

"Next Generation Sequencing of Cancer Genomes"

Phil Stephens

WTSI :- Cancer Genome Project

Why is it important to study cancer?

Causes of cancer

How cancers develop Pathways involved

Development of tests for early detection New targets for anticancer drug development Monitor whether treatment is working

Challenges of studying cancer

46 Chromosomes

73 Chromosomes

Development of complex cancer genomes

Development of complex cancer genomes

Development of complex cancer genomes

New sequencing technologies

100s of millions of DNA fragments simultaneously

Essentially, 5 YEARS of data every DAY

Identify all classes of mutation in a single experiment

Base Substitutions

Insertions deletions

Copy number changes

Interchromosomal Interchromosomal

Rearrangements

Intrachromosomal

Next Generation Cancer Exome Sequencing

Investigate all protein coding exons/miRNA's simultaneously

Greater sensitivity to detect somatic variants

Can process large numbers of samples

Breast cancer samples (28 total)

25 x ER+

3 x triple neg

Distribution of coding somatic substitutions

ER+

Mean 19.7, (Range 1-45)

Distribution of coding somatic substitutions

Mean 74.3, (Range 29-100)

Substitutions in known cancer genes

PD3995a	AKT1	E17K
PD3995a	NF1	G-1T
PD3994a	PIK3CA	N345K
PD3989a	PIK3CA	E545K
PD3856a	PIK3CA	H1047R
PD3857a	PIK3CA	H1047R
PD3888a	PIK3CA	H1047R
PD3983a	PIK3CA	H1047R
PD3985a	PIK3CA	H1047R
PD3992a	PIK3CA	H1047R
PD3996a	PTEN	Y27D
PD3991a	TP53	G245S
PD4002a	TP53	H179Y
PD3987a	TP53	Y220C
PD3986a	TP53	G+1A
PD3985a	TP53	R306X

Insertions & Deletions

Sample	Gene	Mutation
PD3849a	CDH1	V193X
PD3984a PD3992a	MAP2K4 MAP2K4	V151X I81X
PD3989a	PTEN	L370X
PD3995a PD3988a PD4004a	GATA3 GATA3 GATA3	N352X N352X Read through

Mutations in JNK and p38MAPK pathway

in >50% of ER+ breast cancer

Patient with malignant melanoma

Courtesy of Dr Grant McArthur

Selective inhibitor of BRAF V600E

(Plexxicon 4032)

Courtesy of Dr Grant McArthur

Selective inhibitor of BRAF V600E

(Plexxicon 4032)

Before

15 days after

Courtesy of Dr Grant McArthur

Rearrangement characterisation

Breast cancer HCC38 spectral karyotype

73 Chromosomes, 37 structural abnormalities

Summary of Illumina GA protocol

Summary of Illumina GA protocol

Summary of Illumina GA protocol

Align reads to ref sequence MAQ algorithm

Li Heng, http://maq.sourceforge.net/. Genome Res., Nov 2008

Correctly mapping paired end reads

Chromosome 11

Incorrectly mapping paired-end reads

Chromosome 11

Chromosome 8

PCR amplify in tumour and matched normal

Somatic

Germline

Artefact

PCR amplify in tumour and matched normal

Germline

Artefact

PCR amplify in tumour and matched normal

Breast cancer HCC38 (Triple neg)

238 somatic structural variants

Breast cancer HCC38 (Triple neg)

238 somatic structural variants

Patterns of variation

What are these structural variants doing?

SLC26A6/PRKAR2A in frame fusion gene

SLC26A6/PRKAR2A in frame fusion gene

SLC26A6/PRKAR2A in frame fusion gene

FISH confirmation of tandem duplication

RT-PCR

RT-PCR

RT-PCR

Predicted 914 amino acid fusion protein

MGLADASGPRDTQALLSATQAMDLRRRDYHMERPLLNQEHLEELGRWGSAPRTHQWRTWLQCSRARAYALLLQHLPVLVWLPRYPVRDWLLGDLLSGL SVAIMQLPQGLAYALLAGLPPVFGLYSSFYPVFIYFLFGTSRHISVGTFAVMSVMVGSVTESLAPQALNDSMINETARDAARVQVASTLSVLVGLFQVGLGLIH FGFVVTYLSEPLVRGYTTAAAVQVFVSQLKYVFGLHLSSHSGPLSLIYTVLEVCWKLPQSKVGTVVTAAVAGVVLVVVKLLNDKLQQQLPMPIPGELLTLIGAT GISYGMGLKHRFEVDVVGNIPAGLVPPVAPNTQLFSKLVGSAFTIAVVGFAIAISLGKIFALRHGYRVDSNQELVALGLSNLIGGIFQCFPVSCSMSRSLVQEST GGNSQVAGAISSLFILLIIVKLGELFHDLPKAVLAAIIIVNLKGMLRQLSDMRSLWKANRADLLIWLVTFTATILLNLDLGLVVAVIFSLLLVVVRTQMPHYSVLGQ VPDTDIYRDVAEYSEAKEVRGVKVFRSSATVYFANAEFYSDALKQRCGVDVDFLISQKKKLLKKQEQLKLKQLQKEEKLRKQAASPKGASVSINVNTSLEDMR SNNVEDCKMVIHPKTDEQRCRLQEACKDILLFKNLDQEQLSQVLDAMFERIVKADEHVIDQGDDGDNFYVIERGTYDILVTKDNQTRSVGQYDNRGSFGEL ALMYNTPRAATIVATSEGSLWGLDRVTFRRIIVKNNAKKRKMFESFIESVPLLKSLEVSERMKIVDVIGEKIYKDGERIITQGEKADSFYIIESGEVSILIRSRTKSN KDGGNQEVEIARCHKGQYFGELALVTNKPRAASAYAVGDVKCLVMDVQAFERLLGPCMDIMKRNISHYEEQLVKMFGSSVDLGNLGQStop

Five expressed in frame fusion genes

2 generated by tandem duplications

3 generated by large inversions

Different patterns of structural variation are emerging from other breast cancers

Patterns of somatic structural variation

- Tandem Duplication
- Intrachromosomal other
- Interchromosomal
- Within Amplicons

Patterns of somatic structural variation

Patterns of somatic structural variation

Complex patterns of structural variation

Solexa copy number:- chromosome 6

Complex patterns of structural variation

Solexa copy number:- chromosome 6

Potential applications in healthcare

Personalised Haematology

Time (months)

Tumour-specific rearrangements

Plasma DNA

Work flow

Assay design

Detecting 1 copy of tumour genome

Serial measurements

Months after diagnosis

Potential healthcare applications

- Monitoring tumour response to therapy in real-time
 - Reduce toxicity, prevent drug wastage
- Identifying disease relapse before clinically evident
 Pre-emptive therapy
- Choosing intensity of adjuvant therapy based on risk stratification
- Surrogate marker of cell kill in early phase clinical trials

Potential healthcare applications

- 100 Breast cancers
- 100 Colorectal cancers
- 100 Osteosarcomas

Sequencing whole cancer genomes

Small Cell Lung Cancer

200,000 cases/year worldwide

Propensity to be widely metastatic at diagnosis

2 year survival <15%

Almost exclusively a disease of smokers

Image from:www.surgical-pathology.com/small_cell_carcinoma.htm

Worldwide smoking trends

Jha, Nature Reviews Cancer, 2009

Worldwide smoking trends

Jha, Nature Reviews Cancer, 2009

Cigarette carcinogens

Polycyclic aromatic hydrocarbons

Acrolein

Vinyl chloride

Acetaldehyde

N-Nitrosamines

And >60 others...

Mutational signatures of tobacco exposure

- Somatic substitutions
 - Specificity:

22,910

97% coding

94% non-coding

Mutational signatures of tobacco exposure

- Characteristic mutation spectrum
 - A mutations \downarrow at GpA (p < 0.0001)

- G mutations \uparrow at CpG (p < 0.0001)
- G>T & G>A methylated (p < 0.02)
- G>C unmethylated (p = 0.05)
Strand bias in SCLC genome

Mutations by transcribed (T) vs non-transcribed strands (U)

Is this a typical small cell lung cancer?

IARC database: SCLC cases

SCLC sequenced

245 published substitutions in TP53

22,910 substitutions genome-wide

Conclusions

Paired-end sequencing is an effective tool for characterising structural variation in complex cancer genomes

The average breast cancer has ~ 100 'somatic' structural variants

The average breast cancer has ~1.0 expressed in-frame fusion gene

Exome sequencing will unveil a multitude of novel drug targets in the next few years

That personalised cancer care is on the horizon

Mike Stratton Andy Futreal Peter Campbell

Patrick Tarpey Stuart Mclaren Adam Butler Keiran Raine David Jones Laura Muddie Ignacio Varela Calli Latimer Serena Nik Zainal

Alison Coffey Eleanor Howard

Dan Turner Lira Mamanova

Felix <u>Kokocinski</u> Carol Scott Kai Ye

