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Summary

The examination of three dimensional protein structures has revealed that most
proteins are made up from modular building blocks. These blocks normally form
stable globular structures, and carry particular functions - e.g. catalytic properties -
and hence have been termed 'domains’. Domains can be considered both the
functional and evolutionary units from which proteins are formed. It has also been
demonstrated that if two protein amino acid sequences show significant similarity,

then their structures also display similarity.

I have sought to take advantage of the huge amount of sequence data that is being
generated by the current wave of genome sequencing projects to identify novel
domains and build alignments of homologous sequences. These alignments provide a
powerful means to integrate multiple sources of data and hence enable the derivation

of novel biological knowledge without recourse to further laboratory experimentation.

Novel domains identified include: the PASTA domain, a B-lactam antibiotic binding
domain, with various roles in eubacterial cell wall growth and maintenance; the
eubacterial BON domain, a probable phospholipid membrane binding domain, with
roles in osmotic shock protection and mechanosensitive channel function; the PepSY
domain, which is likely to inhibit eubacterial M4 peptidases but is also found in
archaea, and is possibly important in microbe-microbe interactions as well as self-

protection and Bacillales sporulation.
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