
Chapter 4

Population based analysis of

short tandem repeats

Collaboration note This chapter contains work performed in collaboration with

David Knowles. David assisted in developing the statistical machinery used in

estimating the allele vector at each STR locus.

As sequence depth plays the most important part in our ability to assay vari-

ation in STRs using short paired end reads, STYRPE is restricted to genotyping

only individuals who have been sequenced to a relatively high physical coverage

depth. However, a major mode of current genome wide sequencing is to sequence

many individuals from a population at a lower depth – as in the 1000 Genomes

Project (Consortium [2010]) and the UK10K (www.uk10k.org). For example, the

target 4x depth that the 1000 Genomes Project is using for genome wide sequenc-

ing is well below what is necessary for our model to make informative calls on a

single individual’s genotype at a STR.

However, within the spectrum of population genetics, each locus in a diploid

individual is comprised of two alleles which are more than likely shared across

numerous individuals in that population. If we could use the combined infor-

mation from multiple individuals, we would have enough sequence information

to make predictions of the overall frequency of alleles at a locus, as well as how

diverse a locus is. This would complement our analysis of factors which affect
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the chance of observing an indel at a given STR, as well as give us a list of can-

didate sites which might be multiallelic (characterized by many alleles) or whose

underlying allele frequency in a population is not best described by the reference

allele length. What this essentially means is: does some number of individuals in

a population have the reference allele, or is/are there an alternate set of allele(s)

at that locus comprising a certain density not coinciding with the reference allele

length.

4.1 Low coverage individuals in the 1000 Genomes

Project

As briefly described in chapter 1, the 1000 Genomes Project is a massive, multi-

national sequencing project which endeavors to sequence 2,500 individuals across

twenty-seven populations. In the intermediate data sets that we consider here,

corresponding to an early phase I freeze from November 2010, 929 individuals

were sequenced with the Illumina paired end read platform that had at least

one library that passed quality control requirements. In all, 1,122 libraries have

been sequenced which pass the quality control criteria (about 1.2 libraries per

individual).

4.1.1 Sources of sequence

Sequenced at multiple centres, each individual’s sequence was downloaded from

ftp://ftp.1000genomes.ebi.ac.uk/ having been mapped to the human reference

genome, GRCh build 37, using the BWA alignment tool.

4.1.2 Sequencing statistics

The sequencing coverage was calculated for every library/individual (as in previ-

ous chapters) for those sequenced in the 1000 Genomes Project. Each library was

sequenced to a much lower depth than in the previous chapters, ranging from a

library sequencing coverage of 0.010 to 10.299x (mean of 2.456±1.456) and an in-

dividual sequencing coverage from 0.0096 to 10.756x (mean of 2.966±1.464). This
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is lower than the target coverage for the project of 4x per sample because this is

an interim data set and we included all samples with any sequence, however little.

In total, fourteen populations were sequenced ranging in number of individu-

als from 6 to 98, as well as, the number of libraries per population ranging from 6

to 122. Thirteen of the fourteen populations had a combined depth greater than

170x, with the deepest coverage coming from the JPT population at 303x. The

largest population, TSI, had an amalgamated base coverage of 235.961x. This

would mean, given an allele of frequency 20% in a population, you would have an

effective depth of 38.1x which should be sufficient to detect it (depth taken from

median population sequencing depth of 190.489x). The power to discern set vari-

ants only increases as the number of individuals sequenced increases, contingent

upon the samples having a shared allele amongst them. The statistics for each of

the populations is listed in table 4.1.

Population statistics for 1000 Genomes Project low coverage data set
Population Individuals Libraries Bases sequenced Coverage Avg. cov. (lib) Avg. cov. (ind)

YRI 66 74 628904103390 209.635 2.833 3.176
ASW 50 57 544728006968 181.576 3.186 3.632
GBR 70 90 519154431151 173.051 1.923 2.472
TSI 98 122 707881625221 235.961 1.934 2.408
CHB 81 141 582563154053 194.188 1.377 2.397
CLM 50 50 518391563974 172.797 3.456 3.456
LWK 83 93 783360704228 261.120 2.808 3.146
MXL 54 59 540194155266 180.065 3.052 3.335
CHS 92 104 672006329021 224.002 2.154 2.435
PUR 52 59 560368488942 186.789 3.166 3.592
JPT 72 77 911055671783 303.685 3.944 4.218
IBS 6 6 49644449600 16.548 2.758 2.758
FIN 75 90 548432746738 182.811 2.031 2.437
CEU 80 100 700341495829 233.447 2.334 2.918
totals 929 1122 8267026926164 2755.675 2.456 2.966

Table 4.1: Summary of sequencing statistics for individuals’ libraries in 1000
Genomes Project low coverage data set. The number of individuals per population
ranges from 6 to 98 and number of libraries per population ranges from 6 to 122.
The total number of bases sequenced from each individual/library is summarised
in the fourth column with the average per base coverage across all individuals in
the fifth column. The last two columns indicates the average base coverage per
library and individual in each population, respectively.
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4.1.3 Population MPERS distributions

A major component of our analysis is based on the concept that each individual

belongs to a local population and that their alleles will be drawn from an unob-

served distribution of alleles from within these populations. This means that in

principle: the more individuals there are in a population sample, the more power

there should be to detect the underlying allele frequencies and general dispersion

of STR lengths within a loci. In a global population analysis, however, the alleles

might be so dispersed that it becomes hard to resolve one from another. Before

we carried out any further modeling, it was important to look at the distributions

of MPERS across the 1000 Genomes libraries to get an estimate of the general

distributions of fragment sizes.

Given that there are over a thousand libraries sequenced for the 1000 Genomes

Project, there is not much we can really deduce from the plot of all MPERS

distributions (figure 4.1). However, libraries which differ in fragment length but

maintain similar variances are almost identical in terms of information they are

are able to give. Larger libraries will be able to assay longer STRs and at equal

coverages, yield more spanning read pairs, but for a STR of length less than both

fragment libraries, each library will supply approximately the same amount of

information per spanning read pair. We therefore centered these distributions by

offsetting their mean to zero and compared the more important characteristics of

the distributions such as variance and shape (figure 4.2). The general form of a

unimodal distribution across all libraries is promising in the context of genotyping

STRs across populations (figure 4.2). Again, the sheer number of distributions

does obfuscate the assessment of the general shape of each library’s distribution

as the magnitude of overlying distributions is not explicitly shown. When we

break the libraries down by population, it becomes clear which populations are

more informative in terms of shape and distribution.
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Figure 4.1: Plot of MPERS distributions for every library in the 1000 Genomes
Project data set. Most libraries’ MPERS fall within the range of 150 to 600 bp
with peaks (fragment library sizes) around 150, 200, 400 and 500 bp.

4.2 Modeling

Modeling a population’s underlying distribution of alleles within a STR locus

relative to the reference adds multiple complexities compared to the previous

modeling of a single individual’s genotype as described in chapter 2. Instead of

assuming that all spanning reads come from a maximum of two alleles, now the

union of all indels in the population is possible.

We still take a Bayesian approach, calculating the (log) likelihood of the ob-

served data, and combining a prior with this to estimate the posterior. The
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Figure 4.2: Plot of MPERS distributions whose mean of each library is arbitrarily
set at zero. It is clear that the majority of libraries have a MPERS variance that
is tightly bound around the mean value (peak at zero). This does not mean
that all libraries behave well (as signified by the MPERS distributions whose
values fluctuate highly away from the mean). However, the prevailing shape of
the MPERS distributions tend towards an adherence to being tightly bound.

matrix likelihood is calculated from the full likelihood matrix from each individ-

ual across the set of possible diploid calls at a site([-30x30],[-30,30] in the case of

triplet repeats) exactly as in chapter 2.

Not interested in a specific individual’s genotype, our previous prior over diploid

genotypes from chapter 2 was no longer appropriate. Instead, we needed a prior

over all distributions of alleles at a locus. As we were no longer looking for geno-

types, but allele frequencies, it meant that our posterior would take the form of a
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(a) MPERS for ASW population(b) MPERS for CEU population (c) MPERS for CHB population

(d) MPERS for CHS population (e) MPERS for CLM population (f) MPERS for FIN population

(g) MPERS for GBR population (h) MPERS for IBS population (i) MPERS for JPT population

multinomial distribution; where each indel value in the multinomial distribution

was representative of the relative frequency of that allele within the population.

Achieving a multinomial posterior distribution meant that we would use a Dirich-
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(j) MPERS for LWK population (k) MPERS for MXL population (l) MPERS for PUR population

(m) MPERS for TSI population (n) MPERS for YRI population

Figure 4.3: Plots of the raw MPERS for each of the fourteen populations in the
1000 Genomes Project data set. Each population is usually sequenced by libraries
having multiple fragment size libraries (with an exception of CHS, FIN and IBS).

let prior. The Dirichlet distribution is the conjugate prior for the multinomial

distribution and is made up of a family of continuous multivariate probability

distributions parameterized be a single vector α. The Dirichlet probability den-

sity function returns the belief that the probabilities of |K| mutually exclusive

events are xi given that each event has been observed αi − 1 times. The values

of vector α represent the number of pseudo counts for a given event xi.

The Dirichlet distribution of order |K| ≥ 2 having parameters of α1, ..., α|K| > 0
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has a probability density function given by

f(x1, . . . , x|K|−1;α1, . . . , α|K|) =
1

β(α)

|K|∏
i=1

xαi−1
i (4.1)

for all probabilities of vector X (x1, ..., x|K|) being non-zero, positive and satisf-

ing the condition that x1 + ... + x|K|−1 < 1, where xK is simply the probability

calculated directly as 1−x1− ...−x|K|−1 and the density is zero outside this open

K − 1-dimensional simplex. The distribution is normalized by the multinomial β

function.

Because we normalize to obtain posteriors, in practice we could drop the β func-

tion and use a proportional Dirichlet prior as the values will correlate directly to

the actual probabilities described in equation 4.1. The Dirichlet prior’s parameter

vector α will consist of |K| possible indel values. The probability of any one of

these values is pk. The vector p is a probability vector whose elements are all

> 0 and sum to one. Therefore, our Dirichlet prior is expressed as

π(p) ∝
|K|∏
i=1

pαi−1
i

Looking now at population alleles instead of genotypes, we will assume within

a population – and by extension an individual (n) – all indels (i) are mutually

independent of one another such that

p(I1, I2) = p(I1) · p(I2) = pI1 · pI2

Next we define the conditional distribution for a purported population allele

vector (p) for genotype calls in an individual as

p(I1, I2, dn|p) ∝ p(dn|I1, I2) · p(I1, I2|p) (4.2)

p(dn|I1, I2) = ln,I1,I2
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p(I1, I2|p) = pI1 · pI2

where dn is all the spanning read information for an individual at a given locus

and ln,I1,I2 is the likelihood of the data in individual n having genotype {I1, I2}
as calculated in chapter 2.

Having defined the joint probability distribution for an individual, it was not ob-

vious the best means by which we should model this system. We sought methods

capable of learning the best values of p from the data, which essentially represents

the true underlying frequency of alleles at a locus in a population. In the end,

we choose two different algorithms to explore; the Expectation-Maximization al-

gorithm (EM algorithm) and Gibbs sampling. However, first we will describe the

priors that we used.

4.2.1 Priors

We considered three priors (π()) for our modeling which had the following ini-

tialization parameters α (pseudcounts)

1. uniform: a uniform prior with an α value of one for every indel size

2. conservative: a prior with 0.8 of the weight on the reference allele (α of

80) and the rest of the weight equally distributed across the indels, 0.01 (α

of 1.

3. decay: a prior used in chapter 2 where the most weight is on the reference

allele and then a gradual decay of weight as indel sizes move away from the

reference, pseudo counts found by multiplying the probability of an indel

by 100

4.2.2 EM algorithm

The EM algorithm is a method for determining either the maximum likelihood

or maximum a posteriori (MAP) estimates of parameters in statistical models,

where the model depends on unobserved latent variables – which in our case
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are the underlying frequencies of indel alleles in a population. The algorithm

takes an iterative approach which switches between performing the expectation

step (E) and the maximization step (M). In the E step, the algorithm computes

the expectation of the log-likelihood evaluated with the current estimate for the

parameters (the indel allele frequency in the population), then the M step recal-

culates the parameters which maximize the expected log-likelihood found in the

E step. The new parameter values found in the M step are then used in the next

iteration of the E step and this process is iterated, hopefully converging at the

true parameter values.

The problem with MAP inference is that it ignores the uncertainty in our in-

del assignments. For the high coverage samples in chapter 2, this is not as much

of a problem as we were solely interested in the genotype of a single individual

and had enough power to make a genotype call. But for the low coverage indi-

vidual’s in the population, this is more of a problem as we may be over fitting

the data. Instead we keep the posterior distribution for each individual; qn(i1, i2).

For purposes of inference, it is convenient to write the prior on the allele fre-

quencies as

p(i) =
∏
K

p
I[i=k]
k (4.3)

where I[i = k] is the indicator function; this interpretation was used for ease of

computation in the EM model shown later. Similarly, it was convenient to write

the likelihood terms for individual n in the same form

Ln(i1, i2|dn) =
∏

s∈I1,t∈I2

l
I[i1=s,i2=t]
n,s,t (4.4)

When these two equations (4.3 and 4.4) are combined with equation 4.2, the joint

distribution for the population model is

p(p, {i1,1, i1,2, ..., i|N |,1, i|N |,2}, D) ∝
∏
K

pak−1 ·
∏
N

∏
s∈I1,t∈I2

[pI[i1=s]
s · pI[i2=t]

t · lI[i1=s,i2=t]
n ](4.5)
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which in log space would be

log p(p, {i1,1, i1,2, ..., i|N |,1, i|N |,2}, D) ∝
∑
K

(ak − 1) log pk +∑
N

∑
s∈I1,t∈I2

I[i1 = s] log ps + I[i2 = s] log pt + I[i1 = s, i2 = t] log ln,s,t

As it is apparent here, having written the terms in the form of indicator func-

tions, it is simple to take the expectation with respect to q to give the following

variational lower bound on the log marginal likelihood as

l(q, p) ∝
∑
K

(ak − 1) log pk +∑
N

∑
s∈I1,t∈I2

q(i1 = s) log ps + q(i2 = t) log pt + q(i1 = s, i2 = t) log ln,s,t

where q(i1 = s) = q(i2 = s) =
∑

t q(i1 = s, i2 = t) which aggregates all the mass

of the two-dimensional matrix (genotype calls) into a one-dimensional vector

representing the overall frequency of an allele in a population at a given locus.

The E step is now simply

q(i1 = s, i2 = t) ∝ ps · pt · ln,s,t ∀s, t

It should be noted that q must be normalised such that
∑

s∈I1,t∈I2 q(i1 = s, i2 =

t) = 1. Finally, the M step will maximise parameters with respect to the prior as

pk ∝ αk − 1 +
∑
N

[q(in,1 = k) + q(in,2 = k)] = αk − 1 + 2
∑
N

q(in,1 = k)

where the final equation expresses the symmetry between i1 and i2.

4.2.3 Gibbs sampling

As a second, non-deterministic method, it would be useful to check the results

of our EM algorithm by having the full posterior using a Monte Carlo Markov

chain approach (MCMC). We used the Gibbs sampler for our MCMC process. In

essence, the Gibbs sampler samples from the two latent variables p and I in hopes
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of describing the true posterior. To start, we initialize p with some reasonable

value (i.e. uniform, gradual decay in density as you move away from the reference

length and equal dispersion of densities across the indels with the majority of the

density on the reference). From the conditional distribution in equation 4.2, we

can derive the conditional distribution for in,1, in,2 as

p(In,1, In,2|p, dn) = pn,i1 · pn,i2 · ln,i1,i2 (4.6)

The sampling of (In,1, In,2) involves sampling from the two-dimentional discrete

distribution for each individual n. Given the genotype {in,1, in,2}, the conditional

distribution on p is a Dirichlet and is calculated as

p(p|{i1,1, i1,2, ..., i|N |,1, i|N |,2}, D) ∝
∏
K

pαk−1
k ·

∏
n∈N

pn,i1 · pn,i2

∝
∏
K

p
P

N (I[i1=k]+I[i2=k]+αk−1)
k (4.7)

which is another Dirichlet with parameters given by the summation in the expo-

nent (
∑

N(I[i1 = k] + I[i2 = k] + αk − 1)). Explicitly, this equation is summing

the number of allele calls of a particular allele size swithin a population at a

given locus and combining these with the prior pseudocounts. We let the Gibbs

sampler run which iterates back and forth between sampling from p and I using

equations 4.6 and 4.7, respectively. We store each iteration’s values which are

later used to estimate our model’s parameters.

4.3 Simulation

To compare the EM and Gibbs sampling approaches, we simulated data with

various distributions of indel alleles, using real STR loci as our template. We se-

lected these sites from the 1,881 triplet repeat loci found by TRF on chromosome

20.
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4.3.1 Simulation of MPERS for spanning read pairs

The number of simulated spanning read pairs at each locus should match the

number of spanning read pairs observed at the same locus in the real data. This

ensures that our simulations will not give better results because of a discrepancy

in the number of of spanning read pairs. Looking across all positions in chromo-

some 20 (1,881 loci), we determined how many spanning read pairs were at each

locus for each individual’s library as we had in chapter 2. The count of spanning

read pairs was used to determine how many spanning read pairs we would simu-

late for each individual’s library.

The separation sizes of spanning read pairs that we simulated depended on the

empirical MPERS distribution of the relevant library, and on the repeat length

of each locus. Each sequence library’s length distributions were calculated from

approximately ten million reads (as discussed in chapter 2), but as this set of

MPERS does not adhere to the bias of MPERS in longer STRs, we sampled

directly from the generated empirical distributions (see chapter 2). For exam-

ple, if we were interested in simulating a scenario where all the individuals in

a population contain the reference allele at both copies – say a length of 50 bp

– then for each individual’s library, we would sample some number of reads (as

taken from the number of observed spanning read pairs in the real data) from

distributions of length 50 bp. The distributions were comprised of the MPERS

and the probability of observing that MPERS in the genome conditioned on the

reads being drawn from a repeat length of length l. We sampled directly from

this distribution by first calculating the cumulative distribution of the MPERS in

rank of smallest to largest, and then randomly sampled a value between [0,1] with

a precision of 10−7, or the probability of sampling a single MPERS from the dis-

tribution. This value correlated within some range of the cumulative distribution

of the MPERS (described as a step function) and the MPERS whose cumulative

probability value was the closest was the sampled MPERS. We did this for each

set of spanning read pairs for each individual’s library. These MPERS were then

used to calculate the likelihood of genotype calls for each individual as described

previously in section 4.2.
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The process becomes a bit trickier when we move away from simulating a ho-

mozygous reference scenario. First, we need to correctly simulate the relative

frequency of an allele within a population. A simple example would be where

fifty percent of all alleles in a population coincide with a deletion of 12 bp rela-

tive to the 50 bp reference length and the other fifty percent coincide with the

reference allele. This means that each individual has a fifty percent chance that

each of her alleles are either the deletion allele or the reference allele. This means

that there are three possibly genotypes an individual can have: homozygous ref-

erence, homozygous indel and heterozygous. To simulate this, each individual is

sampled twice from the frequency distribution of alleles at a locus. This yields the

true genotype of the individual at that locus. Then for each spanning read pair

(numbering in the amount of spanning read pairs in the real data as before), the

allele from which the spanning read pair comes from is sampled at a fifty percent

probability that it comes from either one allele or the other. This will obviously

only have any meaning for individuals whose simulated genotype is heterozygous

but it is important as the sampling of reads in real data is drawn at random

from one allele or the other. This procedure is carried out for every individual’s

library such that each person has some count of reads being drawn from one of

the two alleles that were sampled from the overall distribution of alleles in the

population. The spanning read pairs are then sampled from the distributions

of MPERS from an individual’s library in the same form as described above but

with one additional criteria: that the distribution from which the MPERS is sam-

pled from coincides with the true STR length. For example, say an individual

was sequenced from a single library and at a specific locus had four spanning

paired end reads. From the sampling of alleles, it came out that this individual

was heterozygous at this particular locus and it worked out that two reads came

from the reference allele and two reads came from the deletion allele. This means

that two MPERS were sampled from the distribution for that individual’s library

which coincided with the reference allele length (50 bp) and two MPERS were

sampled from the distribution for that individual’s library which coincided with

the deletion allele length (50 - 12 bp or 38 bp). All four reads were then used

in calculating the likelihood of genotype calls for that individual’s library, where
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the calculation of the likelihood is naive as to which allele these sampled MPERS

were drawn from – as would be the case for real data.

4.3.2 Simulation results

The simulated reads were used as input into our two algorithms for three differ-

ent scenarios: only reference alleles, two alleles off reference (±-9 bp, both at a

frequency of 0.5) and three alleles (0.45 density on both alleles -12 bp and 6 bp

and 0.1 density on the reference allele). We decided to look at multiple frequency

distributions to be sure that our algorithms were able to work on all frequency

scenarios we would encounter in real data. We also chose to use multiple popula-

tions to check the robustness of our model and to be sure that a model’s efficacy is

not contingent upon some unobserved criterion specific to a population. For our

analysis, we decided to use populations CHS and CLM which are comprised of 92

and 53 individuals, respectively. Our simulations were conducted using a uniform

prior which was a reasonable choice for our simulations to check whether each of

the algorithms was overfitting the data or not. The uniform prior would not be

appropriate for our later analysis of real data when we looked at the entropy, off

reference and off ±3 bp for each locus in a population (discussed in section 4.4).

4.3.2.1 Reference allele frequency

The first simulation was on the CHS population from an allele frequency dis-

tribution that was entirely comprised of reference allele lengths. We randomly

chose 14 loci in chromosome 20 for our analysis. We forced each locus’s length in

the simulation to match the reference and sampled MPERS from the distribution

which coincided with the reference length. The vector values for these 14 sites

for both the EM and Gibbs algorithm are shown in figures 4.4 and 4.5.
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Figure 4.4: Prediction of allele frequency distribution for the EM algorithm (blue
bars) in 14 simulated loci in chromosome 20 from an underlying allele frequency
distribution comprised solely of reference alleles based on a CHS population (red
bars). Most all the predictions’ allele frequency distributions center around the
truth (reference). However at start position 50159225, the predicted frequency
allele distribution differs greatly from the truth. Further inspection showed that
for this site, there were fewer reads spanning at this locus from the real data, which
in turn meant fewer simulated spanning read pairs which the EM algorithm could
use. Another example of misfitting is at position 62526548. In these cases, the
EM algorithm can over fit the data, leading to a confident false positive call.
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Figure 4.5: Allele frequency distribution prediction of alleles for the Gibbs sam-
pler algorithm (blue bars) in 14 simulated loci in chromosome 20 from an under-
lying allele frequency distribution comprised solely of reference alleles based on
a CHS population (red bars). Most of the predictions’ allele frequency distribu-
tions center around the truth (reference). However at start positions 50159225
and 62526548, the posterior allele frequency distributions are close to the uni-
form prior distribution because there is little information from the data. They
therefore would not create false positives as we had with the EM algorithm.
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4.3.2.2 Two and three allele population frequency alleles

The next step in determining the efficacy of the two algorithms was to see how

each performed when the allele frequencies were no longer all on one allele length,

as well as not all allele lengths corresponding to the reference length. In deter-

mining this, we simulated two scenarios: first a two allele frequency distribution

of ±9 bp in the CLM population, and second a three allele frequency distribution

in the CHS population with allele lengths corresponding to the reference allele,

a -12 bp deletion and 6 bp insertion. Thirty loci at random were chosen in chro-

mosome 20 for each of the two scenarios. Each algorithm then made calls at each

locus whose resulting allele frequency distributions were scrutinized against the

truth. Figures 4.6, 4.7, 4.8 and 4.9 illustrate the results of the two simulation

scenarios for each algorithm.
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Figure 4.6: Allele frequency distribution prediction of alleles for the EM algorithm
(blue bars) in 30 simulated loci in chromosome 20 from an underlying allele
frequency distribution of ±9 bp each at a 0.5 frequency (red bars) based on
a CLM population. As with the reference simulation, the EM is much more
aggressive, yielding both stronger signals on the truth, as well as, overfitting at
some loci, e.g. at the fourth locus in the bottom row.
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Figure 4.7: Allele frequency distribution prediction of alleles for the Gibbs sample
algorithm (blue bars) in 30 simulated loci in chromosome 20 from an underlying
allele frequency of ±9 bp each at a 0.5 frequency (red bars) in a CLM population.
Not as aggressive as the EM, sites show lower frequency peaks around the truth,
but the Gibbs sampler, as before, does not overfit the data.
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Figure 4.8: Allele frequency distribution predictions of alleles for the EM al-
gorithm (blue bars) in 30 simulated loci in chromosome 20 from an underlying
allele frequency of 0.45 at both -12 bp deletion and 9 bp insertion alleles and a
0.1 frequency at the reference allele (red bars) based on a CLM population.
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Figure 4.9: Allele frequency distribution predictions of alleles for the Gibbs sam-
pler algorithm (blue bars) in 30 simulated loci in chromosome 20 from an under-
lying allele frequency of 0.45 at both -12 bp deletion and 9 bp insertion alleles
and a 0.1 frequency at the reference allele (red bars) based on a CLM population.

4.3.3 Simulation results comparisons

After completing our three simulation runs, we sought to determine which al-

gorithm worked the best, while yielding the fewest false positives. To start, we
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looked at the average values each algorithm produced across all the loci for each

of the simulation scenarios. This gave us an idea of how well in general the

algorithms worked in ascertaining the underlying allele frequency distributions.

Averages were found by amalgamating all the allele frequency vectors for each

locus and then normalizing the values. The graph of these averages for each of

the algorithms is shown in figures 4.10 and 4.11.

Figure 4.10: Averages of allele frequency distributions (blue bars) across chromo-
some 20 for three simulation scenarios (red bars) for the EM algorithm.

Figure 4.11: Averages of allele frequency distributions (blue bars) across chromo-
some 20 for three simulation scenarios (red bars) for Gibbs sampling algorithm.
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Looking at the average frequency calls for both algorithms, it appears that both

perform well under the reference scenario for non-reference calls, with neither

method showing any systematic bias. It does stand to mention, however, that

the EM algorithm is better at distinguishing between multiple alleles. In the two

non-reference scenarios, the separation of allele frequencies is more clear cut for

the EM than the Gibbs sampler. From this, it could be argued that the EM is a

better choice.

However, aside from the overall averages of the allele frequency distributions

for each algorithm, its important to look at a per locus accuracy rate as we are

most interested in minimizing the number of false positive calls we make. As we

have already noticed (see figure 4.4), the EM algorithm has a tendency of over

fitting the data. When the amount of data is low – such that a putative repeat

length is not observed – the EM forces all the weight onto a few allele sizes. When

we plotted the values of the two algorithms on top of each other, it was clear that

the Gibbs sampler, though not as conservative, didn’t force the density onto a few

calls. The Gibbs sampler also left some of the uncertainty intact while the EM

did not. Figures 4.12, 4.13 and 4.14 show the comparison of the two algorithms

against one another from a selection of the previously graphed loci above. The

top graphs show where the EM predicts the underlying alleles accurately, and the

bottom two graphs where the EM’s predictions are overly aggressive.
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Figure 4.12: Comparison of the EM and Gibbs sampler algorithms for a reference
allele frequency distribution. The y-axis is the log probability of the frequency
of a given allele with the red dots denoting the true underlying allele. The sole
green line represents the values for the EM, while the green line with error bars
represents the Gibbs sampler’s predictions.
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Figure 4.13: Comparison of the EM and Gibbs sampler algorithms for a two
allele frequency simulation. The y-axis is the log probability of the frequency of
a given allele with the red dots denoting the true underlying alleles. The sole
green line represents the values for the EM while the green line with error bars
represents the Gibbs sampler’s predictions. The top graphs show where the EM
predicts the underlying alleles accurately and the bottom two graphs where the
EM’s predictions are overly aggressive.
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Figure 4.14: Comparison of the EM and Gibbs sampler algorithms for a three
allele frequency simulation. The y-axis is the log probability of the frequency of
a given allele with the red dots denoting the true underlying alleles. The sole
green line represents the values for the EM while the green line with error bars
represents the Gibbs sampler’s predictions. The top graphs show where the EM
predicts the underlying alleles accurately and the bottom two graphs where the
EM’s predictions are overly aggressive.
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Looking directly at the values of allele frequency distributions between the EM

and the Gibbs sampler algorithms, it shows explicitly that the EM algorithm

is much more aggressive compared to the Gibbs sampler and pushes almost all

the weight into some number of alleles that it has evidence for. The EM algo-

rithm does not follow the prior distribution (uniform in this case) when there is

not enough data for an allele call, and therefore would cause many more false

positives. Because of this, we used the more conservative Gibbs sampler for our

analysis on real data.

4.3.4 Test statistics

When we try to gain inference from the allele vectors produced by the Gibbs

sampler, it is important that we clearly define the statistics we wish to test so as

not to obfuscate what the data is telling us. From the simulation results, which

come from an idealized system, it does not seem plausible that we will make

specific, single allele calls with the data at hand. The natural way to call specific

alleles would be to set some threshold on the density and if an alleles density is

above the threshold, we would claim that that allele is present in the population.

Defining this value, however, would be difficult and would lead to either a large

number of false positives or false negatives. An alternative approach is to look at

the general composition of the allele frequency distributions. This line of thinking

led us to calculate the entropy of the allele frequency distribution at a locus, as

well as, how much of the density sits off the reference and ±3 bp alleles.

4.3.4.1 Entropy

To begin, we shall first give the formal definition of entropy: the measure of

disorder or unpredictability in a system. Mathematically, the entropy (H) of a

discrete random variable X with possible values {x1, ..., xn} (which for our system

are allele lengths relative to the reference) is calculated as

H(X) = −
|X|∑
i=1

p(xi) log p(xi)
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where p is the probability mass function (amount of density on an allele) of

random variable X. The base of the log can be of any value with the most

common being e, 10 and 2 yielding the entropy in units of nats, dits and bits,

respectively. It should also be noted that for values of pi = 0 for any element i,

the assigned value for the summand 0 · log 0 will be taken as zero. In the context

of our system, entropy is a measure of the amount of allele variability in our

learned allele frequency distribution. Systems whose entropy are low means that

the dispersion of data is also low (the true number of alleles is low). For instance,

say at a particular locus, all the density was in a set allele on the reference:

p(reference) = 1 and p(allele) = 0 for every other allele value. The entropy for

this locus would therefore be zero. Now, assume that all the alleles are of equal

frequency at that locus (p(allele) = 1
21

), the entropy would then be 1.322 (in base

10). This scenario would represent the maximum entropy for an allele frequency

distribution. An allele frequency distribution which predicts a multiallelic locus

would have a high entropy, while a locus that has most of its density on a specific

allele would have a low entropy. Explicitly, this statistic would declare which loci

are actively evolving or have a large number of alleles at a locus. While a locus

with a high entropy doesn’t tell us much about the actual allele frequencies other

than that they vary more than a low entropy locus, hypothetically a low entropy

locus would give us information we can use to determine whether the set allele(s)

is on the reference or not. To do this, we need to look at how much of the allele

density is off the reference/±3 bp.

4.3.4.2 Off reference/±3 bp

We consider two different statistics to measure whether the density away from

the reference is sufficient to say that there are non-reference alleles within the

population at that particular locus. Both these statistics are calculated simply

by subtracting either the learned frequency of the reference allele from one, or

the sum of allele frequencies of allele lengths +3, 0,−3 bp from one. Ideally, we

would be able to use one of these statistics in concert with the entropy statistic,

and from this, be able to tell a lot more about the locus than by each statistic

separately. For a locus which has a low entropy value but a high density off
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reference/±3 bp, we would believe that there is most likely a set allele at that

locus that does not coincide with the reference. However, as we will see below,

having low entropy and a high on reference density act as the null values for our

testing whether or not a statistic’s value at a locus is significant enough to assign

a call to it. This makes inference in the opposite direction more difficult.

4.3.5 False discovery rate

To accurately attribute some categorical value (actively evolving, off reference)

to each locus within a population (as described in 4.3.4.1 and 4.3.4.2), it was

important to first determine what values were in fact significant and which ones

weren’t. This was accomplished by extending our reference simulation to all

triplet tandem repeat loci (1,881) on chromosome 20 for each population. This

yielded 26,334 (1,881 loci · 14 populations) allele frequency distributions. Using

the methods described in 4.3.4.1 and 4.3.4.2, we calculated the values for entropy,

off reference and off ±3 bp for each locus in each population. As we know that

each of these sites were simulated under the condition that every allele for every

individual for every locus matched the reference length, we were able to calculate

the false discovery rate (FDR) at a given cutoff (c) for each population as follows

FDR =

∑
L I[sl > c]

|L|

where L is a set of loci and sl is the statistic value being tested (entropy, off

reference/±3 bp). For entropy, we iterated through cutoffs ranging from [0,2.5]

by increments of 0.001, and for the off reference/±3 bp, iterated through cutoffs

ranging from [0,1] by increments of 0.001. This ultimately yielded a full range of

FDR values from 0 to 1 and the associated cutoff value for each FDR value.

We applied the methods described above to all 1,881 triplet repeat STRs on chro-

mosome 20 for all 14 populations, using each of the test statistics and both the

conservative and decay priors. This makes 1, 881 ·14 ·3 ·2 = 158, 004 tests in total.

Next, for each cutoff threshold we subtracted the number of false positive calls we
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would expect to observe based on our FDR simulations, and plotted the net esti-

mated number of true calls against the FDR. We refer to true calls as the number

of loci called whose value is above the cutoff minus the number of expected false

positives. For example, if in the real data we observed 400 sites which are above

the cutoff for a FDR of 0.05 (chosen to minimize the number of false positive

calls), this means that out of all these 400 calls, roughly 94 are false positives

(1, 881 ·0.05). Taking these false positives into consideration, we are left with 306

true calls ( 400 - 94 ). Shown below are the plots for each statistic/prior pair for

three different populations.
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Figure 4.15: Plot of FDR versus true calls for the ASW population for triplet
repeat loci on chromosome 20.
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Figure 4.16: Plot of FDR versus true calls for the MXL population for triplet
repeat loci on chromosome 20.
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Figure 4.17: Plot of FDR versus true calls for the PUR population for triplet
repeat loci on chromosome 20.

These plots (4.15, 4.16 and 4.17) show a clear advantage in the number of true

calls for the statistics entropy and off ±3 bp. At a FDR of 0.05, the average

weight off ±3 bp for all populations using the decay prior is 0.966 (range of

[0.952,0.977]) and 0.951 (range of [0.915,0.969]) for the conservative prior. We

chose to exclude population IBS as it was only sequenced from six individuals

and its calculated off ±3 bp weights were 0.765 and 0.463 for the decay and con-

servative prior, respectively. The number of loci above the cutoff at a FDR of

0.05 for both entropy and off ±3 statistics using both priors is roughly 90 calls

for each population. Therefore, given our analysis is only on chromosome 20 and

assuming it is representative of the rest of the genome’s ratio of significant loci to

non-significant loci, we would expect to observe over 4,100 independent loci with

significant values for each of the statistic/prior pairs.

We also observed at a number of FDR values (particularly in the off reference

statistic) whose number of expected true calls were negative. This could be be-
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cause the real data is subject to reads not mapping uniformly around real sites

(as they did in our simulation), so the MPERS observed don’t actually come

from the genome wide MPERS distribution. It may also come from multiple low

frequency alleles in the population whose frequencies’ are not large enough to be

picked up by the Gibbs sampler, and are therefore washed away by the prior,

making reference calls more likely.

4.4 Results

We marked out loci across all populations that passed a cutoff corresponding to a

FDR of 0.05 by combining the calls made with either prior. The highest number

of significant loci coming from the combined prior calls was made by the entropy

statistic (1,361 unique loci) followed by the off ±3 bp statistic (1,019 unique loci)

and lastly the off reference statistic (733 unique loci). The number of calls per

prior were almost equal: 1,609 unique loci coming from the decay prior and 1,617

unique loci coming form the conservative prior. From here on, we shall focus our

analysis on the entropy and off ±3 bp statistics.

We next looked at how many loci are called in multiple populations (≥ 5) for the

same statistic (entropy and off ±3 bp) and diagrammed the intersection of the

two statistics’ calls (see figure 4.18).
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Figure 4.18: Venn diagram of intersection of significant loci called by entropy and
off ±3 bp.

4.5 Discussion

For sites where there is a trend for the off ±3 bp statistic in multiple popula-

tions, it most likely means that the reference is the minority global allele (303

loci having a call for off ±3 bp statistic in five or more populations). Loci which

have calls for the entropy statistic in multiple populations mean that these loci

are more likely to be actively evolving and less likely to be under selection (400

loci having a call for entropy in five or more populations). On the other hand,

its harder to say which sites are truly reference or under selection as these values

represent the null in our modeling.

When we looked for loci which were called both for entropy and off ±3 bp,

we found that only 66 sites matched this criteria. This is not altogether that

surprising. These results are consistent with it being unlikely for there to be a

dispersed distribution of allele sizes but almost no reference allele. One would
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expect an actively evolving site to contain at least some density on the reference

allele length in the population.

4.5.1 Factors

As an extension to our analysis in chapter 3 of how the factors of a repeat locus

affect the probability of observing an indel, we decided to explore the same factors

as described in chapter 3 for our two population statistics. To begin, we first fit

a logistical model on whether or not a locus was called using criteria for entropy

and off ±3 bp statistics (at an FDR of 0.05). We next fit a linear model for

sites which were called significant and explored how the factors affected the value

of the two statistics. The values were modeled independent of which prior they

came from; meaning all calls for both priors were lumped together. The plots for

coefficient values are shown below in figures 4.21, 4.22, 4.21 and 4.22.
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Figure 4.19: Bar graph of absolute values of coefficients from logistic linear model
on whether a locus’s entropy value is significant against various factors.

157



Chapter 4. Population based analysis of short tandem repeats

Figure 4.20: Bar graph of absolute values of coefficients from logistic linear model
on whether a locus’s off ±3 bp value is significant against various factors.

First looking at the logistic modeling of whether a locus has a significant value

for both the entropy and off ±3 bp statistic, we observe that many of the fac-

tors values seem to be relatively in the same order of significance, direction and

magnitude. The statistic GConly has the strongest influence on a locus having a

significant value for both statistics followed closely by both purity and GC con-

tent statistics. The population factors are relatively insignificant for the entropy

statistic and have some influence in the off ±3 bp statistic. In the off ±3 bp statis-

tic, the strongest correlations are negative (compared to the ASW population) in
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populations TSI, CEU, LWK, JPT, YRI and CLM. Inspection of these popula-

tions’ sequencing statistics gives no reason as to why some populations might be

more readily called than others. Furthermore, CHS and CHB (two closely related

populations) have relatively equal correlations in the same direction. This would

lead us to believe that there might truly be correlations in populations which

warrant further inspection. The motifs have relatively little influence, with AAG

having the strongest correlation (positive) which is exactly the same as observed

in our chapter 3 results. The only motif with a stronger signal in the previous

chapter’s modeling was that of AAT (which had a low p-value in our modeling

and was therefore not graphed). The prior had no influence on the system.

If we now go back and scrutinize the larger coefficient values with those in the

logistic linear models in chapter 3, the coefficients are at relatively the same value

and rank, however, GConly and GC100 are both negatively correlated with ob-

serving a variant when they are positively correlated with having significant values

for entropy and off ±3 bp statistic. While both populations YRI and CEU (from

which the individuals in chapter 3 belong to) are negatively correlated with the

entropy and off ±3 statistics, this most likely doesn’t account for this reversal in

influence. Another explanation could be that while the 1000 Genomes Project’s

individuals are sequenced to a lower depth, their combined reads are enough to

overcome the bias in less reads mapping to loci whose proximal sequence is GC

rich (see chapter 3). However, the strongest explanation requires us to think back

to the values of the of the linear regression for magnitudes of indels in chapter 3.

The values for this model showed that the GC content was positively correlated to

there being larger indels when they were observed. Allele frequency distributions

which have smaller alleles would most likely not have enough power to be called

from our entropy and off ±3 bp tests. This knowledge indicates why the larger

indels (which would give rise to higher entropies and off ±3 bp values) would

be positively correlated to the amount of GC content in a region, as observed

previously.

We next fit a linear model to the values of both statistics conditioned on the

statistic’s value being significant.
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Figure 4.21: Bar graph of absolute values of coefficients from linear model of
significant entropy loci values and the various explanatory factors.
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Figure 4.22: Bar graph of absolute values of coefficients from linear model of
significant off ±3 bp loci values and the various explanatory factors.

The same trend in relative size and order is observed for both statistics as was

seen in the previous logistic regression. The only difference being, for the off ±3

bp statistic, GConly negatively influences higher off ±3 bp values. This reversal

is most likely an artifact of the low number of sites used to fit this model – as seen

by the extremely small coefficient values. The values are further corroborated by

comparison to the linear regression for the magnitude of indels in chapter 3 which

shows an almost identical order and relative influence of one factor compared to

another.
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The main hinderance in the modeling of this call set is that the number of loci

assayed is low. However, it is encouraging that the modeling of factors in this

chapter and the previous chapter corroborated, which leads us to believe that the

results are correct and that the learned coefficients do in fact correctly model the

influence each factor has on the allele frequency distribution of tandem repeat

loci.

4.6 Conclusion

Inevitably, our power to model and make inference in this system comes down

to the number of individuals sequenced in a population and their combined se-

quencing depth. For the 1000 Genomes Project data set, split into populations,

it would appear that there is enough data to give some relevant information

about the tendency for a site to be variable, but nowhere close to enough read

information to determine the exact frequency of each allele in a population. A

further study could look back at the reported allele frequency distributions and

make predictions on a range of alleles by setting some threshold on the amount of

density needed to attribute a specific variant in the population. A good starting

place would be places where there is significant weight in the off ±3 bp statis-

tic. One approach to get more information will be to combine the populations

into a global population and see how this affects the values of the statistics at

each locus. We presume that loci that were found to have calls shared across all

populations will continue to be found in this joint analysis, and we also believe

that amalgamating the data might also give enough information to call loci which

previously went uncalled in the individual populations. We have not been able

to carry out this combined analysis yet because of compute resource limitations

in our implementation.

We modeled the effect each factor (as described in chapter 3) has on the val-

ues of our two statistics in both a logistic linear and linear model. The values of

coefficients we found from the modeling were in line with the values and direction
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of coefficients we had observed in the previous chapter – and when not, a expla-

nation was presented as to the cause of the discrepancy and therefore explained

away in context. The continuity of coefficients between the two chapters illus-

trates the viability of this type of exploration in tandem repeat loci. Further, as

the 1000 Genomes Project data set grows, we believe our exploration using this

data will broaden our understanding of what role each factor plays – and to what

extent – in the variation of tandem repeats.
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