
Chapter 4

Measuring telomere length from
sequence data

Collaboration Note. The method developed in this work was designed by Richard
Durbin and implemented and evaluated by myself. The study uses data collected from
the TwinsUK cohort.

4.1 Overview

Telomeres cap the ends of chromosomes and are critical for the maintenance of genome
integrity. In humans, telomeres comprise sequences of 5-15kb TTAGGG tandem re-
peats and their telomere binding proteins (Samassekou et al., 2010). In the absence
of telomerase or the alternative lengthening pathways (Henson et al., 2002), telom-
eres undergo progressive attrition, which ultimately leads to replicative senescence or
apoptosis. Thus, telomere length is an indicator of replicative history and replicative
potential — two features of great importance to human health and disease (Blasco,
2005).

Standard methods for telomere length measurement are generally classified into
three categories: (i) Southern blot analysis of the terminal restriction fragments that
measures the average length (mTRF) and length distribution of telomeres in a sample
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of cells (Kimura et al., 2010); (ii) methods that examine variation in telomere length
between chromosomes and cells, i.e., fluorescence in situ hybridization (FISH) tech-
niques, including Q-FISH (Martens et al., 1998) and Flow-FISH (Baerlocher et al.,
2006); and (iii) quantitative PCR (qPCR)-based techniques that measure telomere
DNA content in relative units (compared to single gene DNA) (Cawthon, 2009).

Next-generation sequencing has now provided an opportunity to obtain genomic
information cost effectively in large scale. Shotgun sequence data contains sequencing
reads from the telomeres just as any other region of the genome. However, little
information about the telomeres can be gained from standard alignments of these
reads to the reference sequence. This is because the repetitive nature of the telomeric
regions means that it is not possible to assign with confidence the exact origins of the
reads, and also because in the human reference sequence (build GRCh37) the ends of
most chromosomes are simply stretches of Ns, representing unknown nucleotides.

Instead, previous studies (Castle et al., 2010) have shown that information on
telomere length is contained in the number of telomere motif copies (TTAGGG or
CCCTAA) found in reads. Parker et al. (2012) applied this idea to cancer samples.
However, cancer samples typically suffer from aneuploidy, complicating the validation
of their results by method such as qPCR (it relies on normalising against a unit copy
region). This may be the reason why the measures in Parker et al. (2012) only converge
to a low resolution telomere status, defined as either gain, no change or loss relative
to normal control. Additionally, the vast majority of the samples were pediatric with
mean age 7.5 years, and they did not demonstrate a relationship between age and
their sequence-based telomere length measurement.

Here, we further examine the relationship between reads containing telomere repeat
sequence and telomere length, and describe software for estimating telomere length
based on genome-wide sequence data. We demonstrate our method on 260 leukocyte
samples (aged 27 -74 years, mean age 51 years) from the TwinsUK cohort (Moayyeri
et al., 2013b) that have both Illumina 100bp paired-end whole genome sequence and
telomere length measurements using Southern blot mTRFs. We also investigate 96
samples from the 1000 Genomes Project (The 1000 Genomes Consortium, 2010) that
have both whole genome and exome data.
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4.2 Study samples and data

The 260 UK10K individuals investigated in this study were all female aged 27 -
74 years (mean age 51 years) from the TwinsUK cohort (Moayyeri et al., 2013b,
http://www.twinsuk.ac.uk/). Except for 5 pairs of dizygous twins, the rest were all
unrelated. Leukocyte telomere lengths of these individuals as mTRFs were measured
using Southern blot. Whole genome sequencing was conducted using the Illumina
HiSeq technology, yielding sequencing reads with coverage ranging from 4X to 16.6X
(average 6.5X, pooled across lanes). Twelve individuals with a much higher read du-
plication rate (more than 3 fold that of other samples) were excluded from the rest of
the analysis since they gave outlier results (Figure 4.1).

Sequence data are available from the European Genome-phenome Archive (EGA)
study number EGAS00001000108, submitted by UK10K (http://www.uk10k.org).
The 1000 Genomes Project sequence data were downloaded from http://www.1000genomes.org.

4.3 Estimating telomere length from whole genome
sequence data.

4.3.1 Estimator

We first examined the frequency of reads from the TwinsUK dataset with different
numbers of copies of TTAGGG and also each non-cyclical permutation of TTAGGG
as a control. The frequencies of all non-TTAGGG hexamers showed a monotonic
decay as the number of repeat units increased, with none occurring in a read more
than eleven times (Figure 4.2). In contrast, beyond seven repeats there was an increase
in the number of reads containing TTAGGG. We defined reads as telomeric if they
containedk or more TTAGGG repeats, with a default threshold value of k = 7, values
higher than which do not increase performance substantially. These can then be
translated into an estimate of the physical length via a size factor s and a constant
length c in l = tkg/(46s), where l is the length estimate, tk is the number of telomeric
reads at threshold k, g is the genome length and s is the total number of reads. The
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Figure 4.1: The effect of duplication rate and coverage to TelSeq performance. In
essence, TelSeq relies on sampling of genomic regions from a sequencing library. Cov-
erage and duplication thus affect the translation of a relative measure into an absolute
one. Low coverage indicates insufficient sampling and thus results in high variation
in estimation (Figure 4.4) while high duplication suggests over enrichment of certain
genomic regions and thus changes the translation factor c. In whole genome sequenc-
ing high duplication rate indicates low library complexity and loss of information.
Twelve of our samples were found to have an exceptionally high duplication rate (>3
fold greater than the rest, panel A), and were outliers when regressing against mTRF
(panel B). We based our evaluation on samples with duplication rate below 10%, which
is typically what is expected for whole genome sequencing.
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factor of 46 corresponds to number of telomere ends 46(23×2).
Studies have shown that DNA molecules in a sequencing library are not sampled

and sequenced with equal probability, but instead are subject to biases due to dif-
ferent molecular properties such as GC composition - a high value of which favors
more amplification in the PCR step (Dohm et al., 2008). This results in different
representations of genome regions and makes defining s as the total read number not
a good estimate. Instead, we define s as a fraction of all reads within a specific GC
composition range, and similarly g as the length of genome for which 100bp segment
lie within the same GC range. The range was chosen to be close to the telomeric GC
composition, which is 50% at the TTAGGG dense regions (see Figure 4.3 for results
for other GC composition ranges).

Considering the GC composition removed an important source of experimental
error; and effectively increased the signal by nearly two-fold, as measured by the
correlation between experimental estimates (Figure 4.3). This method is implemented
in a program TelSeq which reads one or more BAM files and returns a report with one
row per read group present in the input.

To calculate g we divide the reference sequence into 100bp consecutive bins and
add 100bp to g if the GC composition of the bin is within the range.

Association to age and mTRF The Pearson’s Correlation Coefficient was calcu-
lated using the cor function of the R language (Computing, R Foundation for Statisti-
cal Vienna, 2008, http://www.r-project.org/). The regression between age and TelSeq
and between age and mTRF was calculated using the lm function of R in models
lm(age ~ telseq) and lm(age ~ mTRF). Two measures were also included in one model
lm(age~telseq + mTRF) as two independent fixed effects. A t-test was done for each
of the two regression coefficient (β) against null hypothesis β = 0, the results of which
can be seen in the output of the summary function.

Calculating the variance explained To compute the proportion of variance of
age explained, we used the cor function in R cor(age, mTRF, method="pearson")^2.
To compute the additional variance that can be explained by mTRF while controlling
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Figure 4.2: Identification of telomeric reads. In cyan the log scale frequencies of
reads with different numbers of TTAGGG repeats averaged across the 260 TwinsUK
samples, with corresponding plots for permutations of TTAGGG in other colours. In
black the correlation of TelSeq to mTRF as a function of the threshold k for the
number of repeats per read used in the TelSeq measurement.
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Figure 4.3: Normalising by reads with similar GC improves the performance of TelSeq.
It is known that read abundance in a sequencing library is affected by the GC com-
position of a read, a bias primarily introduced in the PCR step where high GC reads
get amplified more often due to their high molecular affinity. Thus, using reads with
similar GC content as background accounts for this molecular property and reflects
the signal to noise ratio more accurately. To demonstrate this we evaluated the per-
formance of TelSeq, as measured by the correlation with mTRF, when normalised by
reads from different GC groups, 42%-58% (purple), 44%-56% (light green), 46%-54%
(red), 48%- 52% (dark green) as well as by all reads (blue). The result showed that
there was a gradual increase to the correlation when GC range approaches 50%. And
in all these cases, the correlation was much higher than that when all reads were used
from a library. Here the analysis was done for the whole range of threshold k, the
number of TTAGGG repeats in a read.
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for TelSeq, we firstly obtained the residuals from a regression between age and TelSeq
(x<-lm(age~TelSeq)$residuals); and then used the residuals to compute the additional
variation explained (cor(x,mTRF)^2 ). The same procedure was done for TelSeq.

4.3.2 Simulation

We employed simulated datasets to investigate the effect of sequencing coverage. This
was also to discover the minimum amount of sequence required for reasonable length
estimation. We chose the reference sequence (GRCh37) of human chromosome 1
as the sequence source, but with 30kb nucleotides (including unknown nucleotide
Ns) removed from each end and replaced with telomere repeat sequences (TTAGGG)
of the same length. We then simulated Illumina pair-end reads using the software
SimSeq (https://github.com/jstjohn/SimSeq, parameters -1 100 -2 100 –insert_size
500 –insert_stdev 200) with sequencing coverage in individual BAMs varying from
0.2X (498,501 reads) to 10X(24,925,063 reads) in 0.2X increments (Figure 4.4). For
each setting we repeated the simulation 5 times and generated 255 BAMs in total. We
then applied TelSeq to estimate telomere lengths of these BAMs. TelSeq predicted a
length of 29.4kb on average with 1.47kb standard deviation (5% of mean). Significant
higher variation was seen when coverage was below 2.5X (F=10.5, P=2.2E-16 in the
F test) when compared to results from the higher coverage BAMs (Figure 4.4). For
BAMs with >2.5X coverage, TelSeq predicted telomere length to be 29.5kb with 0.71kb
standard deviation (2.4% of mean).

4.3.3 Results

When TelSeq was applied to the TwinsUK data, the estimates of leukocyte telomere
length (LTL) correlated well with the mTRFs measurements across a range of choices
of k, with correlation ρ = 0.60 at the default threshold k = 7 (P<10E−16; Figure
4.5A). We next examined the relationship between the TelSeq-based LTLs and age
of the donors. Given the wide inter-individual variation in LTLs for persons of the
same age and the impact of environmental factors on this parameter, the correlation
between LTL measurements and age in cross-sectional studies, including TwinsUK,
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Figure 4.4: The effect of sequencing coverage on TelSeq measurement, as-
sessed by simulation. A group of BAMs were simulated using software SimSeq
(https://github.com/jstjohn/SimSeq). Sampling noise is substantially higher when
the coverage is below 2.5X (mean=29.4kb, variation=5% of mean), compared to when
coverage is above 2.5X (mean=29.5kb, variation=2.4% of mean) (A). The mean es-
timates are close to the true value 30kb independent of coverage. When using the
weighted average of 5 BAMs for each coverage group (B), the variation is much
smaller (1% of mean). This is justified theoretically by the relationship X ∼ N(μ, σ2),
X̄ ∼ N(μ, σ2/n), where n is the sample size. In real experiments, ideally estimates
should be obtained from multiple libraries across multiple lanes for a sample. The
coefficient of variation across lanes per sample is on average 3.2% (Figure 4.7).
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Figure 4.5: Comparison of TelSeq with experimental measure and age in TwinsUK
samples. (A) TelSeq estimate of average telomere length plotted against mTRF esti-
mate; TelSeq (B) and mTRF (C) estimates plotted against age. All average length
estimates in kilobases and ages in years.

is usually modest (Valdes et al., 2005; Broer et al., 2013). Nevertheless, since the
relationship between measurement and donor age depends on the true LTL value,
the correlation provides a means for independent assessment of the informativeness
of different experimental techniques for estimating LTL. The TelSeq measurement
displayed correlation of ρ=-0.24 (explaining 6.5% variance of age, Figure 4.5B) with
age, comparable to that of mTRF (Figure 4.5C; ρ=-0.26, explaining 7.5% variance
of age). The difference between -0.24 and -0.26 is not significant in a t-test using a
standard deviation derived by bootstrapping (P=0.79, Figure 4.6). The coefficient of
multiple correlation between age and both LTL and mTRF was higher than either
individual correlation (ρ=- 0.34, explaining 9% variance of age); both measurements
contributed significantly to the underlying linear regression model, (P=0.016, t-test
for the TelSeq term; P=0.009, t-test for the mTRF term). This implies that neither
TelSeq nor mTRF captured all the information available, and that TelSeq contains
additional information independent from that provided by mTRF.

Comparing the correlation coefficients with age by the two methods To
test whether the difference is significant in the strength of associations between age
and each of two measures, ρ = -0.24 for TelSeq and ρ = -0.26 for mTRF, we con-
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ducted bootstrapping using R (sample(sample_index,sample_size,replace=TRUE)))
sampling our cohort 1000 times, from which we obtained an estimate for the stan-
dard deviation of ρ for mTRF (0.052) and TelSeq(0.056). We can then compute the t
statistic t = (ρtelseq−ρmT RF )/sqrt(s2

telseq + s2
mT RF ) for hypothesis testing (Figure 4.6).

Coefficient of variation A subset of our samples were sequenced on multiple lanes
in separate runs. They can be considered as technical replicates and used to assess
the variability of TelSeq measures. The coefficient of variation (CV) was computed as
the ratio of the standard deviation (SD) to the mean across the technical replicates
for each sample. We selected 110 samples that were sequenced on more than ten lanes
to evaluate the CV and observed an average value of 3.17% with 0.98% standard devi-
ation (4.7), comparable to or smaller than that from the experimental measurements
(Kimura and Aviv, 2011).

Interestingly, when lanes analyzed separately and the telomere length estimate
calculated as the mean across lanes, weighted by lane yield, the sampling error was
further reduced and the correlation with mTRF was stronger (ρ=0.62 with mTRF
when merged as opposed to ρ=0.60).

Difference in length estimates Notably, the TelSeq estimate of telomere length
was consistently shorter than the mTRF estimate(mean 5.63kb compared to 6.97kb),
and the mean rate of shortening per year was consistently greater (34.5bp/year against
19.8bp/year) (Figure 4.5B, Figure 4.5C). The mTRF measurements reflect the aver-
age distance from a restriction enzyme site (HinfI/RsaI or HphI/MnlI) to the end
of a chromosome, and hence overestimate the canonical region of the telomeres of
TTAGGG repeats only. Kimura and Aviv (2011) obtained a similar figure of around
1kb for the additional sub-telomeric length included in an mTRF measurement. The
difference between the TelSeq and mTRF estimates changes as the TelSeq threshold
k changes, reflecting inclusion of different amounts of subtelomeric sequence (Figure
4.8); although the correlation between TelSeq and mTRF remains similar across a
range of values of k (Figure 4.2).
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Figure 4.6: Compare correlation coefficient obtained from mTRF and TelSeq. To
compare the correlation coefficients between age and telomere length estimates from
TelSeq and mTRF, we conducted 1000 bootstraps with replacement from the data set
to obtain an estimate of the standard deviations of the correlation estimates ρ. We
can then perform a t-test for whether the difference between the observed values -0.24
and -0.26 is significant. The result gave t=0.26, P=0.79, which suggest no statistical
difference between the coefficients obtained from the two measurements.
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Figure 4.7: Sequencing lane variation in TelSeq measures. For each sample that was
sequenced on more than ten lanes, the standard deviation of the length estimates
across lanes is plotted against the mean length estimate. The coefficient of variation
(CV), defined as the ratio of the standard deviation to the mean, varies between 1.3%
and 6.4%, with mean 3.17% and standard deviation 0.98%.
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Figure 4.8: The mTRF measurement is longer than TelSeq estimates across a range
of values for the choices of TelSeq threshold (k). The difference between mTRF and
TelSeq is 1.49kb at k=7, and 5.34kb at k=16. The difference reflects the fact that
mTRF measures the average distance from subtelomeic regions, where the excision
sites of restriction enzymes exist, to the chromosome ends, while TelSeq approaches
include only the ends when choosing a large k. Measurements of two methods correlate
with age similarly, suggesting they both capture the information of telomere shortening
with age.
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4.4 Estimating telomere length from exome sequence
data.

In addition to whole genome sequence data, a large number of samples have exome
sequence data collected by enrichment of whole genome shotgun sequencing libraries
using capture reagents. In theory, if the exome capture works perfectly, it would
not be possible to use these data for our method. However, in practice with current
technology a typical exome sequencing output contains some fraction (typically 10-
50%) of sequence that is off-target, i.e. not exonic. This fraction represents information
on the rest of the genome and can be used to estimate relative telomere length by our
method. To test this approach, we selected 96 samples from the 1000 Genomes Project
pilot that have matched whole genome and exome sequence and applied TelSeq to both
data sets. We found that when we classify telomeric reads as those containing more
than three TTAGGG hexamers, estimates of telomere length from the two data sets
started to be tightly correlated (Figure 4.9). Using our default threshold of k=7, the
two measures have a Spearman’s Rank correlation coefficient 0.78. This result suggests
that TelSeq can effectively work with exome data, which substantially extends its
potential applications.

4.5 Applications of the method

Mutations in POT1 gene predispose to melanoma Robles-Espinoza et al.
(2014) performed exome sequencing on pedigrees recruited in the UK, Netherlands
and Australia with melanoma cases looking for variants that are explanatory to the
disease. Four loss of function variants in the protection of telomeres 1 gene (POT1)
were identified as cosegregating with melanoma cases in family UF20 (See Figure
4.10A for the pedigree with melanoma cases (arrowed) and missense mutations in
POT1 at p.Tyr89Cys). The mutation disrupts the interaction between POT1 and
single-stranded DNA and led to elongated telomere length (Robles-Espinoza et al.,
2014). Telomere length information is thus an important phenotype to this study.
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A B

Figure 4.9: TelSeq estimates from exome data are highly correlated with those from
whole genome data in 96 samples from the 1000 Genomes Project with matched whole
genome sequences and exome sequence data. A. Scatter plots for TelSeq estimates from
matched whole genome sequence and exome sequence at different thresholds of k, the
amount of TTAGGG repeats in a read. Panels are organised from left to right, top
to bottom as k increases from 1 to 16, where in each plot X axis is the estimates
from the whole genome sequences and y axis is the estimates for the matched exome
sequences. A correlation coefficient is calculated for each panel and plotted in B. The
two measurements start becoming tightly correlated with each other when k>= 3.
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Telomere lengths of the cases along with 38 controls that have wild type POT1 gene
were measured using the qPCR method (Figure 4.10B) and Telseq (Figure 4.10C).
Two methods show consistent signal that the cases with mutated POT1 gene have
much longer telomere than the controls (P < 0.00019).

4.6 Conclusion

In conclusion, we have demonstrated an approach for measuring telomere length using
whole genome or exome sequencing data. This is the first study to our knowledge to
evaluate in detail the relationship between the frequency of telomere repeat sequence
in shotgun sequence data and telomere length, and also to validate extensively with
experimental measurements in a representative large sample cohort with a wide range
of ages. There are some limitations to TelSeq, such as it is not able to obtain individ-
ual telomere length for chromosome arms. Nevertheless, Telseq allows any cohort with
existing genomewide sequence data, including increasingly many cancer genomics and
epidemiological cohort studies, to produce a validated measure of the average telom-
ere length at effectively no cost, with no need for the further sample collection and
experimental procedures required by other methods of ascertaining telomere length.

4.7 Software implementation

Telseq is implemented in C++. It uses BamTools (Barnett et al., 2011) to read BAM
files. The source code is licensed under GNU General Public License Version 3 and is
freely available online (https://github.com/zd1/telseq). To compile, a recent version
of GNU Compiler Collection (GCC) is recommended (Version 4.8 or above).
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Figure 4.10: Measuring telomere lengths in melanoma cases. Mutations in the Pro-
tection of Telomeres 1 gene (POT1) were found transmitted in melanoma cases in
pedigree UF20 (A). The telomere length estimates were obtained independently using
a qPCR approach and Telseq (B and C). The cases that red-arrowed and compared
against controls that have wild type POT1. Both methods indicate longer telomeres
in the three cases. Panel A and B are adapted from Figure 2 in Robles-Espinoza et al.,
2014.


