotypic vari-

ations in humans and other species (Kashi et al. [1997]; Kashi and King [2006]).

In addition to their importance to disease and evolution, variation at tandem re-

peat loci has been very useful in ascertaining the demographic history of human

populations throughout the world (Zhivotovsky et al. [2003]).

1.6.2 Detection of indels using paired end mapping infor-

mation

Carrying on from table 1.1, it is important to keep the distribution of tandem

repeat lengths in mind when we start to look at calling indels within a tandem

repeat. Indels in repeat regions can be called in a similar way as indels within

unique regions of the genome. However, directly calling indels within tandem

repeats from split alignments only works up to a point. When the total length

of the repeat in the sequenced individual increases towards the read length, the

read can no longer be aligned accurately to the reference genome. Reads whose

sequence is comprised entirely of a repeating pattern are unable to be mapped
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correctly to the genome for multiple reasons. One such instance is when a read

is sequenced from a CNV because it is difficult to tell which copy the sequenced

read is coming from. Similarly, as tandem repeats are the same pattern of se-

quence repeated over and over, there is no way of telling which of the many STR

loci in the genome with the same motif a read is sequenced from, nor where in

the repeat locus the sequenced read should be placed. This causes a problem

when trying to determine the exact length of a tandem repeat locus, and in turn,

whether a sequenced individual contains an insertion or deletion. One way to

rectify this problem has been to target sequence these loci with longer reads, for

example from capillary sequencing. Another way has been to target a specific

locus by PCR with primers in flanking unique sequence, but this is low through

put by modern standards. The large amount of money and time needed to geno-

type many tandem repeat loci has been prohibitively expensive and because of

this, typing these sites on a large scale has been difficult. However, the chemistry

for some next generation sequencing technologies provides additional information

that can be used to solve this problem: the sequenced reads are paired, which

correspond to two regions that lie some genomic distance apart in the genome of

the sequenced individual. This distance (or fragment length) is a consequence of

the sizes of DNA fragments selected by virtue of coming from the two ends of a

DNA fragment created during library construction. Read pairs that are proxi-

mal to the tandem repeat on each side of it but not within the repeat locus are

mapped to the reference genome and the additional mapping distance data offers

information in determining the length of the tandem repeat. Therefore, instead

of a read being 36 bp in length (a standard read length for early sequencing

from the Illumina platform), the physical coverage (or distance between mapped

reads) increases the pair’s reach up to hundreds of base pairs that can now span

across a repetitive region and offer information about the repeat tract’s length

in a sequenced individual. It is through this paradigm that many of the next

generation indel callers identify longer indels.

As alluded to in section 1.4, extensive sequencing of tandem repeat loci has been

limited due to the costs and time required using traditional capillary sequencing
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methods. Compared to traditional capillary sequencing methods, next genera-

tion sequencing machines produce orders of magnitude more sequence data in a

fraction of the time and cost (Mardis [2008]). The trade-off is that the sequenced

reads for platforms, such as Illumina, are much shorter than traditional capillary

sequence reads – currently around 100 bp in length per read for the Illumina

platform. From these shorter reads, multiple tools have arisen to fill in the gap

left by alignment tools to find indels larger than a few base pairs.

The concept of using end sequencing profiling (ESP), also known as paired end

mapping (PEM), of paired reads to demarcate structural variations has been

around since 2005. Applied to both somatic structural variations in cancer

genomes (Volik et al. [2006]) and normal genomes (Tuzun et al. [2005]), what

these methods have in common is that they use the distribution of the distance

between the paired end reads to facilitate researchers’ ability to locate large in-

sertions and deletions. Essentially, these algorithms assess the distribution of

paired end read separations mapped to a reference genome and define cutoffs

where they feel the mapped separation of two reads in the reference was more

extreme then expected, and occurred because of a structural variant rather than

by chance. The earlier incantations of this methodology used fosmid pairs to lo-

cate very large insertions and deletions by locating regions in the genome where

the paired alignment of reads mapped anomalously. These algorithms looked for

reads which mapped further than three standard deviations away from the mean

(Volik et al. [2006], Tuzun et al. [2005]), and at a certainty of over 99%, these

‘discordant’ reads (reads whose mapping was not in line with the distribution)

were indicative of a structural variant. When these discordant pairs occurred in

clusters at a specific genomic region, they gave more power to make a putative

variant call (see figure 1.2). However, as the fosmids’ separations were so large,

the resolution to find variants was limited to structural variants on the order of

tens of kilobases and larger. As technology evolved, this methodology migrated

over to next generation sequencing technologies – such as Korbel’s use of the 454

platform (Korbel et al. [2007]). As fragments from next generation sequencing

machines were smaller and in turn more tightly distributed, the resolution to find

smaller variants became possible. In line with previous studies, Korbel defined a

13



Chapter 1. Introduction

cutoff distance for paired end reads which was indicative of a variant. Through

this method, variants of size 2 kb and larger were located in the human genome.

As the methods of fragment library creation become better, the distribution of

fragments became tighter and so did the ability to call smaller and smaller indels.

Using the more recent sequencing of both the 454 and Illumina platforms, struc-

tural variation callers can be broken down conveniently into three subgroups –

with each subgroup having its own process of locating indels of varying sizes.
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Figure 1.2: The underlying paired end sequencing methodology used to detect
structural variation by fosmid pairing (Tuzun et al. [2005]). Deletions in the
fosmid source are defined as sites where two or more fosmid end-sequence pairs
span > 48 kb. Insertions are defined as sites where two or more fosmids span
< 32 kb (red). These length thresholds are three standard deviations from the
mean insert size.

The first, and smallest group, is comprised of the Geometric Analysis of Structural

Variants tool (GASV). This algorithm takes a geometric approach for structural

variation identification, classification and comparison. Instead of using the paired

read separations directly to locate discordant reads and then make inference, this

approach represents the uncertainty in the measurement of a structural variant as

a polygon in the plane and identifies measurements supporting the same variant

by computing intersections of polygons (Sindi et al. [2009]). This work was the

first of its kind to present a general framework for comparing structural variants

across multiple samples and measurement techniques. While this paper pre-

sented a very interesting way to think of structural variants, the methods where

not used extensively within the field of structural variation detection. The pre-

vious paradigm of finding outliers remained the prevailing technique for locating

structural variations.

The next group of callers can be seen as a direct extension of Korbel, Tuzun and

Volik’s outlier methods. First, extending further on his research, Korbel released

PEMer (or paired end mapper) in 2009 (Korbel et al. [2009]). Using the same

strategy as in his first paper, Korbel looked for clusters of various read numbers

to locate discordant reads whose separations were greater than three standard de-
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viations away from the median. However, unlike his previous method, PEMer’s

methods were applied across multiple sequencing platforms: 454, Illumina, and

ABI. The efficacy of PEMer’s modeling was tested on the 454 platform and had

very marginal gains in being able to detect smaller indels than previously listed.

Also, in the same year, two more tools were released which boasted a higher res-

olution for calling smaller indels using the same principle of looking for clusters

of reads mapping some number of standard deviations away from the mean. As

well as PEMer, SVDetect also used multiple sequencing platforms to locate large,

genomic structural variations (Zeitouni et al. [2010]), but lacked the power to call

significantly smaller indels. This was was answered by two other structural varia-

tion callers: VariationHunter and McKernan’s SOLiD method. VariationHunter

(Hormozdiari et al. [2009]) was able to locate deletions and insertions smaller

than 100 bp using Illumina paired end reads as the libraries were much tighter

than that of the 454 platform. The paired end reads used for this analysis came

from a single individual having a sequence depth of roughly 42x and a physical

coverage of 120x (fragment size of 200 bp, Bentley et al. [2008]). Next, McK-

ernan published a paper using the SOLiD platform to locate deletions as small

as 86 bp and insertions as small as 30 bp. As the sizes of indels being found

reached their maximum resolution given the current technology and methods, it

was necessary to re-evaluate the method which only looked for discordant reads

which mapped some number of standard deviations away from the mean/median.

In the same year as many of these other tools came out, two algorithms came

out which took a novel approach to calling indels: BreakDancer and MoDIL.

BreakDancer, like many of the other tools, used discordant reads whose mapped

separation was outside three standard deviations to locate structural variants.

Using this method, it was run on a data set consisting of 844 structural vari-

ants identified on chromosome 17 of J. Craig Venter’s genome: 425 deletions,

415 insertions and 4 inversions ranging from 20 to 7,953 bp. Paired end reads

were simulated measuring 50 bp in read length at 100x physical coverage with a

normally distributed insert size library with a mean size of 200 bp and standard

deviation of 20 bp. While able to locate many variants at a decent sensitivity,

38.4% (324 including 147 shorter than 60 bp), and a low false positive rate,1.48%,
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it had trouble locating the smaller indels as well as variants which occurred in

repetitive regions that are difficult to map to or assemble across. In addition

to this, the novel part of BreakDancer included an additional method – named

BreakDanceMini – designed to locate smaller indels in the region of 10 to 20 bp.

Instead of only locating the regions of discordant reads mapping largely away from

the mean, it took anomalous regions (areas where a cluster of reads where larger

than expected but less so than discordant reads) and compared the distributions

of the paired end mappings of these regions with the full data set of paired end

separations using a two-sample Kolmogorov-Smirnov test. If the K-S statistic

measured ≥ 2.3 (indicating the distribution of separations are in fact different)

the locus was tagged as a variant. The use of the Kolmogorov-Smirnov test in-

creased the number of false positives to 10%, but also increased the method’s

ability to call 10-20 bp indels.

Before moving on to the last tool, I will provide a bit of background on the

Kolmogorov-Smirnov test (K-S test). The K-S test is a nonparametric test for the

equality of continuous, one-dimensional probability distributions that is used to

compare both a sample with a reference probability distribution (one-sample K-S

test), or to compare two samples (two-sample K-S test). These two tests quan-

tify the distance between the empirical distribution function of the sample and

the cumulative distribution of the reference distribution or the distance between

the empirical functions of the two samples. The null hypothesis for these two

tests is that the sample is drawn from the null distribution (one-sample) or that

both samples are drawn from the same distribution (two-sample). Essentially,

the K-S test can serve as a goodness of fit test between multiple distributions.

The empirical distribution function Fn of n independent identically distributed

(iid) observations Xi is defined as

Fn(x) =
1

n

n∑
i=1

IXi≤x

where IXi≤x is the indicator function (equal to 1 if Xi ≤ x and equal to 0 other-

wise). For clarity, iid – as referred to previously – is a term in probability theory
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and statistics that defines a sequence – or other collection of random variables

– that each random variable has the same probability distribution as the others

and are mutually independent. From this, we are able to define the K-S statistic

for a given cumulative distribution function F (x) as

Dn = supx|Fn(x)− F (x)|

where supx is the supremum of the set of distances, and if the sample comes from

the distribution F (x), then Dn converges to 0 almost surely with increasing n. In

analysis, supremum (or least upper bound) of a set S of real numbers is defined

to be the smallest real number that is greater than or equal to every number

in S. A critical value of Dn is set such that any time the test statistic is above

the critical value, the null distribution is rejected – that the sample distribution

was not drawn from the null distribution. This knowledge is important when

describing the methods of the MoDIL tool.

MoDIL (mixture of distributions indel locator) was the first method to specif-

ically look for indels in the size range of 20 to 50 bp from next generation se-

quencing data. As with BreakDancerMini, MoDIL is not limited in resolution of

structural variation detection by searching only for large paired end read devia-

tions, but uses clustered reads whose deviation by a small number of nucleotides

is indicative of an insertion or deletion. The MoDIL algorithm, instead of looking

for discordant read pairs, compares the distribution of paired end separations in

the sequenced library to the distribution of observed paired end distances at a

particular genomic location. By streaming through the genome, MoDIL looks

at each genomic location and clusters paired end reads which overlap a partic-

ular position. At sites where there is no indel, the distribution of paired end

separations at a genome location should match the distribution of all paired end

separations across the genome. However, if there has been a homozygous indel

at this location, the distribution will shift off the population distribution by ap-

proximately the size of the indel. If there is a heterozygous indel, there will then

be two distributions from which the paired end separations will come from with

approximately half of the paired end reads coming from one distribution and half
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from the other (see figure 1.3). MoDIL represents the genotype of a putative

(a) Distribution of paired end mappings
for a homozygous deletion.

(b) Distribution of paired end mappings
for a heterozygous genotype

Figure 1.3: Example of a homozygous (1.3a) and heterozygous (1.3b) deletion
with the observed distribution of mapped distances shown in gray. (1.3a) A
homozygous deletion of 24 bp. Notice the shift from the null distribution (blue)
to the best match distribution (red). (1.3b) A heterozygous deletion of 24 bp
with one allele the same length as the reference length. The mapped distances at
this locus are generated from two distributions with means centering at 230 bp
and 208 bp (deletion and reference allele, respectively).

variant locus by the random variable of the expected size of the indel (the mean

of the fragment library size minus the paired end read separation) with two ran-

dom variables representing each haplotype. From each cluster, MoDIL tried to

identify the two distributions, {D1,D2}, with fixed shapes and arbitrary means

that best fit the observed data using the K-S test. When locating the means

of the two distributions, MoDIL employs an expectation-maximation algorithm

with appropriate Bayesian priors to prevent over-fitting. By assuming that the

reads are drawn from a single fragment library with a defined distribution which

follows a Gaussian distribution with some known mean and standard deviation,

MoDIL iterates through possible genotypes and reports which indel pair value

minimizes the goodness of fit test from the K-S test.

MoDIL has shown promise in locating and describing smaller indels than the
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previously described tools. By looking at smaller variations in the paired end

mappings rather than very large divergences, it has been able to locate much

smaller indels within the genome. However, MoDIL is weakened in the long run

by some of the assumptions it makes. These assumptions are that the distribu-

tion of paired end separations is well defined by a Gaussian distribution and that

all the reads come from a single distribution. While the aim of fragment library

creation is to have a tight, well described distribution of paired end separations,

this is not always the case. Also, individuals are often sequenced by multiple

fragment libraries. Because of this, a hole exists in the current literature on

how to address the mass sequencing now being undertaken at sequencing centres

across the world. Lastly, none of these tools – including MoDIL – are specifically

designed for typing tandem repeat regions. None of the aforementioned tools

take into consideration some of the bias that occurs in paired end read mappings

around tandem repeats which unchecked, could lead to many false positives. As

discussed earlier, read mapping to tandem repeats becomes more and more diffi-

cult as the repeat length increases.

Split alignments are only able to call extremely short indels (a few bp in length)

in short repeats, while paired end mapping tools are unable to accurately and

consistently call small indels (5-20 bp). This leaves an important part of genomic

variation un-assayed on a large scale, as shown in table 1.3. More importantly

in the case of split alignments, a read must to not only span the repeat, but also

extend a sufficient distance into the proximal unique sequence on each side to

place it unequivocally at this particular repeat in the genome.

1.6.3 Relevance of an indel caller for short tandem repeats

In determining the necessity of developing an indel caller specifically for tandem

repeats, we looked at whether the previous gapped alignment tools were sufficient

enough to answer this problem. In doing so, we calculated the expected number

of times a region (or repeat tract) would be both extended across by reads of a

given length as well as physically covered (spanned). Reads of length 100 bp, as

well as fragment libraries of size 300 and 500 bp, were chosen as they are most
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Loci lengths for various motif lengths
Motif size Total ≥40 bp ≥60 bp ≥80 bp ≥100 bp

1 447847 9930 (2.217%) 770 (0.172%) 74 (0.017%) 5 (0.001%)
2 209248 55765 (26.650%) 14896 (7.119%) 8453 (4.040%) 5821 (2.782%)
3 86401 8295 (9.601%) 2806 (3.248%) 1892 (2.190%) 1385 (1.603%)
4 267055 46166 (17.287%) 23612 (8.842%) 15859 (5.938%) 11712 (4.386%)
5 168674 17709 (10.499%) 6117 (3.627%) 3150 (1.87%) 1977 (1.172%)
6 218574 10562 (4.832%) 3498 (1.600%) 1767 (0.808%) 1075 (0.492%)
7 291167 5443 (1.869%) 1955 (0.671%) 1314 (0.451%) 1009 (0.347%)
8 207127 9116 (4.401%) 3894 (1.880%) 2468 (1.192%) 1751 (0.845%)
9 151583 6429 (4.241%) 2777 (1.832%) 1816 (1.198%) 1337 (0.882%)
10 39215 8537 (21.770%) 3985 (10.162%) 2388 (6.090%) 1672 (4.264%)
15 28833 12067 (41.851%) 3681 (12.767%) 2069 (7.176%) 1419 (4.921%)
20 20786 20323 (97.773%) 6073 (29.217%) 3165 (15.227%) 2150 (10.344%)

totals 2136510 210342 (9.845%) 74064 (3.467%) 44415 (2.079%) 31313 (1.466%)

Table 1.3: Count of tandem repeat loci of lengths for a given motif repeat length.
The second column shows the number of loci in the human genome of that given
motif length. The third through sixth columns are the number of loci (and
percent of total) of greater than or equal length of that in the header of the
column (lengths 40, 60, 80 and 100 bp). The shorter read lengths of most new
sequencing technologies means that many loci would remain un-assayed by split
alignment methods.

representative of what is currently being sequenced by the Illumina platform.

The coverage (c) and number of reads (z) were the most important factors to

take into consideration as they are essential in determining the expected number

of extending and spanning reads for the aforementioned scenarios.

Base pair coverage and physical coverage are calculated in the same way, the

difference being the length of the segment (b) and number of reads; the single

ends will consist of two times more reads than the paired ends as each pair is

comprised of two single end reads. Coverage, can generally be calculated the

same way as in equation 2.7 (described in detail in chapter 2. Conversely, being

interested in the number of reads, a simple reorganization of equation 2.7 yields

the number of reads produced at a given coverage

z =
c · g
b
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where depending on if you are looking for single or paired end reads you may keep

or omit the coefficient two in the denominator, respectively. Next, we calculate

the number of subregions (sq) of a given length (q) that are within the entire

region we are sequencing. This will aid us in determining how often each of these

subregions are extended/spanned across by our single and paired end reads

sq = g − q + 1

We next calculate how many subregions (tq) are crossed by each of the single

and paired end reads for a given q. This can be calculated identically as the

number of mappable positions, pm, was in equation 2.1 (see chatper 2 for further

discussion). Lastly, we can directly calculate the expected number (fq) of times

a subregion is extended/spanned across by single and pair ended reads

fq =
z · tq
sq

Figure 1.4 illustrates the expected number of extending and spanning reads you

would observe for a given coverage across STRs of varying size.
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Figure 1.4: Graph of expected number of spanning reads (physical coverage) and
reads that extend across various genomic lengths at base pair coverages of 10, 15
and 20x. Reads of length of 100 bp were chosen to illustrate the upper bound
of read lengths currently available. The spanning coverage was then calculated
for fragment libraries of sizes 300 and 500 bp. It is clear from the graph that
although many sites will have a few extending reads, all sites will have multiple
spanning reads which can be used to ascertain whether an indel exists in a given
repeat tract. Most callers-by-alignment need at least 2 to 3 reads to extend across
a region to make an accurate call as there is a chance that a singleton may be
a read sequencing error – especially in repeat tracts. This means that the cutoff
for being able to make calls using crossing reads is lower than the read length.

1.7 Ascertaining tandem repeat allele frequen-

cies in large populations

High throughput sequencing technologies have made population scale sequencing

studies of genetic variation a reality. The 1000 Genomes Project has been one
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of the most recent large scale population sequencing projects to come out of the

next generation sequencing era. It has aimed to provide a deep characterization

of human genome sequence variation as a foundation for understanding the re-

lationship between genotype and phenotype. As low frequency variants (those

defined as having a minor allele frequency between 0.5 and 5%) vastly outnum-

ber common variants, and are also believed to contribute significantly to disease

susceptibility, it was the goal of the 1000 Genomes Project to systematically lo-

cate these variants across the global population to facilitate further research and

our understanding of how genetic diversity contributes to phenotypic expression.

Overall, the project aims to characterize over 95% of variants that are in genomic

regions accessible to current high throughput sequencing technologies that have

an allele frequency of at least 1%.

The 1000 Genomes Project’s design is to sequence populations in each of five

major continental groups (ancestry in Europe, East Asia, South Asia, Africa and

the Americas) to an average depth of 4x. In the recent low-coverage sequencing

pilot study, 179 individuals were sequenced to roughly 2-6x using a mix of plat-

forms, with about 80% of reads coming from the Illumina sequencers. In total

60, 59 and 60 individuals were sequenced from the CEU, YRI and CHB+JPT

populations with a collective total number of mapped bases at 1,881 Gb (3.56x

coverage). The current Phase 1 build of the 1000 Genomes Project has over 1000

individuals sequenced from 14 populations (see figure 1.5). From the pilot se-

quencing, researchers were able to identify 14.4 millions SNPs, 1.3 million short

indels and over 20,000 larger structural variants. The FDR for this set was ex-

perimentally validated to be kept below 5% for SNPs and short indels, and less

than 10% for structural variants. This pilot study has shown the power, and in

turn efficacy, of pooling individuals together in similar populations to demarcate

variation. Understanding genome variation is well within scientists’ grasp and it

is only a matter of time before all variation to a very low frequency will be found.

However, the one caveat to many of these large sequencing projects is the amount

of inaccessible regions that arise from the low coverage and short read lengths.

Of the reference genome, 85% was readily accessible in the 1000 Genomes Pi-

lot project as well as 93% of the coding sequences. Of the 15% that remains
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inaccessible, 97% has been annotated as repeats or segmental duplications. Re-

peats remain an area of low penetrance for calling both SNPs and indels. The

Figure 1.5: Map of populations in 1000 Genomes Project Phase 1 build.

sheer number of individuals sequenced in many of these studies limit the effective

coverage by which each individual can be sequenced to. This in turn can make

calling certain variants a difficult task. Past population sequencing projects using

capillary technology (Bhangale et al. [2005]; Mills et al. [2006]) have elucidated

some variation on a population scale, but the inherent cost of sequencing large

parts of the genome using the Sanger method has proved prohibitively expensive

for a full genome assay of indels.

Alongside the 1000 Genomes Project, methods for demarcating variation in pooled

populations has been a large point of research over the past few years. Some

models have been developed which aim at finding the actual genotype of each

individual within a population by using the background population sequencing

as a context from which an individual’s reads are compared (Bansal and Libiger

[2011]). Essentially, they propose that the evidence supporting a variant allele

at a position in an individual will be significant when compared to the popula-

tion background in the absence of that variant. A likelihood ratio test is used

to compare the results of an individual’s sequencing to that of the population
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where a cutoff is put in place so that any individual’s loci that are above this

cutoff are assigned the putative genotype. In total, 408 indels were identified

across seven populations in the 1000 Genomes exon sequencing data. As these

regions were sequenced to a high depth by both 454 and Illumina sequencing, the

promise of this method locating many indels across the entire genome is quite low.

Another suggested approach is using the pooled information to learn the shared

variation amongst a population rather than solely use the population as a back-

ground parameter against which to compare an individual’s data. This comes

from the knowledge that each read corresponds to a specific allele length in an

individual that is also part of the overall allele frequency in the population. These

reads can therefore be leveraged with one another to accurately detect variant

frequencies within a population. This has allowed population geneticists to iden-

tify both common and rare DNA sequence variants within a population (Koboldt

et al. [2009]). These methods have previously been developed for SNPs, but no

such methods have been developed to specifically look at highly polymorphic

tandem repeat loci.

1.8 Proposal

In chapter 2 of this thesis, I present a novel method that uses the additional

read mapping information to analyse Illumina sequencing data to probabilisti-

cally model the length of the two copies of a tandem repeat locus in a sequenced

individual. This method will allow me to genotype any deep sequenced individual

at any short tandem repeat locus whose repeat length is below the fragment li-

brary length. This method is then applied in chapter 3 to nine deeply sequenced

individuals. The resulting genotypes of these individuals at each locus will be

combined and used in understanding what increases the probability of observing

a variant at a short tandem repeat locus. In chapter 4, I reformulate my geno-

type calling method for low coverage individuals who are sequenced as part of

large resequencing projects – such at the 1000 Genomes Project. This population

variation method will use the combined information from sequenced reads in all
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individuals in a population. This population based approach intends to under-

stand the underlying distribution of variants at a locus within a population. This

model can be used to explore what sites are actively evolving and what sites’

allele distribution is not best explained by the reference.
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