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Abstract

Waves of genome wide association studies (GWAS) have identified a large number of
loci associated with disease predisposition and natural traits in the past decade. A
number of identified variants have revealed potential causal mechanisms for the asso-
ciated diseases. However, despite the early success, much of the phenotypic variation
is not explained by the GWAS variants and the effect sizes tend to be very small. The
real challenge in advancing our understanding, and subsequently making it relevant
for clinical application, is deciphering the biological functions of these loci, which re-
main largely uncertain. Compared to the whole organism phenotypes that are distal
to the genetic variants, cellular phenotypes are closer to genetic regulation, thus not
only tend to offer effect size, as shown in expression QTL studies, but also are likely
to mediate between genotypes and whole organism phenotypes, supporting biological
functions.

In chapter 2, I describe a genetic association study on binding of a primary tran-
scription factor CCCTC binding factor (CTCF) in human populations. We search
for quantitative trait loci (QTL) for tens of thousands of CTCF binding sites in a
group of 51 individuals, making this the first well powered QTL study on a major
transcription factor in humans. We discovered a large number of QTLs and revealed
a strong genetic component that contributes to binding variation. We found the as-
sociated variants are often located near to predicted binding sites, some perturbing
the binding motif directly, and others affecting indirectly. We observed allele specific
effect (intra-individual) consistent with QTL signals (inter-individuals), supporting a
strong genetic component in CTCF binding variation.

In chapter 3, I address the problem of low power in associations between gene
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expression levels and phenotypes. This is largely driven by the high degree of stochas-
ticity in the measured gene expression levels. We showed that by applying factor
analysis both to remove global confounding effects and to create summarizing factors
for biological pathways, the heritability and association strength can be substantially
elevated as a result. We applied this idea to a cohort with skin expression data with
ageing phenotypes, and discovered heritable ageing pathways.

It is also of great interest to develop new methods for obtaining measurements
of cellular phenotypes. In chapter 4 I describe a novel computational method to
estimate telomere length from whole genome or exome sequencing data. Using data
from the TwinsUK cohort that has both DNA sequencing data and experimental
telomere length measurements available, I show that our method can effectively extract
telomere length information. The method has been applied to a few cancer studies in
collaboration and achieved early success in confirming experimental findings.
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