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1 Overview 

 

1.1 Aim 

The focus of the research in this Thesis is to generate novel biological knowledge 

through the transfer of information between related protein sequences. Currently there 

are around 1 million unique protein sequences available in public databases. Around a 

third of these proteins do not belong to any recognised and characterised family, and 

the majority contain regions that have not been described. Within these regions 

remains a huge amount of important biological information – and clustering them into 

sequence families allows both the synthesis of information from each family member 

and global analyses of family characteristics. The work carried out in this thesis aims 

to identify novel families of high interest, to refine known families and to correctly 

establish the homology borders within the member proteins. Statistical methods are 

used to identify potential new families in a high throughput manner, which are then 

manually investigated. Functional predictions are provided through the use of 

sequence analysis software and through the analysis of associated literature. 

 

1.2 Background 

As more protein structures have been solved, using X-ray crystallography and NMR, 

several trends and constraints of protein structure have become apparent. Of these, the 

most striking observation was that proteins are usually made up from several 

independently folding units, with the overall function of the protein being a composite 

of these substructures' functions. Furthermore, these substructures have been found to 
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have shuffled during evolution to create novel proteins with new emergent functions. 

The discrete and modular nature of these elements has led to them being termed 

domains; this also makes understanding protein domains a powerful way of 

understanding proteins. 

 

It is also of note that there are already over 1 million proteins in public sequence 

databases, whereas it is estimated that there are between 1000 and 5,000 folds – a fold 

being the three dimensional structure a protein assumes in its native state – that exist 

in nature, with about 50% of proteins belonging to one of 800 folds (reviewed in 

Grant, Lee et al., 2004; first estimated by Chothia, 1992). Therefore grouping these 

sequences into fold families and subfamilies makes the data much more manageable. 

Solving structures is expensive, time-consuming and labour intensive at best, and at 

worst is currently impossible – particularly with the extremely biologically interesting 

cell membrane-associated proteins. So while three dimensional structural analyses are 

highly informative, comparative methods of protein sequence and structure analysis 

are essential. 

 

Certain observations from sequence analyses have led to the development of powerful 

tools for protein comparison and structure determination. First and foremost is that 

protein amino acid sequences divide up into discrete units, which can be found in 

differing contexts. Mapping these to the corresponding structures has shown that a 

“sequence domain” almost certainly maps directly to a “structural domain”. There are 

of course exceptions and qualifiers – for instance β-propellers are typically made up 

from between 6-8 sequence repeats and form a fold made up from 6-8 “blades” 
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(Murzin, 1992) - though of note haemopexin forms a four-bladed propeller (Gomis-

Ruth, Gohlke et al., 1996). All the blades are required to form the propeller, and 

hence all should be included as part of a single fold, but at a sequence level it would 

be seen as a series of homologous, and possibly gapped, repeats. 

 

The second key observation is that if two protein sequences are shown to be 

evolutionarily related (homologous) then they will have the same tertiary structure – 

though again there can be exceptions (Grishin, 2001). There are now several powerful 

statistical tools for determining the likelihood that two sequences are related, some of 

which are described in chapter 1.6. 

 

It is a common maxim in structural biology that function is encapsulated within the 

structure. If, through sequence analysis, we are able to demonstrate that set of 

sequences or sub-sequences are homologous, then we can transfer functional 

information associated with these regions. These two observations imply that if we 

can describe a family of related protein sequences and we know the physical structure 

of one of the proteins, then we can describe the function of all of them. This is 

because we should be able to construct comparative models based on the known 

structure and identify changes to the biochemistry of the protein. Developing 

comparative analysis technologies is currently the main approach in protein analysis 

as the cost of sequencing the gene is several orders of magnitude less than solving the 

structure of the protein, and ab initio structural prediction methods are still prone to 

significant inaccuracies (Aloy, Stark et al., 2003). 
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In general the volume of publicly available protein sequence data has been expanding 

rapidly, driven by the current wave of genome sequencing projects, as indicated by 

the growth of the sequence repository, UniProt (see Figure 1.1). In turn sequence 

analysis has become part of the standard repertoire of biological research methods, 

and is now carried out on desktop computers by lab bench researchers and en masse 

on supercomputers by trained informaticians. A subfield of protein sequence analysis 

is domain hunting – the identification of novel protein domains from sequence data. 

 

The concept of protein domains became apparent soon after the first structures were 

solved, and by the mid-1970s they were being considered in both sequence and 

structural terms (e.g. Wetlaufer, 1973; Edelman and Gall, 1969; Rossman and Liljas, 

1974), with the first defined domain being the Ig domain (Edelman and Gall, 1969). 

The principle that they could be considered as mobile genetic units was put forward 

by Rossman and Liljas (1974) after analysing the similarity of nucleotide-binding 

domains in different structures. 

 

Led by researchers like Eugene Koonin, Peer Bork, Chris Ponting & Kay Hoffman (to 

name a few) the de novo identification of domains has become a field in its own right. 

Approaches range from the purely automated (e.g. ProDom, see chapter 1.6.3; 

Servant, Bru et al., 2002) to manually intensive (e.g. the BRCT domain; Bork, 

Hofmann et al., 1997), and encompass combinatorial approaches (e.g. Ponting, Mott 

et al., 2001). Several databases now collect and curate descriptions of these domains 

(see chapter 1.6.3), and provide tools for identification of known domains in new 

sequences. These use a variety of statistical methods and design philosophies. Others 
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present the results for automatic domain detection, and update them when new 

sequences become available – for instance ProDom and the derivative Pfam-B 

(Bateman, Coin et al., 2004), or ProtoMap (Yona, Linial et al., 1999). 

 

The growth in the power of domain identification from sequence has been driven by 

the large-scale sequencing projects of the last ten years. Previously the protein 

sequence databases were small and highly biased towards specific proteins or families 

of interest. Genome sequencing has led to a much wider range of proteins being 

sequenced, hence increasing the diversity of domains contained within the sequence 

database and the diversity of contexts these domains are found in. The increased 

diversity of sequences found in the protein databases can also allow subtler 

relationships to be derived, by the introduction of "Stepping Stone Sequences" - see 

chapter 1.5.2 for an explanation. As a result, not only is it possible to detect recently 

deposited novel domains, but also it is becoming easier to detect domains that were 

already present.  

 

1.3 Protein Domains, Repeats, Motifs and Families 

Proteins exhibit modular structures, with their overall function or fold being emergent 

from the modular components they are constructed from. The specific arrangement of 

modules is called the "domain architecture". All these components can be grouped 

into three classes - domain, structural repeat, and motif. When it is not possible to 

assign a component to a particular category, it can be classified as a family. These 

four types are the same as used by the Pfam (see chapter 1.6.2) database, around 

which the work in this thesis is based. While there is much discussion on what 
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constitutes a protein domain, the definition mostly depends on perspective; for a more 

detailed discussion of the precise differences see the review by Kong and 

Ranganathan (2004). Since much of the work presented has been done purely on 

protein sequence, without any available structure models, the most used definition of 

domain is the second one given below, but it should be noted that all three definitions 

largely overlap. The effective difference between them is on deciding where to 

position the edges of the domain within a protein. For instance a functional domain 

may be equivalent to an evolutionary domain and lie within a structural domain. 

Figure 1.2 shows examples of domains, motifs and repeats. 

 

Three Common Definitions of a Protein Domain 

•Structural: An independently folding unit in a polypeptide chain, 

which forms its own hydrophobic core.  

•Evolutionary: A segment of amino acid sequence that is conserved in 

differing surrounding sequence contexts. 

•Functional:  The minimum sequence required to encode a function 

in a protein, as determined by experimentation. 

  

Definition of a Structural Repeat 

 A repeat is a conserved sequence that only forms a stable 

structure when present in more than one copy. Each repeat is not 

independently stable but all contribute to a final stable structure. 

Examples are the WD40 repeats (Neer, Schmidt et al., 1994) and TPR 

repeats (Goebl and Yanagida, 1991). The number of repeats that make 

up the final structure may or may not be restricted to a range: WD40 

repeats occur in sets of 6-8 and form a single propeller-like structure; 

the approximately 35 residue TPR repeats can occur anywhere 

between 2 and 50 times and form a solenoid structure. 
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Definition of a Sequence Motif 

 A motif is an amino acid sequence that does not form an 

independently stable globular structure but has a specific function that 

is conserved between related sequences. For example the AT-hook 

motif is a short motif of around 13 residues that binds AT rich DNA 

(Nissen, Langan et al., 1991). Although it is believed to form a 

particular secondary structure (Huth, Bewley et al., 1997) its short 

size and lack of stabilising ligands means that it can not form a stable 

tertiary structure itself. 

 

Definition of a Sequence Family 

 A family is a group of sequences that have been shown to be 

related using sequence comparison, but may consist of more than one 

domain, motif, repeat or combination thereof. 

 

1.4 Characteristic Properties of a Protein Domain 

As described above there are several ways of defining a protein domain, with the 

definition used being the one appropriate to the type of investigation. However, no 

matter the definition there are several common characteristics that typify what would 

be considered a domain. As discussed above, domains are the modular units of 

proteins, and so modularity would be expected. This can be expressed in several 

ways: Ideally the domain will be found in multiple architectures, as this demonstrates 

that it is independent of the surrounding sequence. Experimental evidence can also 

indicate modularity. For instance proteolytic degradation of the PulD protein 

(Nouwen, Stahlberg et al., 2000) revealed the same N-terminus for the Secretin 

domain as the sequence based prediction made in chapter 3.3 (Secretin_N domain). 

Of course, there are exceptions to this apparently straight forward rule. In some 

proteins a domain may be dependant on another for correct folding. An example is the 
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strand swapping between homologous TOBE domains from different Escherichia coli 

ModE proteins (Hall, Gourley et al., 1999; Koonin, Wolf et al., 2000). 

 

The second and possibly simplest property is that domains almost always measure 

between 50 and 400 residues in length (see Figure 1.3). The lower limit probably 

reflects the minimum number of residues required to form a stable structure. Stable 

structures usually are generally globular with a hydrophobic core. There are some 

exceptions in which strong stabilising interactions have allowed the formation of 

smaller stable structures. An example is the Zinc finger family, in which a Zn2+ ion 

stabilises a 22 amino acid structure (Miller, McLachlan et al., 1985; depicted in 

Figure 1.2). Other interactions may include disulphide bridges and hydrogen bonding. 

If a region has been experimentally determined to be a functional domain, then it may 

be disordered – it has no stable tertiary structure – and maybe provides an electrostatic 

charge or some flexibility to the structure (i.e. SMC_hinge). Also transmembrane 

domains may not fold correctly until inserted into the membrane (i.e. Voltage-

dependent K+ channels; Jiang, Lee et al., 2003). At the other end of the spectrum 

there are some giant domains - for instance the lipoxygenase domain is apparently a 

non-dividable structure of over 500 residues (Boyington, Gaffney et al., 1993). 

 

The reason for the lack of folds found that are larger than a few hundred residues in 

length is not clear. It is possibly due to several reasons rather than any particular one. 

For a start there may be a lack of unique structures beyond this threshold, with most 

possible stable forms being a composite of several smaller domains. Also larger 
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domains require more sequence to encode; to a certain extent natural selection 

minimises genome size, as evidenced by the general lack of intergenic space in 

bacterial genomes (average gene density = 86%, data from Genome Atlas; Pedersen, 

Jensen et al., 2000). Furthermore an analysis by Lipman and co-workers (2002) found 

evidence for significant selection of shorter proteins. It is possible that longer domains 

would be selected against if there is a smaller domain that can carry out the same 

function, though this has not been observed.  

 

The third property is that two related domains will also share function. So any 

member of, for instance, of the Transpeptidase domain family can be predicted to be a 

transpeptidase provided the catalytic residues are present. However, the extent to 

which this information transfer can take place varies for different domains and the 

form it will take can be subtle. The different transpeptidases may have slightly variant 

substrate specificity, but the basic reaction can be easily described for any. In contrast, 

the Ig domain shows a huge range of functions, and variants of the domain are able to 

bind nearly any chemical – one of their biological roles is forming the recognition 

sites in the immune system immunoglobulins. In this case the domain acts as a 

scaffold upon which functional motifs, which determine the specific function, can be 

hung. This mechanism of creating functional diversity is also commonly seen with 

structural repeats – for instance β-propellers (Murzin, 1992) and CASH repeat 

proteins (Ciccarelli, Copley et al., 2002) show a similar range of functional diversity 

as the Ig domain. 
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So, although the basic concept of a domain is clear and straightforward, as always 

with biological systems, there are caveats that must always be borne in mind.  

 

1.5 The Limitations and Difficulties of Domain Hunting 

1.5.1 Domain Boundary Identification 

Between 60 and 80% of proteins in a genome can be expected to consist of more than 

one domain (Teichmann, Park et al., 1998; Gerstein, 1998). Hence when presented 

with a single amino acid sequence, the first problem in identifying novel domains is 

identifying the edges. Correctly identifying the edges of a domain can significantly 

alter the power of a predictive domain model (e.g. a profile HMM, see chapter 1.6), 

and lead to large expansions in the number of identified family members. An example 

from within this thesis is the PASTA domain. The PASTA model is similar to a 

previous model called PBP_C built by R. Finn, which correctly identified 

homologous penicillin-binding protein (PBP) regions, but failed to detect significant 

similarity to the PknB-like serine/threonine kinases (PSTKs). Subsequent to the 

creation of the PBP_C model, the crystal structure of PBP2X from Streptococcus 

pneumoniae was determined (Gordon, Mouz et al., 2000). From this it was clear that 

the carboxyl-terminus (C-terminus) consisted of two identical domains and that the 

model covered the first domain and extended ten residues to the amino-terminus (N-

terminus). The boundaries of the PASTA model were found in the sequence using the 

'Repeat Hunt Method' described in chapter 2.1.2; it exactly covers one domain and is 

able to identify many novel homologies. Only a small correction to the model had a 

dramatic effect on its sensitivity. 
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Beyond having effects on the sensitivity of the model, correct boundary determination 

can also affect the quality of information transfer, the effectiveness of structure 

prediction software, and making crystals for structural analysis (Kong and 

Ranganathan, 2004). It also can be informative in the evaluation of automated 

clustering algorithms. A common flaw in many approaches for the automated 

clustering of protein families is that proteins that are only related by a single domain 

can be clustered, even though there is no overall functional link and the two proteins 

are not evolved from a single common ancestor. This type of error can be seen in the 

genome paper of Streptomyces coelicolor (Bentley, Chater et al., 2002), in which the 

prediction of 44 PSTKs was reported on the basis of single linkage clustering. Using 

HMMs to predict the domain content shows that there are in fact 34 PSTKs. The 

discrepancy is caused by single-linkage clustering linking unrelated proteins through 

domains that they share. This is explained graphically in Figure 1.4. 

 

Domain BDomain A

Domain B Domain CDomain C

Domain CDomain C

Protein 1

Protein 3

Protein 2

 

 

 

 

 

 

Figure 1.4: A common protein clustering error caused by multidomain proteins. 
Not knowing the domain structure of a protein under investigation can lead to missannotation. 
In this case a sequence comparison programme (i.e. BLAST) has identified significant 
sequence similarity between Protein 1 and Protein 2, as well as between Protein 2 and Protein 
3. Naïve interpretation of this result would allow the transfer of information between Protein 1 
and Protein 3; However, aided by the knowledge of the domain architectures we can see that 
there is not likely to be any functional similarity between Protein 1 and Protein 3. 
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Various different methods have been employed for the recognition of domain 

boundaries from sequence; I have mostly used manual or semi-automated approaches. 

These are described in more detail in chapter 2.1. Also there are many researchers 

developing automated approaches, with two main aims. One is for use over large data 

sets; the other is for predicting domains from sequence that have no obvious 

homologues in other proteins. Comparative approaches include mkdom2 (Gouzy, 

Corpet et al., 1999) - the basis of the ProDom database and an evolution of the 

original Domainer script (Sonnhammer and Kahn, 1994) - and Gracy and Argos's 

(1998) pairwise comparison method that underlies DOMO. 

 

Although these methods can be useful for large sets, they have yet to produce the 

accuracy of results that can be achieved through manual boundary determination – as 

discussed by Kong and Ranganathan (2004). Recent approaches, such as the 

combinatorial method developed by Nagarajan and Yona (2004) and the neural 

network-based method by Liu and Rost (2004) show some promise, and are starting to 

approach the accuracy of manual detection. The second method also has the 

advantage that it can take a single sequence and rapidly make a prediction, which can 

then be refined manually. The current state-of-the-art is reflected in Pfam-A's much 

higher coverage than Pfam-B despite only consisting of approximately 7,500 families 

compared to around 100,000 for Pfam-B. 

 

1.5.2 The Stepping Stone Phenomenon 

A general rule of thumb in pairwise biological protein sequence comparison is that if 

two homologous sequences show less than 30% identity (using any measure; May 
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2004) then identifying the relationship is unlikely. However, 50% of Pfam families 

exhibit less than 40% average identity and 25% have less than 30% average identity 

(see Figure 1.5, statistics calculated using S. Eddy's "alistat" software). These distant 

relationships can be most easily detected by identifying an intermediate or, as they are 

also known, stepping stone sequence. This is a sequence that shows significant 

similarity to both distantly related sequences, and so can be used to infer a 

relationship. 

 

This principal essentially underlies iterative searching: Newly identified homologues 

are included into the model and hence even more divergent homologues are detected 

(see Figure 1.6 for a graphical explanation). Prior to the genome sequencing projects, 

protein sequence databases were often biased towards specific proteins, species or 

sequence families of interest and so the necessary stepping stones were not present. 

As this is corrected subtle relationships are becoming apparent, but it also means that 

searches need regular repetition. As an example the HHE domain was identified in 

early 2002, and formed a cohesive and internally consistent family (Yeats, Bentley et 

al., 2003). Repeating the searches in 2004 led to the merging of this family with the 

Hemerythrin family, which had been deposited in Pfam in late 1999. Until recently 

there was no obvious link between the two because the necessary sequences were not 

there - such as Methanosarcina mazei MM1985 (UniProt:Q8PVH8), a Streptomyces 

parvulus hypothetical protein (UniProt:Q70HY1) and Shewanella oneidensis SO3549 

(UniProt:Q8EBG9).  
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1.5.3 Replication of Experiments 

Despite the statistical basis and computational nature of domain identification from 

sequence, assigning a confidence score – a level of certainty that there are no false 

positives included – to a family is not simple. After each round of searching there are 

two questions: Are there any false positives included? Are there any members 

missing? Whilst stepping stone sequences allow iterative searching, as has been 

mentioned, sometimes the required sequences are not present in a database or may not 

even exist in nature. In this case it may be necessary to relax the inclusion threshold 

and incorporate sequences with a low similarity in order to identify distant 

homologues; concomitantly this increases the risk of including false positives. In this 
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case it is necessary to use reciprocal searches and other evidence to ensure that the 

relaxation of the threshold is valid. 

 

Another technique for finding distant homologues is to create a smaller sequence 

database that is believed to be particularly enriched in the target domain (as discussed 

in chapter 2.3.4). Commonly used estimates of significance (E-values), including 

those used by BLAST and Prospero, for evaluating the significance of protein 

similarity scores are functions of database size: The larger a sequence database is, the 

more chance you would see an apparent match by chance. So by applying a 

knowledge-based filter, it is possible to reduce the database size while retaining all the 

copies of a domain, and hence increase the significance of any potential matches. 

 

Using these different techniques, so as to build up a diverse domain family with a low 

level of conservation, makes statistical validation difficult. A solution that would have 

provided internal consistency to this thesis would have been to use a fixed release of 

UniProt (or Swiss-Prot/TrEMBL, see chapter 1.6.4) so that all searches were 

equivalent. However, the major protein sequence databases have new releases every 

couple of weeks, with a size doubling period of around 18 months; by not regularly 

updating, a vast amount of available information is being ignored and valuable 

stepping-stones may be missing - as was the case with the HHE/Hemerythrin domain. 

 

There is also heterogeneity in the search tools, with some tools able to find more 

distant homologues in some families than the other tools. So given a starting sequence 

or alignment, several different results may be arrived at depending on the search tool 
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and the sequence database. There are also, of course, many different parameters and 

weighting systems that can be varied for each search tool, adding an extra layer of 

complexity. Various search tools are explained and discussed in chapter 1.6.1. 

 

Rather than use a strict system of family building in which specific E-values are 

rigidly adhered to, the approach I have used in this thesis is to carry out controls that 

vary databases, search tools, starting points and also depositing the results in a public 

repository (the Pfam database) for further review. 

 

Sequence Search Controls 

(a) Reciprocal searches - varying the search start point. 

(b) Vary the N and C-termini of the seed subsequence. 

(c) Take sequences falling just below the inclusion thresholds as seeds. 

(d) Use a different search tool – PSI-BLAST/BLAST/HMMER. 

(e) Vary the sequence database – UniProt/GenBank/Selected sequences. 

(f) Publish the family, either in the literature or in a public database, for peer 

review.  

(g) Use different inclusion thresholds. 

(h) Careful visual examination of the final alignment to identify inconsistent 

sequences. 

-can be aided by building a Neighbour-Joining Tree to group 

potential false positives. 

 

The final decision as to whether the identified domain family was genuine, and that as 

many true members had been identified as possible with few (preferably none) false 

members included, is subjective but achieved through the consensus of several 

experiments. It is also important to be conservative in decision making until further 
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tests support the inclusion of more divergent sequences. Although these tests are not 

described in detail and are not, in some considerations, complete it is my belief that 

the families presented are correct. More importantly they are all readily available to 

the general public via the Pfam database for review and correction. This form of open 

peer review is probably the best way to ensure that models are as accurate as possible; 

indeed this open review allowed the realisation that two predicted PPC domains (see 

chapter 2.2.5) were false positives and they were removed from the alignment. 

 

1.6 Tools 

1.6.1 Search Software 

HMMER (S. Eddy) and SAM (Hughey and Krogh, 1996) 

Over the last decade the applications of Hidden Markov Models (HMMs) have 

proliferated in biological research. Uses include protein sequence comparison, splice-

site prediction (i.e. Henderson, Salzberg et al., 1997), transmembrane helix prediction 

(i.e. Krogh, Larsson et al., 2001), signal peptide prediction (i.e. Nielsen and Krogh, 

1998), and gene finding (i.e. Burge and Karlin, 1997; Meyer and Durbin, 2002). Their 

primary relevance to my work is that they underlie the search software I have mostly 

used - HMMER. HMMER also underpins the Pfam database (see 1.6.3) – around 

which much the work undertaken is based. In essence HMMER reads in a seed 

alignment and constructs a profile HMM. The architecture of the HMMER HMM, 

called 'Plan 7', has a core that consists of a node for each column of the alignment, 

each node consisting of three states - M, D, I (match, deletion, insert). The core is 

flanked by a B and an E (begin, end) state. The remaining five states control 
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algorithm-dependent features of the model, and can be varied to alter the type of 

model produced (see below). 

 

The emission probabilities for the M state and the transition probabilities of the D 

state are generated from the multiple sequence alignment. In each column of the 

multiple sequence alignment the frequency of each amino acid is counted, and hence 

the emission probability of a particular amino acid appearing at each position can be 

derived. The transition probabilities of the insert states (I) are based on an internal 

evolutionary model. Since each node is considered separately, the probabilities 

assigned at node are independent of the other nodes, and hence higher order 

information can be lost. However, this seems to be not much of a problem in protein 

sequences as this type of approach has been successful. 

 

By controlling the algorithm states HMMER can be used to construct two types of 

HMM – one is known global or 'ls' and the other is the local or 'fs' model'; both are 

local with respect to the protein sequence. The ls model will only find significant 

matches that extend over the whole model and will allow multiple non-overlapping 

hits per sequence. The fs model will report significant alignments that may not extend 

along the whole HMM, and also will allow multiple hits per sequence. This has an 

advantage over other methods in that the model itself encodes the fragment or global 

nature rather than using a different algorithm for searching the same model. One use 

is that specialised models can be built that capture detailed aspects of specific 

domains – e.g. a highly variable N-terminus but an absolute requirement for the C-
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terminal 10 residues – and then searched against a sequence database using the same 

algorithm. 

 

Searching the HMM returns a list of bit-scores for each sequence. From the bit score 

an E-value is calculated. This estimates the number of sequences one would expect to 

achieve at least that score that would exist by chance in the database or, the number of 

false positives. This is achieved by best fitting a histogram of scores generated from 

searching 5,000 random amino acid sequences which approximately reflect the 

composition and length of UniProt fitted to an extreme value distribution (EVD). 

 

The mathematics that underlie the use of HMMs for sequence searching are well 

established and are described in detail by Durbin, Eddy et al. (1998) and so I do not 

propose to describe them in detail here. It is enough to know that they work and that 

the software has been rigorously constructed; HMMER is simple enough to use as a 

'black-box' process. 

 

HMMER is just one example of an HMM-based search package. Also popular is the 

SAM package created by Richard Hughey, Kevin Karplus and Anders Krogh. SAM 

also includes methods for secondary structure prediction and built-in iterative 

searching. Comparisons between HMMER and SAM show that at the near zero or 

zero error rate required for this project there is little difference in the performance of 

either package - the sequence composition of the seed alignment has a far greater 

effect on the sensitivity and specificity of the model - and that HMMER is also 

marginally faster on large sequence databases (Madera, Vogel et al., 2004). The main 
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reasons for using HMMER were to allow easy interaction with the Pfam database and 

because it is well understood and supported within the lab. 

 

BLAST/PSI-BLAST (Altschul, Madden et al., 1997) 

BLAST is a heuristic method for similarity searching that in essence simplifies the 

Smith-Waterman algorithm. It uses a significant amount of pre-processing and two 

key assumptions (listed below) so as to reduce the running time. The Smith-

Waterman algorithm is derived from the Needleman-Wunsch algorithm for 

comparing two sequences. The key difference is Needleman-Wunsch compares the 

entire length of both strings - a global alignment – whereas Smith-Waterman can 

compare the sub-string of one sequence against any substring in another sequence – 

local alignment. The BLAST heuristic makes two assumptions: 

 

(1) Most high-scoring local alignments contain one or more high scoring pairs of 

three letter substrings called 'words'. These locations can be quickly identified and 

used to grow a longer high-scoring alignment. 

 

(2) Homologous proteins show extensive regions of similarity with no gaps in the 

sequence. This facilitates extending the words into local alignments. 

 

BLAST is the most widely-used and possibly fundamentally important tool in 

bioinformatics. It has a very fast running time, which allows it to be used with 

genome sized datasets. For instance, searching a 65 letter query sequence against a 

protein database of 1,998,366 sequences (670,625,123 letters) using the NCBI default 
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gap penalties at the NCBI server, took less than 30 seconds. In contrast HMM-based 

methods are much slower and, without powerful compute farms, are impractical for 

large-scale analyses. It is also very adaptable and can be optimised for different types 

of search fairly easily. BLAST has been reviewed extensively and its uses well 

documented – for instance Korf, Yandell and co-authors' (2003) book "BLAST". 

 

PSI-BLAST stands for Position Specific Iterated BLAST. It is a development of 

BLAST that has some similarities to HMMER and SAM in that it creates a profile of 

the family that it uses to search a sequence database. After starting with a standard 

BLAST search, the returned alignments are used to generate a Position Specific Score 

Matrix (PSSM) that is used to search again. This process can be repeated for a set 

number of rounds or until 'convergence' – when the searches identify the same 

number of sequences as in the previous round. It essentially uses the BLAST heuristic 

but is able to take a PSSM as input. It is not as sensitive as SAM or HMMER (Madera 

and Gough, 2002) and it deals with low complexity sequence less successfully – for a 

practical example see 2.3, the ALF repeat, and also noted by Chen (2003). On the 

upside it is much faster; this makes it an ideal tool for carrying out positive controls, 

or rapidly generating large numbers of seed alignments for refinement using 

HMMER. 

 

1.6.2 Alignment Software 

Dotter (Sonnhammer and Durbin, 1995) 

Dotter is a tool for visualising protein to protein comparisons. It compares every 

amino acid in one sequence with every amino acid in a second. From this it produces 
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a dot plot with one sequence on the X-axis and the other on the Y-axis (see Figure 1.7 

for an example). For easier visualisation the scores are averaged over a window that 

runs along the diagonal; work by E. Sonnhammer has found that 25 residues appears 

to be the most sensitive window size for identifying repeats and is used as default. 

This tool was used extensively during the work for this thesis, primarily for self-self 

comparisons, in order to identify novel repeated regions and to aid in interpretation of 

the results from Prospero (see below). 

 

Prospero (http://www.well.ox.ac.uk/rmott/ARIADNE/prospero.shtml) 

Prospero is part of the Ariadne software created by R. Mott. Prospero generates local 

alignments using the Smith-Waterman algorithm and then assigns accurate P-values 

(to within 5%, 95% of the time; Mott, 2000). The P-values are then multiplied by the 

database size, converting them into E-values. As discussed for HMMER, an E-value 

represents the expected number of false-positives occurring at that score in a database 

the size of the one searched. As implicated, the larger the database the greater the 

number of false-positives one would expect. Therefore, self-self comparison will 

return the lowest E-value for a particular score and will be more sensitive then 

searching against a sequence database. This principal underlies the approach used in 

many of the domain hunts undertaken. A second benefit of Prospero is that the output 

is easy to parse using computers compared to the graphical output of Dotter. This 

makes it very simple to carry out very large numbers of self-self comparisons and 

identify significant alignments, which can then be further processed and used to seed 

iterative profile-based searches (see chapter 2.1.3.2). 
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Multiple Sequence Alignment: - ClustalW, T-Coffee and MAFFT 

Most of the sequence search software and processes described so far use or produce 

Multiple Sequence Alignments (MSAs). The sensitivity and specificity of HMMER 

can be significantly affected by the seed alignment from which it generates the HMM. 

Furthermore interpreting the patterns of similarity and identifying conserved residues 

is made much easier when the alignment is accurate. An accurate alignment has all 

structurally equivalent residues in the same column. 

 

Given the size and number of alignments examined manual alignment is impractical, 

so three multiple sequence alignment programmes were used - ClustalW, T-Coffee 

and MAFFT. ClustalW is probably the oldest and most well known of the three 

(Thompson, Higgins et al., 1994). It has the advantages of being fast and reasonably 

accurate. It is based on the progressive approach proposed by Hogeweg and Hesper 

(1984) and Feng and Doolittle (1987). To describe the process simply, pair-wise 

scores are determined for all the sequences by means of a substitution matrix, and are 

used to grow a Neighbour-Joining (N-J) tree. A series of pairwise alignments are 

carried out, starting with the most related sequences, then progressing to more distant 

sequences, and then aligning each of the sub-alignments so as to progressively build 

up an MSA. ClustalW includes some refinements to this process, which primarily 

focus on reducing errors in the pair-wise alignments. This type of algorithm is 

described as a greedy algorithm, and if an error is introduced early in the process its 

effects will be amplified and may disrupt the overall alignment. Also the global nature 

of ClustalW means that if one tries to align multidomain proteins that contain 

unrelated domains there can be deceptive misalignments. 
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T-Coffee is more recent, and uses a more complex alignment algorithm (Notredame, 

Holm et al., 1998). Instead of using a substitution matrix, as used by ClustalW, it uses 

a PSSM, termed an "extended library", where the score for each pair of residues 

depends on their compatibility with the PSSM. The "primary library" is a collection of 

pairwise global alignments generated using ClustalW and local alignments generated 

by Lalign (Huang and Miller, 1991). The local alignments are used to create a 

consistency check, allowing the minimisation of potential errors during the build up 

of the progressive pairwise alignments. It is also possible to customise the extended 

library to improve its performance for specific families, or for ensuring that catalytic 

residues align. In comparison to ClustalW it performs better in general, though is 

much slower and impractical for alignments more than 200 sequences of length 

greater than 200 residues (personal observation). 

 

MAFFT is the most recent of the three methods (Katoh, Misawa et al., 2002). 

Although the overall mechanism is similar to ClustalW it transforms the amino acid 

sequence into a sequence of polarity and volume values; these are aligned using a fast 

Fourier transformation and a novel scoring scheme. There are two implementations of 

MAFFT - a progressive method (FFT-NS-2) and an interactive refinement method 

(FFT-NS-i). I have exclusively used the FFT-NS-i implementation; it is much faster 

than the other tree programmes described, and also is as accurate. 

 

Comparisons of the three methods have been carried out by various researchers. 

Presented below in Table 1.1 are the results of a recent test carried out by Edgar 

(2004), which was used for a comparison with his new sequence alignment 
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programme MUSCLE. The results from the test against BaliBASE (Thompson, 

Plewniak et al., 1999) are presented below. Three other databases of alignments were 

also tested against, and similar results were found - PREFAB (Edgar 2004); SABmark 

(van Walle et al., unpublished); and SMART (see below). 

 

In practice all three alignment methods were used. MAFFT was typically used as the 

default; however, alignments were visually examined and if they did not appear 

satisfactory the other methods were tried. "Good" alignments are considered to have a 

minimal number of gaps - especially within secondary structural elements, and 

conserved motifs are immediately apparent. Bad alignments have unnecessary inserts, 

e.g. 'gappy', and do not line-up conserved motifs and secondary structural elements. 

For a trivial example of the difference see Figure 1.8. 

 

Method Q TC CPU 

T-Coffee 0.882 0.731 1500 

ClustalW 0.860 0.690 170 

FFT-NS-i 0.844 0.646 16 

Q is the number of correctly aligned residue pairs divided by the number of residues 

pairs in the reference alignment. 

TC is the number of correctly aligned columns divided by the number of columns in 

the reference alignment. 

CPU is total CPU time in seconds. 

Table 1.1: Results from Edgar's (2004) comparison of MAFFT, T-Coffee and 
ClustalW. 
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Whilst I generally found MAFFT and T-Coffee to be the most accurate, they do tend 

to push sequences to the ends of the alignment and leave gaps in the centre – MAFFT 

in particular. This is normally fine, but with short families composed of highly 

divergent sequences, some very poor alignments were produced (e.g. the FTP motif). 

I found that ClustalW performed the best with this type of family; T-Coffee was 

somewhere between the two. The accuracy of the alignment (with regards to the 

integrity of structural elements) does not overly affect the sensitivity of the HMM 

(Griffiths-Jones and Bateman, 2002) but it does make identification of conserved 

regions or residues harder and hence make analysis of the family more difficult. For a 

good review of the different methods of aligning multiple sequences see (Notredame, 

2002). 

 

 

 

 

 

 

 

 

 

1.6.3 Databases 

Pfam (Bateman, Coin et al., 2004) 

Pfam is a two tier database for describing proteins. The aim of Pfam is to provide a 

comprehensive description of the domain content of the protein world, and to provide 

1) Bad alignment: 
 
(a)     T H I S I S I S A C A  -  -  T 
(b)     T H I S I S - -  A C A C A T 

2) Good alignment 
 
(a)     T H I S I S  I  S A C A T 
(b)     T H I S I S A C A C A T   

Figure 1.8: A simple example of a “bad” alignment compared to a “good” alignment 
The two sequence aligned are “THISISISACAT” and “THISISACACAT”; English words 
in the strings constitute structural elements. Although simplistic, we can see that alignment 
1 unnecessarily used two insertions, and as a result the word “CAT” has been broken up 
into “CA--T” and “ACA”, which is not a word. In 2 no insertions are used, and as a result 
all English words – and hence structural features - are complete, and we can immediately 
identify an unconserved loop between “THISIS” and “ACAT”. 
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tools for querying this data freely to the general research community. Pfam 13 

(released April 2004) contains 7426 Pfam-A sequence families, which hit 74% of 

UniProt at least once (see Figure 1.9 for an example family page from the website). 

Pfam-A is a searchable database of manually curated sequence families. Each family 

consists of four primary elements: 

 

 (1) A manually inspected SEED alignment of trusted sequences. 

 (2) A global (ls) and a local (fs) HMM built from the SEED. 

 (3) A description, including relevant literature. 

 (4) An ALIGN file created by searching the HMMs against UniProt. 

 

There are four family types in Pfam (see Figure 1.2 for examples). These fit into the 

definitions given for Domain, Repeat, Motif and Family in chapter 1.2. In Pfam 13 

there are 5688 Families, 1464 Domains, 126 Repeats and 38 Motifs. Many of the 

families may actually represent domains, but a conservative judgement has been 

taken. 

 

Pfam-B is an automatically generated supplement derived on ProDom (Servant, Bru 

et al., 2002). ProDom is an automatically generated database of predicted domains -  

an outline of the method is provided in the description of ProDom below. ProDom 

regions that overlap Pfam-A domains are split or removed, depending on the type of 

overlap, hence creating an automatic description of homologies not detected by Pfam-

-A (the process is described by Bateman, Birney et al., 2000). Pfam-B contains 

around 100 000 small families, which hit about 23% of UniProt. 
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Figure 1.9: Example Pfam Family Page - the PASTA Domain. 
Each Pfam family has an automatically generated family page that displays a variety of 
information about the family. Some of this information is manually entered, while some is 
imported from other databases (i.e. InterPro), and some is calculated. The links to various 
tools make Pfam a useful workbench for domain family investigations. In this image the 
top half of the page is captured, showing annotation and structures. Below are links to 
graphical representations of the domain architectures, coloured alignments, HMM 
building information, other databases and cited articles.
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InterPro (Mulder, Apweiler et al., 2003) 

InterPro is a front-end to a collection of databases. InterPro 7.2 (released March 2004) 

included Pfam (see above), SMART (see below), PROSITE (see below), PRINTS 

(Attwood, Bradley et al., 2003), ProDom (see below), UniProt (see below), TIGRfam 

(see below), PIR superfamily (Huang and Miller, 1991), SUPERFAMILY (Madera, 

Vogel et al., 2004), CATH (see below), SCOP (see below) and MSD (Golovin, 

Oldfield et al., 2004). It provides facilities for both browsing the data and for 

searching sequences. The major benefit of InterPro is that it allows you to directly 

compare the predictions from different domain collections, and also compare these 

domains against a structural classification from SCOP (if available). Not all these 

databases were used in the work carried out, so a short description of the relevant ones 

is given in the section below. 

 

SMART (Letunic, Copley et al., 2004) 

SMART is similar in form and function to Pfam (see 1.6.3) in its use of HMMs and in 

its construction of families – though it does not provide the full “ALIGN” files as 

constructed by Pfam. It is particularly focussed on modelling and describing domains 

found in signalling, extracellular and chromatin-associated proteins, whereas in other 

functional categories it is far less comprehensive. As of SMART 4.0 (released March 

2004) it contained 667 domains. 

 

PROSITE (Hulo, Sigrist et al., 2004) 

PROSITE is one of the original collections of sequence patterns (release 1 appeared in 

1989). As of release 18.0 it contained “1,639 different patterns, rules or 
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profiles/matrices” and 1200 documentation entries. This diversity of model types 

reflects the history of sequence searching during the 1990s. Initially much sequence 

analysis was carried out using pattern matching techniques such as 'regular 

expressions'. These patterns tended to take the form “G-x(8,10)-[FYW]-x-G-[LIVM]-

x-[LIVMFY]-x(4)-G-K-[NH]-x-G-[STAR]-x(2)-G-x(2)-[LY]-F” (in this case 

PS00845; CAP_GLY_1). However, profile methods subsequently have come to 

dominate sequence analysis due to their superior sensitivity, specificity and broader 

application; as a result PROSITE's earlier models are patterns and their later ones are 

generalised profiles (Bucher, Karplus et al., 1996).  PROSITE has detailed 

documentation for each of its families. 

 

TIGRfam (Haft, Selengut et al., 2003) 

Release 3 (October 2003) had 1976 families, of which 1004 are "equivalogs", 330 are 

"other equivalogs" (proposed equivalogs for which the function is not known) and 

642 are "other" (families for which it is not known if the function is conserved). 

Equivalogs are proposed to be families of functional equivalence. The difference in 

definition to an orthologue is worth noting: orthologues are homologous proteins that 

have separated due to a speciation event, but the function is not necessarily conserved; 

in contrast equivologs may be separated by any evolutionary process - such as lateral 

gene transfer, but the function is conserved. It is a rapidly growing resource – 350 

new families were added between release 2.1 and release 3 (about 1 year). The 

families are more functionally specific than Pfam, allowing for greater confidence in 

the functional description that accompanies a match, but it is not yet as 

comprehensive. 
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ProDom (Servant, Bru et al., 2002) 

As mentioned above ProDom is an automatically generated domain database, from 

which Pfam-B is derived. Although automated methods are not as accurate, either in 

terms of defining the correct domain boundaries or in completeness of the families, 

ProDom does effectively capture genuine homologies and so can provide a useful 

starting point for a researcher looking for interesting sub-regions within a protein. The 

algorithm for its construction is also of interest, as the same principles are behind a 

method used in this thesis (see chapter 2.1.2). The assumption is made that the 

shortest amino acid sequence is representative of a domain. This sequence is then 

searched against UniProt (see below) using PSI-BLAST. Any matching regions and 

the query sequence are removed from the database and assigned a family number. 

This process is iterated using the shortest sequence remaining until no sequences with 

detectable homologies are left. Three filters are applied to the sequence database first; 

all sequences marked as 'fragment' are removed, low complexity regions are masked 

using 'seg' (Wootton and Federhen, 1993), and regions shorter than 20 amino acids are 

excluded. 

 

Swiss-Prot/TrEMBL or UniProt or 'sptr' (Apweiler, Bairoch et al., 2004) 

The work in this thesis is mostly based on searching HMMs against a sequence 

database. The sequence database of choice was Swiss-Prot and its supplement 

TrEMBL. Founded in 1986, Swiss-Prot is a manually curated sequence database, with 

various functional and structural annotations attached. The increasing rate of DNA 

sequence production meant that a large volume of data was unavailable between 

releases, so an automated supplement was created – TrEMBL (Translated EMBL). 
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Figure 1.1 shows how UniProt has grown between October 2001 and July 2004. It 

should be noted that much of TrEMBL is redundant; new entries can often already be 

represented in Swiss-Prot or TrEMBL, or be a fragment of a larger protein. As of 

2003 Swiss-Prot merged with the Protein Information Resource (PIR) to form the 

Universal Protein Knowledgebase (UniProt). This wasn't so much a combining of 

sequence data, but a merging of resources and infrastructure so as to produce a single 

high quality database that was able to keep up with the generation of sequence data. 

As can be seen from the slower growth of Swiss-Prot as compared to the near 

exponential growth of TrEMBL (see Figure 1.1) this was becoming a problem. As of 

May 2004 it still consisted of Swiss-Prot and TrEMBL; hence although the later work 

is done against UniProt rather than Swiss-Prot/TrEMBL, from the researcher's point 

of view they can be considered interchangeable.  

 

1.6.4 Structural Collections and Classifications 

wwPDB (Berman, Battistuz et al., 2002) 

The Worldwide Protein Data Bank (wwPDB) was established in 1971 as the Protein 

Data Bank (Bernstein, Koetzle et al., 1977) to be “the single worldwide repository for 

the processing and distribution of 3-D biological macromolecular structure data” for 

the public. It is currently the product of the collaboration between the Japanese PDBj 

group, the European MSD group, and the American RCSB PDB group - hence 

"wwPDB" (Berman, Battistuz et al., 2002). The other major structural databases – i.e. 

CATH, SCOP – are all built on top of it. A website provides querying services and an 

FTP site provides the underlying data freely for download. As of the 4th May 2004 it 



 38

contained 25,343 three dimensional structures, including 22,936 proteins, peptides 

and viruses and representing just under 4000 folds. 

  

PDBSum (Laskowski, 2001) 

PDBSum is a web-based interface to summary information contained within the PDB 

files and from structural analysis software, as well as linking to some relevant 

structural and sequence data in other databases. The information is presented in a 

pictorial manner, making it very easy to understand and interpret. It also shows the 

position of structural domains, as determined by CATH (see below) against the 

sequence allowing for easy cross-comparison with Pfam. 

 

CATH (Pearl, Bennett et al., 2003) 

CATH is hierarchical system of protein structure classification based on a 

combination of automated approaches and manual validation. Proteins are split into 

domains and the structures characterised. The domains are then described in 

accordance with eight groups of criteria, which are: 

 

Class – derived according to the secondary structure content: all α; all 

β; α/β; and "few secondary structures". For example the PASTA domain 

is α/β (see Figure 4.1), whereas the Hemerythrin domain is all α (see 

Figure 2.9). 

 

Architecture – describes the structure in terms of the orientation of 

secondary structure elements without reference to their connectivity. 
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Topology – determined by the order and type of secondary structure 

elements. 

 

Homologous Superfamily – proteins that are thought to be 

evolutionarily related and hence homologous. 

 

Sequence Family - groups of structures that show at least 35% sequence 

identity - as structure is highly conserved at this level. 

 

Non-identical - groups structures that are at least 95% identical; useful 

for creating non-redundant datasets. 

 

Identical - groups structures that are 100% identical in sequence terms. 

 

Domain - the leaf of the CATH tree; this refers to structural domains as 

discussed in chapter 1.2. 

 

SCOP (Murzin, Brenner et al., 1995) 

SCOP (Structural Classification Of Proteins) is another hierarchical system of protein 

structure classification that categorises domains in terms of their structural elements. 

The assignments are made based on a variety of evidence, including automated and 

manual interpretation of the data. The final assignments are determined by expert 

knowledge; and hence this system is probably the most accurate. There is some delay 

between a structure being deposited in the PDB and its classification in SCOP - e.g. as 

of July.9.2004 there were 25977 protein-containing PDB structures, and 20169 

classified in SCOP. The classifications are: 

Class – The same as CATH's 'Class' (see above), except that SCOP 

separates the α/β class into two types: α/β, in which the different types of 

secondary structure are mixed together in the fold; and α+β, in which the 
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different types of secondary structure are largely segregated. Also SCOP 

has a "multidomain protein" class for proteins that consist of several 

different folds that have no obvious homologues, as well as a membrane 

protein class and a small protein class; it does not have the "few 

secondary structures" class. 

 

Fold – groups of structures that have the same major secondary structure 

elements and topology (same as CATH's 'Topology' above) but show little 

or no overarching sequence similarity. 

 

Superfamily – groups of structures that are likely to have evolved from a 

common ancestor, but have significantly diverged in sequence and 

function. 

 

Family – groups of sequences that can be shown to have evolved from a 

single ancestor. This is defined by a sequence identity of greater than 30% 

or high structural and functional conservation. 

   

National Center for Biotechnology Information (NCBI) 

The NCBI website provides a simple front end to a range of bioinformatic tools and 

data resources (Wheeler, Church et al., 2004). Of particular relevance is the PSI-

BLAST server which searches the "nr" database - a mostly non-redundant composite 

peptide database made up from compilation of several resources. This provides an 

analogous system to the HMMER searching of UniProt used in this work, and so is a 

very useful positive control for the searches carried out. The NCBI also hosts a 

searchable biological/biomedical literature abstracts database (PubMed), a genetic 

disease mutations database (OMIM), authoritative taxonomy listings, a BLAST server 

for partially complete microbial genome sequencing projects and a range of other 

services. 
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1.6.5 Presenting Domain Architectures and Alignments 

For all the novel families presented in this thesis, three pieces of information are 

supplied. These are an architecture figure, an alignment figure and a secondary 

structure prediction. These all conform to the same style discussed here - where there 

are specific variations these will be noted in the relevant figure caption. The domain 

architectures are presented in a 'Beads-on-a-String" style of representation. This view 

represents the protein sequence as a line with features depicted as coloured boxes. The 

features shown are Pfam-A families, signal peptides (SignalP; Bendtsen, Nielsen et 

al., 2004), transmembrane helices (TMHMM; Krogh, Larsson et al., 2001), low 

complexity regions (seg; Wootton and Federhen, 1993), and coiled-coils (ncoils; 

Lupas, Vandyke et al., 1991). The key to the domain figures is shown below in Figure 

1.10, along with a few example architectures. Unless indicated all the images are 

taken directly, and without alteration, from the Pfam website; this is to ensure that the 

data shown is publicly available, reviewed and consistent. In general most or all of the 

different architectures for a family will be shown. 

 

Associated with each protein shown are its UniProt accession, its common name, and 

the species it is found in. It should also be noted that where possible all the proteins in 

a figure have been shown on the same scale. However, in some cases members of a 

domain family can diverge in length by an order of magnitude; in these cases scaled 

depiction is not realistic. To compensate the lengths are marked by each protein. 

 

The alignments have been drawn in Jalview (Clamp, Cuff et al., 2004), using the 

ClustalX (Thompson, Higgins et al., 1994) colouring schema for different amino acid 
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groups (given below in Table 1.2). The sequences shown are essentially arbitrarily 

selected but have been picked in order to show the variety in the family as well as its 

typical form. The colours for each amino acid group are shown in Table 1.2, the 

colour being chosen according to the residue type and most conserved property in the 

column. Each sequence is shown with its UniProt accession number and the start/end 

coordinates of the domain. Another sequence alignment viewer I have commonly 

used is Belvu by Erik Sonnhammer; however, it does not include the ClustalX 

colouring scheme and so is not used to create the alignment figure images. 

Residue Type Frequency in Column Colour Description 
ACFHILMVWY >60% Blue Hydrophobic 

DE >50% Magenta Negatively Charged 
KR >60% Red Positively Charged 

STQN >50% Green Polar Charged 
C >85% Pink Cysteine 
G >85% Orange Glycine 
P >85% Yellow Proline 

FYW >50% Cyan Aromatic 
Table 1.2: The ClustalX colouring scheme. 
This scheme is the one used for the alignment figures shown in this Thesis unless 
otherwise indicated.  
 

Under each sequence alignment is a secondary structure prediction, unless there is a 

known three dimensional structure. α-helices are indicated by red cylinders, whereas 

β-strands are indicated by yellow arrows. These predictions have been made using 

three programmes: JPred (Cuff and Barton, 2000), PHDsec (Rost, 1996) and PROF 

(also by B. Rost, but unpublished). Most of the older predictions have been made 

using JPred, whereas the more recent predictions are made using PROF and PHDsec. 

The reason for this change is more to do with the development of the servers 

supplying the service than improvements in accuracy. Whilst in the text for each 

family it may name either PROF or PHDsec, in reality both methods were run for 
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each family and it was checked that the results were largely in agreement. The exact 

output chosen for representation was dependant on how well it agreed with the shape 

of the alignment. If the two methods showed significant disagreement then the sample 

alignment was altered and further predictions run.  In some cases a transmembrane 

helix prediction (blue box) takes the place of the secondary structure prediction. The 

predictions were made using TMHMM (Krogh, Larsson et al., 2001). 

 

 




