
Chapter 3

Factors influencing polymorphism

in short tandem repeats

Collaboration note This chapter contains work performed in collaboration with

Dr. Avril Coghlan and Dag Lyberg. Avril assisted in curating a list of triplet re-

peat positions in the human genome which contained the locus’s repeat motif and

motif family. Dag assisted in curating a list of transcript sites from ENCODE.

The hypermutability of STRs makes them of great interest to geneticists. Many

smaller surveys have been conducted to ascertain the mutation rate of short tan-

dem repeats (Lai and Sun [2003], Whittaker et al. [2003], Brinkmann et al. [1998],

Ananda et al. [2011]). These studies have focused on a small set of specific loci

in the human genome (Brinkmann et al. [1998]; Weber and Wong [1993]) due to

the complexities of typing short tandem repeats (as discussed in chapter 2).

Past research has sought to understand their evolution over time (Calafell et al.

[1998]) as well as use STRs as markers for forensic analysis (Kasai et al. [1990];

Urquhart et al. [1994]; Lygo et al. [1994]; Ruitberg et al. [2001]). As of the writing

of this work, there has been no genome wide assay of short tandem repeats that

we are aware of. A genome wide assay of STRs would have the power to elucidate

what factors in STRs increase the chance of observing a variant at a locus. Some

of the proposed factors include the composition of the repeat motif, the purity

of the repeat in the reference genome, the length of the repeat in the reference
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genome, the GC content of the repeat and proximal sequence and whether the

STR resides within a transcript. There has been past research that looked into

understanding how some of these factors affect mutation rate (Xu et al. [2005]),

but nothing on a large, genome wide scale. This is due mostly in part to the fact

that past sequencing of STRs is both costly and slow (Sprecher et al. [1996]),

which has precluded a large, genome wide assay. However, due to the advent of

next generation sequencing technology, we are now able to explore these loci on

a massive scale.

Building upon our method of genotyping STRs using spanning paired end reads

(see chapter 2), we plan to understand what factors in a STR increase or decrease

the chance of observing a variant at that locus.

3.1 Sources of sequence

To increase the total number of variants found, and therefore the power of our

analysis, we ran STRYPE on three trio data sets which met the requirements of

being sequenced to a high coverage with Illumina paired end reads. A trio data

set derives from a nuclear family composed of each parent and a single child.

Two of the trios were from the 1000 Genomes Pilot Project (Consortium [2010])

which consisted of families from the CEU and YRI population, and the third was

sequenced by Illumina – also from YRI population HapMap samples.

3.1.1 1000 Genomes pilot trios

The sequence data for both 1000 Genomes Project families is publicly avail-

able and can be downloaded from ftp://ftp.1000genomes.ebi.ac.uk/ . These were

mapped using the BWA alignment tool as part of the 1000 Genomes pilot project.

3.1.1.1 Sequencing statistics

A summary of the libraries’ statistics from the 1000 Genomes trio pilot set is

shown in table 3.1.
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Library statistics for 1000 Genomes trio pilot data

Population Individual Library Bases Coverage

CEU

NA12891

Solexa-6407 7817400156 2.6

Solexa-3625 43934509439 14.6

g1k-sc-NA12891-CEU-2 21897329228 7.3

g1k-sc-NA12891-CEU-1 15129837000 5.0

totals 88779075823 29.6

NA12878

g1k-sc-NA12878-WG-1 19327027164 6.4

Solexa-3630 14717717437 4.9

g1k-sc-NA12878-CEU-1 12546297144 4.2

NA12878.1 10463534460 3.5

g1k-sc-NA12878-CEU-2 6012622836 2.0

Solexa-5460 4443002700 1.5

totals 67510201741 22.5

NA12892

g1k-sc-NA12892-CEU-1 15254665056 5.1

g1k-sc-NA12892-CEU-2 21865659579 7.3

Solexa-3594 31658274363 10.6

Solexa-5455 11074558755 3.7

totals 79853157753 26.6

YRI

NA19238

2675169269 17346838500 5.8

QRAAADHAAPE 702666135 0.2

2485373691 34983913124 11.7

QRAAADCAAPE 2352597354 0.8

totals 55386015113 18.5

NA19240

2675080346 26442703184 8.8

QRAACDJAAPE 195022575 0.1

QRAACDEAAPE 8315238204 2.8

2485441832 50960025784 17.0

CT1898 22975401315 7.7

totals 108888391062 36.3
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Population Individual Library Bases Coverage

YRI NA19239

QRAABDDAAPE 10045560105 3.3

QRAABDHAAPE 459880560 0.2

2485443314 37182509292 12.4

2675080202 30382984800 10.1

totals 78070934757 26.0

Table 3.1: Mapped bases and corresponding coverage for the two trios in 1000
Genomes pilot project. The first column indicates the population from which
the individual (column 2) was sequenced from. The third column indicates the
sequenced library and the fourth and fifth column indicate the number of bases
sequenced and effective base coverage, respectively, for that library.

3.1.2 Illumina Trio

The sequence data for the Illumina trio is publicly available and can be down-

loaded from http://www.ncbi.nlm.nih.gov/sra with identifiers SRA009225 (NA18506),

SRA000271 (NA18507) and SRA009347 (NA18508). Each of these individuals’

libraries were mapped using the BWA alignment tool as part of the Illumina se-

quencing study. Table 3.2 lists the the libraries from which each individual was

sequenced and its corresponding coverage.

Library statistics for Illumina trio data
Individual Library Bases Coverage
NA18506 CT1696 126419574701 42.140
NA18507 CT1194 125394885034 41.798
NA18508 CT1704 121122865300 40.374

Table 3.2: Mapped bases and corresponding coverage for the Illumina trio data
set.

3.2 MPERS distributions

Figure 3.1 shows the distributions of libraries coming from the nine individuals

in our data set.
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Figure 3.1: Distributions of each library in the nine individuals from the three
trios data set. Made up of thirty libraries, the range and shape of each library is
unique. The libraries which yield more information for our analysis are those that
are tightly distributed around the fragment size library (the peak of the curve,
such as those around 80, 150 and 250 bp). The less sharp peaks – as well as those
with heavy tails – yield less information from which we can use to genotype STR
loci.

Aside from the mean and standard deviation of each library (which sometimes

can be misleading), we looked at two statistics that might give us a better sense

of how well behaved each libraries’ distribution of MPERS really are; skewness
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and kurtosis.

Knowing whether a library is symmetric or not is important if we are to un-

derstand why one form of indels is being called over the other (as discussed in

chapter 2). When a library’s distribution is heavy tailed, the sensitivity to call in-

dels that correspond to MPERS shifts in the direction of the heavy tail decreases.

Also, a more gradual decline in the density of MPERS as you move away from the

mean adds noise to our system when calling indels in that direction. By knowing

the skewness of our distributions, we have a better idea of any underlying biases

in calling insertions or deletions.

The skewness, γ1, of each library (which is the third standardized moment) is

calculated as

γ1 = E

[(
X − µ
σ

)3
]

=
µ3

σ3

where µ3 is third moment about the mean and σ is the standard deviation. From

this formula, we were able to calculate the sample skewness of each library from

n values (where n is the number MPERS in a library) as

g1 =
m3

m
3/2
2

=
1
n
·
∑n

i=1(xi − x̄)3

( 1
n
·
∑n

i=1(xi − x̄)2)3/2
(3.1)

where x̄ is the sample mean, m3 is the sample third central moment, and m2

is the second central moment (sample variance). To elucidate the correlation of

moments, the denominator in equation 3.1 was simplified so that skewness was

calculated in terms of the ratio of the third cumulant m3 and the second cumu-

lant, m2.

As a final statistic, we calculated the kurtosis of each library to get a sense

of how peaked our data was around the mean. A higher value for kurtosis meant

that more of the variance of the data is a result of extreme outliers as opposed

to moderately sized deviations. Explicitly, kurtosis is the standardized fourth
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moment and is defined as

β2 =
µ4

σ4
,

where µ4 is the fourth moment about the mean and σ is the standard deviation.

This gives rise to the more commonly referred to expression that is defined as the

fourth cumulant divided by the square of the second (variance squared) minus 3.

γ2 =
µ4

σ4
− 3

The minus 3 is a correction to make the kurtosis of the normal distribution equal

zero. Lastly, the sample kurtosis for n values was calculated as

g2 =
m4

m2
2

− 3 =
1
n

∑n
i=1(xi − x̄)4(

1
n

∑n
i=1(xi − x̄)2

)2 − 3

Table 3.3 outlines the values of these four statistics; mean, standard deviation,

skewness and kurtosis for each of the libraries sequenced from individuals in the

three trios.
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Library statistics for three trio populations
Population Individual Library Mean Std Skewness Kurtosis

CEU NA12878 g1k-sc-NA12878-CEU-1 140.177 10.392 0.155 -0.034
CEU NA12878 g1k-sc-NA12878-CEU-2 189.372 14.805 -1.110 2.906
CEU NA12878 g1k-sc-NA12878-WG-1 301.076 144.622 0.296 -1.326
CEU NA12878 NA12878.1 233.048 9.229 -0.190 0.072
CEU NA12878 Solexa-3630 84.112 7.788 0.103 1.331
CEU NA12878 Solexa-5460 210.661 14.574 -1.467 6.764
CEU NA12891 g1k-sc-NA12891-CEU-1 133.592 15.348 -0.674 1.199
CEU NA12891 g1k-sc-NA12891-CEU-2 157.120 22.587 -1.566 3.436
CEU NA12891 Solexa-3625 79.055 7.747 0.329 2.272
CEU NA12891 Solexa-6407 206.715 23.307 -2.054 6.943
CEU NA12892 g1k-sc-NA12892-CEU-1 155.015 15.309 -1.099 2.030
CEU NA12892 g1k-sc-NA12892-CEU-2 163.254 18.798 -1.279 2.774
CEU NA12892 Solexa-3594 78.128 10.278 1.034 3.371
CEU NA12892 Solexa-5455 204.256 17.115 -1.539 5.571
YRI NA19238 2485373691 242.773 32.157 0.219 -0.822
YRI NA19238 2675169269 276.749 32.648 -0.454 0.234
YRI NA19238 QRAAADCAAPE 209.670 12.329 0.317 0.338
YRI NA19238 QRAAADHAAPE 439.481 16.263 0.030 -0.049
YRI NA19239 2485443314 231.121 30.080 -0.059 -0.563
YRI NA19239 2675080202 294.645 27.179 0.255 0.091
YRI NA19239 QRAABDDAAPE 238.279 14.850 -0.266 0.394
YRI NA19239 QRAABDHAAPE 295.971 125.481 0.069 -1.388
YRI NA19240 2485441832 263.918 40.037 0.183 -0.755
YRI NA19240 2675080346 273.335 19.263 0.185 0.167
YRI NA19240 CT1898 230.439 16.299 -0.065 -0.306
YRI NA19240 QRAACDEAAPE 309.156 42.723 -2.214 5.809
YRI NA19240 QRAACDJAAPE 527.394 50.323 -1.052 1.437

Illumina NA18506 CT1696 222.426 15.779 -0.426 0.482
Illumina NA18507 CT1194 209.138 13.072 0.046 -0.431
Illumina NA18508 CT1704 202.089 15.247 0.024 -0.450

Table 3.3: Statistics for individuals’ libraries in the three trio data sets. The
first three columns indicate the population, individual and library from which
the statistics are coming from, respectively. And the last four columns represent
the mean, standard deviation, skewness and kurtosis of each library.
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3.3 Detecting indels in short tandem repeats

Using the methods described in chapter 2, we genotyped all triplet repeat loci

for each individual in the three trio sequencing data sets. Each individual was

typed independently; no information from which family the individual was from

was used to force Mendelian segregation at putative variant sites. Altogether,

596,078 sites had ≥ 10 spanning paired ends across the nine individuals, 29,746

had no spanning paired end reads and 101,727 had < 10 spanning paired end

reads. From the sites with ≥ 10 spanning paired end reads, STRYPE called

548,141 loci homozygous reference and 47,937 with a variant. The total number

of genotype configurations was in line – relative to one another – with what we

would expect: 29,904 homozygous indels (the most likely), 14,957 heterozygous

with one reference allele (second most likely) and 3,076 heterozygous with no

reference allele. A summary of the three trio family call sets is presented in table

3.4.
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Variant call statistics for three trio families
Individual Sites called Sites uncalled ≥10 spanning reads Reference
NA18508 77946 2893 71834 64747
NA19238 77196 3643 60034 58892
NA19239 78299 2540 70538 67017
NA18507 76143 4696 69833 61457
NA12891 77471 3368 56709 52339
NA12878 78309 2530 69196 62835
NA18506 77969 2870 71523 61804
NA12892 75631 5208 50707 48151
NA19240 78841 1998 75704 70899

total 697805 29746 596078 548141
Individual Variants Homozygous indels Heterozygous reference Heterozygous
NA18508 7087 5055 1790 242
NA19238 1142 954 147 41
NA19239 3521 2586 798 137
NA18507 8376 5617 2450 309
NA12891 4370 1798 2008 564
NA12878 6361 3410 2427 524
NA18506 9719 5786 3073 860
NA12892 2556 1267 1088 201
NA19240 4805 3431 1176 198

total 47937 29904 14957 3076

Table 3.4: Variant calls made in the three trio families.

3.4 Short tandem repeat criteria

Measuring the prevalence of STR variation as a property of its sequence compo-

sition and context has been a goal of this research since the initial modeling of

variants in a single sample (see chatper 2). The probability of observing a variant

at a locus depends on multiple factors. In the following sections, a list of factors

which we believe might influence an STR’s chance of exhibiting a variant will be

discussed and assessed using the calls made from our three trio families data.
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3.4.1 STR metrics

To determine the effect a certain factor has on the prevalence of variation across

varying STR loci, it is first important to define what exactly we are measuring

in a way that yields a clear mechanism for inference. One way of doing this is

by setting forth a metric for each factor. A metric is a simple way of ordering a

set such that the distance between each value in a set can be directly calculated.

The metric itself will take the form of a set of ordered numbers where a higher

order number means either an increase or decrease in a factor we are trying to

measure. Each factor we wish to measure has its own metric and in turn, its own

strengths and weaknesses. A metric will never encapsulate all the information of

a system, but does help us order a set of data which we can later analyse to see

what effect (if any) a certain factor has on a system. In the sections below, we

describe the factors (listed in table 3.5) we believe will have the greatest effect

on observing a structural variation at a locus and how each factors’s metric was

calculated.

Description of factor tags
Factor tag Description

family trio family from which the individuals come from
motif triplet repeat motif family from which the STR is a part of
purls longest stretch purity metric

purnew purity percent match
GCref percent of GC content in a STR locus
GC100 percent of GC content in a STR locus and up and down stream 100 bp
GConly percent of GC content up and downstream 100 bs of a STR locus

lenpurnew length based metric for purity percent match
trans boolean value whether a STR is located within a transcript
reflen length of a STR in the reference

spanreads number of observed spanning read pairs across a STR

Table 3.5: Table of the factor tags used in our modeling and their respective
description.
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3.4.2 Tandem repeat length in reference (reflen)

A STR’s repeat length in the reference was calculated directly from the start

and stop positions of the repeat. As described in chapter 2, all STR loci in the

human genome were located using Tandem Repeat Finder (TRF) that met a set

of criteria that determined whether a stretch of sequence in the reference should

be considered a tandem repeat or not. The length (and in turn metric) was

calculated as

l = z − y + 1

where y and z represent the start and end position of the STR in the reference

sequence, respectively. This metric is very basic and tells us nothing about the

internal composition of the repeat other than its length. The background mu-

tation rate has been estimated to be on the order of 10−8 per base for single

nucleotide polymorphisms (Drake et al. [1998]) and approximately a magnitude

less for length mutations, 10−9 (Nachman and Crowell [2000]). Using just this

information, it stands to reason that as the length of the STR locus increases, so

shall the probability of observing a structural variation.

3.4.3 Tandem repeat motif family (motif)

Repeat motifs are self-repeating stretches of DNA sequence. These repeats can

take the form of any repeating permutation of the four bases {A,C,G,T}. Within

these permutations, repeats of the same motif length can be grouped together by

their sequence similarities. These similar sequence patterns are grouped together

in ‘families’.

Each motif length will have some number of families; the simplest example are

the motif families for the motifs of length one. Within each family, there is also

some number of repeat permutations. Each of the permutations in a family must

represent correctly ordered sequence matches of the repeat sequence on the for-

ward strand, as well as its reverse complement sequence on the reverse strand.
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For example, the motif family AAC would have three permutations on the for-

ward strand (AAC, CAA and ACA) and three permutations on the reverse strand

(TTG, GTT and TGT).

In total, there are 10 unique repeat families for repeat motifs of length three

bp – which have been summarized in table 3.6.

List of families for motifs of length three
Motif family Forward strand Reverse strand

AAC AAC, CAA, ACA TTG, GTT, TGT
AAG AAG, GAA, AGA TTC, CTT, TCT
AAT AAT, TAA, ATA TTA, ATT, TAT
ACC ACC, CAC, CCA TGG, GTG, GGT
ACG ACG, GAC, CGA TGC, CTG, GCT
ACT ACT, TAC, CTA TGA, ATG, GAT
ATC ATC, CAT, TCA TAG, GTA, AGT
ATG ATG, GAT, TGA TAC, CTA, ACT
ATT ATT, TAT, TTA TAA, ATA, AAT
CCG CCG, GCC, CGC GGC, CGG, GCG

Table 3.6: Table of each motif family belonging to the set of motifs whose repeat
length is three.

3.4.4 Purity of tandem repeat in reference

The purity of a tandem repeat is defined as the degree of unbroken repeat units

of a motif in a STR locus. This score is effected by the number of foreign base

pairs (those that do not match the motif) and inserted or deleted sequence that

exist within a repeat locus. The larger amount of foreign bases and indels in a

locus decreases the level of purity of that repeat. Purity is an important metric

to scrutinize as the purity of sequence in a tandem repeat has been shown to

increase the variability at a repeat locus (Legendre et al. [2007]). Many metrics

have been proposed in regards to repeat purity. In the following section, we shall

discuss three metrics we used to categorize the purity of each tandem repeat.
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3.4.4.1 Longest pure stretch (purls)

The longest pure stretch of a STR is the length of the longest subsequence within

a repeat locus that goes unbroken by a foreign base either through substitution or

addition/removal of a base(s). For example, in the sequence AACAACAACGAA-

CAA, the subsequence AACAACAAC (which is comprised of three full repeat

units) is the longest stretch with length 9 bp. Our longest stretch metric does

allow for the first and last repeat to be truncated. The longest stretch for repeat

sequence TTGTTGTAGTTG would be TTGTTGT, where the two bases TG are

removed from the last repeat.

3.4.4.2 Percent match (purnew)

Aside from the longest pure stretch which only measures a subsequence in a STR

locus, percent match measures the overall adherence to the motif unit across the

locus. This metric gives us a better idea of the overall purity of a repeat locus.

For our analysis, we devised two related metrics to measure the percent match

a tandem repeat had to its given repeat motif. The first, purnew, is the over-

all adherence of a STRs sequence to its repeat motif. This algorithm looks at

each subsequence of length of the motif and determines if it matches the overall

consensus motif pattern. The algorithm calculates the proportion of start posi-

tions in a tandem repeat locus whose subsequent sequence matches the family of

motifs a repeat locus is attributed to. It should be noted, however, that it only

gives a positive score for subsequences that match the motif on the same strand.

For instance, the family of motifs AAC would have AAC, ACA and CAA on the

forward strand and TTG, GTT and TGT on the reverse. If the motifs of the

reverse strand appear on the forward strand, they are considered foreign bases

and not scored as fitting the motif pattern. The second metric, lenpurnew, is

simply the value of purnew multiplied by the length of the repeat locus in the

reference. This in essence scales the percent match value to the repeat length.

We believed it was important to have this additional metric associated with the

purnew metric because ignoring the length of the STR gives rise to a bias in
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shorter STRs having a higher purity metric score than longer STRs. This bias is

described later in section 3.5.1.1.

3.4.4.2.1 Percent match algorithm

1. Set score = 0

2. Define all possible permutations which match a family of motifs that reside

on the same strand

3. Starting at x = 1

4. If subsequence (Sx, ..., Sx+|M |−1) matches a possible permutation defined in

2, score+ +

5. x+ +

If x ≤ |S| − |m|+ 1

goto 4

else

last

6. Calculate purity as score
|S|−|m|+1

The value of the purnew metric was calculated as described above, yielding a

value residing between [0, 1]. A higher value is indicative of a larger adherence to

the motif family and less foreign bases, indels within the locus.

3.4.5 GC content in and around tandem repeat (GCref,

GC100 and GConly)

The amount of GC content in and around a STR can have an impact on both

the detection and prevalence of observing an indel. GC rich regions have been

shown to have an increased prevalence of sequencing errors (Dohm et al. [2008];

Meacham et al. [2011]). These errors would cause the mapping of paired end reads

to decrease, thus decreasing the effective coverage of a locus. For our analysis,

we considered three GC composition metrics
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1. GCref: the fraction of G or C bases in the reference STR sequence

2. GC100: the fraction of G or C bases in the reference STR sequence plus

100 bp up and down stream

3. GConly: the fraction of G or C bases in the 100 bp flanking regions only

3.4.6 Whether a tandem repeat is in a transcript (trans)

The last metric is whether or not the STR resides within a known transcript (both

introns and exons). The human genome’s transcript start and stop positions were

downloaded from the ENCODE project website at

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/. In total there are

70,663 transcripts on autosomes in the ENCODE data base. Of these, many were

duplicated (exact start and stop positions) which were removed leaving a total

of 51,492 transcripts. Further to this, there were many overlapping transcripts.

When determining if a STR resided within a transcript, it only needed to be

located in one of the overlapping transcripts. We did not distinguish between

multiple transcripts for a single STR; a count of one was given no matter the

number of transcripts that the STR was situated in. In total, out of the 80,805

triplet repeat sites in the human autosomes, 42,622 resided within a transcript

and 38,183 laid outside.

3.5 Results

We approached our analysis of STR factors in two ways: the influence each factor

had on observing a non-reference allele, and the effect each factor had on the over-

all magnitude of the observed indel for both insertions and deletions. To begin,

we sought to determine the effects of observing a non-reference allele by using a

logistic regression which determined the influence each factor had on observing a

non-reference allele at a given locus. In more detail, a logistic regression is used

in predicting the probability of the occurrence of an event by fitting the data

to a logit function of a logistic curve. For our purposes, we were interested in

the logistic regression as it is a generalized linear model (GLM) used in binomial
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regressions (discussed below). Like other regressions, the logistic linear regres-

sion can make use of several predictor variables (our factors) that may be either

numerical (purity, reference length, etc.) or categorical (motif family, trio family,

etc.).

To begin, the logistic function is defined as

f(z) =
ez

ez + 1
(3.2)

where z is some linear relationship between the explanatory variables

z = β0 + β1x1 + · · ·+ βpxp

where β0 is the intercept and β1, ..., βp are the regression coefficients of the ex-

planatory variables x1, ..., xp, respectively. The variable z in essence is a measure

of the total contribution of all the independent variables used in the model. Next,

as mentioned previously, this logistic regression is a GLM for the binomial regres-

sion. A binomial regression can be described as a series of Bernoulli trials (a series

of one of two possible disjoint outcomes). The results of this regression are as-

sumed to be binomially distributed which is fitted as a generalised linear model

where the predicted values µ are the probabilities that any single event will result

in a success (indel). The likelihood of these predictions µ are given as

L(D|µ) =
n∏
i=1

Iyi=1(µi) + Iyi=0(1− µi) (3.3)

where D represents the response data, Iyi
is the indicator function which takes

the value one when an event occurs and zero otherwise. The likelihood function is

specified by defining the parameters µi as functions of the explanatory variables

(in our case the factors). There are many methods of generating the values of

µ in systematic ways that allow for interpretation of the model. However, there

is a requirement that the model linking the probabilities µ to the explanatory

variables should be of a form which only produces values in the range 0 to 1

which we have described above in equation 3.2. It is then only a matter of fitting
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the model to the parameter values that maximize the likelihood in equation 3.3.

Next, we looked at the influence each factor has on the magnitude of an in-

del given an indel is observed. Sites which were called reference by our model

were excluded from this analysis. A linear model was used for this analysis as it

determined the value each factor had on the overall value of the response variable

– in this case the size of the indel. A linear model is a statistical model which

models the relation between the observations Yi (indels) and the independent

variables Xij (factors) as

Yi = β0 + β1(Xi1) + · · ·+ βp(Xip) + εi, i = 1, . . . , n

where βi are the regression coefficients and εi is the residual error. The value of

β0 represents the intercept of the linear model while the rest of the regression

coefficients represent the amount of influence (equivalent to slope) a factor has

in describing the overall system you aim to model; a positive coefficient denotes

a positive correlation while a negative coefficient denotes a negative correlation.

Assuming the residual errors are normally distributed, the values of these coeffi-

cients are estimated by least squares analysis by minimizing the sum of squares

function (S), which is defined as

S =
n∑
i=1

(Yi − β0 − β1(Xi1)− · · · − βp(Xip))
2 .

We used the software package R to carry out this analysis (R Development Core

Team [2011]).

3.5.1 Modeling of factors

A logistic regression was used to determine the effect each of the 11 factors had

on observing a non-reference allele in a STR locus. For ease of computation and

modeling, we separated the called genotypes into two alleles and did all the anal-

ysis at the level of alleles. This appeared to be the easiest approach and we did

not feel it changed the overall inference we could make regarding the the outcome
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of our modeling. A summary of the model’s output is produced by R, giving the

value of each of the coefficients for each of the factors as well as a p-value that

indicated the confidence the model had that each of the coefficient values was

non-zero. For almost every coefficient calculated in our analysis, the p-value was

less than 0.001. Because of this, when we discuss specific coefficients below they

will by default have a p-value less than 0.001. In the rare cases where this isn’t

the case, we shall explicitly state which factors’ coefficients are not statistically

significant. This is the same for our linear model which we used to determine

what effect, if any, a factor has on the magnitude of an observed indel.

To begin, we looked at the reference and non-reference calls for a combined model

incorporating all factors listed in table 3.5. However, this produced some surpris-

ing results (see figure 3.2), where for example GC100 had a negative coefficient

and GConly had a positive coefficient, although those are themselves strongly

correlated. Further investigation showed that this correlation was in fact the

source of the problem: there was confounding between correlated factors leading

to indeterminacy in the models. Therefore, we chose to model each factor in

isolation and then compared the scaled coefficients (multiplying the mean value

of the factor by its fit coefficient) to one another to gauge the relative influence

each factor had on observing a non-reference allele, as well as, the influence each

factor had on the size of the observed indel.
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Figure 3.2: Graph of coefficients determined by full logistic regression of factors
giving contradictory results because of confounding between correlated factors.

By sorting the scaled coefficients by the absolute value and plotting them on the

same graph, it was clear which factors had the largest effect (be it positive or

negative). In the end, we ended up with four plots: logistic regression for non-

reference, linear regression for the magnitude of an indel and linear regressions

for the size of both insertions and deletions. The graphs of each of these scenarios

are plotted in figures 3.3, 3.4, 3.5 and 3.6 which illustrate the absolute effect of

each of the factors. On each graph, all the coefficient values are shown aside from

those having a p-value > 0.05 which include motifs ACG and AGC in the logistic

linear model, motifs ACG and ACT in the insertions linear model and trans in

the deletions linear model. Out of all the factors’ coefficients that were graphed,

all had a p-value < 0.001 except for GCref in the insertions linear model that
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had a p-value in between the range of (0.01, 0.05).

Figure 3.3: Bar graph of absolute values of coefficients from a logistic linear model
for a STR being non-reference.
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Figure 3.4: Bar graph of absolute values of coefficients from a linear model for
the magnitude of an indel at variant STR loci.
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Figure 3.5: Bar graph of absolute values of coefficients from linear model for the
magnitude of an insertion at variant STR loci.

Figure 3.6: Bar graph of absolute values of coefficients from linear model for the
magnitude of a deletion at variant STR loci.
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3.5.1.1 Bias in modeling of purity

Upon inspecting the results of our regressions, it was surprising that the pu-

rity measure appears to be negatively correlated to the probability of observing a

variant. Previous studies suggest that a higher purity increases the chance of mu-

tation and polymorphism. Additionally, we found that the length of the longest

pure subsequence in a repeat locus had the strongest correlation with observing a

variant. We believe the cause of this correlation in opposition of what we would

expect is that the the purity metric does not take into consideration the lengths

of the STR in the reference. This would lead towards a bias of smaller repeats

having a higher purity score than larger repeats because the chance of observing

a foreign base or indel in a longer repeat is higher than a shorter repeat. Fur-

ther, the criteria by which we ran our TRF means that shorter tandem repeats

were not allowed to have any non-motif matching bases, otherwise they were not

considered STRs. In order to test this belief, we graphed each locus’s purity as

a function of its length. Each STR locus was grouped into a bin of length 10 bp

ranging from 15 to 205 bp. The values of these bins were then calculated showing

a decrease of average purity as the repeat length increases. By simply multiplying

the purity score by the repeat length in the reference, this bias is corrected.
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Figure 3.7: Boxplot of repeat purity across varying repeat lengths. This boxplot
shows the values for our purity metric described in 3.4.4.2.1.

3.6 Discussion

Building upon our previous work in chapter 2, we have explored the effect a

number of factors have on the probability of observing a variant in a STR locus.

Using our previously described genotyping method for STRs, we ran a full genome

analysis across nine deeply sequenced individuals – three trio data sets from

two distinct populations (CEU, YRI) from the 1000 Genomes Pilot study and
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Illumina’s sequenced YRI trio. We made calls at 101,727 sites (sites having ≥ 10

spanning read pairs) across these nine individuals; 47,937 sites within this call

set contained an observed variant in at least one of the alleles. Our method, as

described in chapter 2, yields a very small number of false positives and when

a variant is called, the variant’s true length is almost always within a couple

of repeat motifs’ length of the actual repeat length in the resequenced sample.

Because of this, we expect that any correlation we make is not coming from

numerous spurious calls. The large number of calls across multiple loci ensures

adequate power for our model, even if individual call sets are incomplete.

3.6.1 Sample family correlations

We decided to model some of the factors which might not be as interesting biolog-

ically, but that give us insight as to whether the actual correlations are correct,

an ad hoc control so to speak. For instance, the family that a sample belongs

to (CEU or YRI in 1000 Genomes Pilot Study, Illumina’s trio) can increase or

decrease the rate of observance of indels, because observing an indel is directly

correlated with the sequence depth (see section 3.1.1.1) and overall shape (mean,

standard deviation, skewness and kurtosis; see table 3.3) of the distribution. It is

therefore not surprising that the Illumina trio has the most calls. This explains

why the factors familyCEU and familyYRI have a strong negative influence in

figure 3.3 (due to detection power) but much less and even an opposite effect

in figure 3.4 which models the variant length conditional on the detection of a

variant. This suggests that STRYPE’s length estimates are not subject to read

bias based on sequencing depth conditional on making a call.

3.6.2 GC composition correlations

Ignoring factors believed to be unimportant biologically or biased (family and

length independent purity metrics), what was left were the true set of factors

that play some sort of biological role in observing an indel at a given STR locus.

Looking at figure 3.3, one of the largest influences on observing a variant is the

amount of GC content proximal to the STR locus; the higher this GC content, the

less likely you are to observe a variant. It is perhaps surprising that it is the GC
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composition of the flanking regions rather than the repeat sequence itself that has

one of the largest effects overall, as well as the largest amongst the GC content

metrics. One technical explanation as to why fewer variants are observed in

regions with high proximal GC content is the higher portion of sequencing errors

in this region could lower the number of spanning read pairs, in turn lowing the

power of our model to detect variants. In order to explore the external factor of

mapping bias in the the genome, we compared directly the proximal GC content

(GConly) to the GC content within the STR (GCref) based on the number of

spanning reads observed at a given locus (see figure 3.8). The difference in the

two metrics across the number of spanning read pairs showed that there is an

indication that a higher GC content in the proximal sequence is associated with

fewer spanning read pairs. For all but two bin sizes (190 and 200, which are the

two smallest bins), the amount of flanking GC composition is anywhere from 10%

to 35% higher than the STR composition, with the lower spanning read counts

showing the strongest bias – which are also the largest bins.
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Figure 3.8: Boxplot of differences in GConly and GCref at a locus binned by the
number of observed spanning read pairs at a locus. Each bin represents all sites
in the genome which have a given number of spanning read pairs independent of
the length.

3.6.3 Motif correlations

All but two motifs, CCG and AAT, were positively correlated with observing a

variant (compared to the AAC family). While the families AAG, CCG, AGG,

ACC, ATC and ACT all have comparable influence compared to one another,

AAT has approximately five times more influence than the next strongest fam-
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ily. As the family AAT is the only family to not contain any GC content, this

correlation is in agreement with the factor GCref which is strongly correlated in

the opposite direction. Most astonishing is while GC composition in the refer-

ence is positively correlated with observing an indel, the motif family CCG is

negatively correlated. It might be possible that CCG repeats form some sort of

secondary structure such as G-quadruplexes which are relatively prevalent in the

genome and may decrease the chance of those sites undergoing mutation (Hazel

et al. [2004], Huppert and Balasubramanian [2005], Bugaut and Balasubramanian

[2008]). This is something to be explored further.

3.6.4 Purity correlations

The purity related correlation that had the largest effect out of all the factors

was the length of the longest pure repeat in a locus. This correlation showed that

the chance of observing a variant at a locus is less contingent upon the repeat’s

overall adherence to the motif than it is to the actual length of the longest pure

stretch. Foreign bases and small indels which disrupt the motif frame may lower

the rate of slippage, as well as other mechanisms that cause mutation at STRs

discussed in chapter 1.

3.6.5 Further correlations: number of spanning read pairs,

repeat length in reference and located within a tran-

script

The number of spanning read pairs, unsurprisingly, had one of the highest influ-

ences on whether a variant was observed at a repeat locus. Because of the design

of our model, its clear that the more spanning read pairs at a locus, the more

power there is to call a variant.

The length of a STR in the reference is also strongly correlated with observ-

ing an indel. This finding is in stride with the general understanding that longer

stretches of DNA have a larger possibility of containing a variant. This correlation

is directly in unison with the strongest indicator (purls) in that longer repeats in
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the reference are also more likely to have longer pure stretches.

Lastly, there is a negative correlation of observing variants within transcripts.

Our analysis in chapter 2 of indels called from capillary alignment showed that

most triplet repeat variants were a multiple of three in length, which if occurring

in an exon, would not disrupt the reading frame. However, the addition/removal

of a multiple of three bases would in turn add or delete the number of multiples

of three amino acids in a protein. Though not as detrimental as a reading frame

shift, indels within a transcript (especially in an exon) are likely to be under pu-

rifying selection. Another possible contribution to the reduction of indels within

transcripts is transcription-associated repair (Hanawalt [1994], Hoeijmakers et al.

[2001]).

3.6.6 Independent analysis and comparison of each fac-

tors’ effect on the magnitude of a variant at non-

reference loci

A natural progression from the previous analysis is to determine the effect of

factors on indel size at STR loci (see figures 3.4, 3.5 and 3.6).

3.6.6.1 All variants

Many of the correlations seen in the logistic linear model are the same as in

the linear model for indel magnitudes. If a factor is positively correlated with

observing a variant, it is also positively correlated with the size of the variant.

However, the proximal GC content (GConly, GC100) is now strongly correlated

with observing larger indels while it is negatively correlated with observing a non-

reference locus. This can be explained by the lower amount of spanning reads

when proximal GC content is high (see 3.6.2). Smaller size variants would need

more spanning reads to be called while larger variants need less. Therefore, the

larger variants would be more readily called in regions of high GC content.

The entirety of motif families are also positively correlated. AAT has the largest

effect for observing a larger indel but from the previous analysis, is negatively
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correlated with observing a variant (the largest coefficient of the motif families).

This is quite interesting. Motif CCG also exhibits this interesting reversal.

As expected from our modeling of non-reference variants, the length of the longest

pure stretch and reference positively effects the magnitude of the variant when

one is observed. Larger indels are more likely in longer STRs because there is

more sequence which can undergo replication slippage compared to shorter STRs.

The number of spanning reads also exhibits a reversal in influence from observing

a variant to the size of the variant. While observing a variant is strongly influ-

enced by the number of spanning reads, the number of spanning reads actually

decreased the magnitude. As longer variants reside in longer repeats, these loci

inherently have less spanning reads. Additionally, as discussed earlier, larger vari-

ants need less spanning reads to be called as the signal is stronger than smaller

variants. This would explain why the number of spanning reads is negatively

correlated with observing a variant.

Lastly, residing within a transcript is negatively associated with observing larger

indels. The larger the variant within a transcript, the more disruptive it will be,

especially if it resides in the exon which will affect the production of the amino

acid chain during translation.

3.6.6.2 Independent analysis of insertions and deletions compared to

the reference

When comparing the magnitude of indel calls in insertions versus deletions, al-

most all correlational directions match one another with the exception of the

motif family AGC which is negatively correlated in inserts and positively corre-

lated in deletions. Its effect, however, is relatively small in both directions and

is most likely statistically insignificant. The correlations that stand out the most

are in the same relative order of significance. While the strongest indicators of

larger variants are the purity metrics for insertions, it is the proximal GC content

for deletions. All other factors seem to be in the same order and relative influ-

ence to one another. A simple explanation is not readily available and warrants
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further analysis. It should also be noted that the reference genome does not

represent the ancestral state. Many of the tandem repeats were estimated using

BACs and so at variable loci the allele present in the BAC was chosen, which

typically will represent a selection at random according to the population allele

frequencies. This makes inference difficult when comparing whether insertions or

deletions are more likely as we can not say for sure that the alleles in the reference

represent the ancestral state.

3.7 Conclusion

We have seen evidence for a variety of effects on STR mutation properties that are

broadly in line with previous expectations (Kelkar et al. [2008]). Aside from the

independent correlation values, the knowledge of which factors have the strongest

effect could assist in our future modeling of STR indels. We could use this

information to describe a more accurate prior than the one we developed in

chapter 2.
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