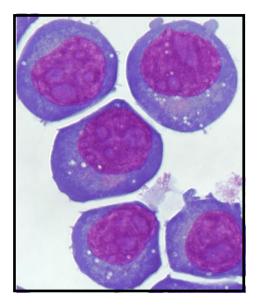


Translation of (cancer) genomes

Ultan McDermott Cancer Genome Project

"Decoding the genome has led to stunning advances in scientific knowledge and DNA-processing technologies but it has relatively little to improve medical treatments or human health." (New York Times, June 20, 2010)


"The subtlety of Nature far surpasseth the subtlety of Man's understanding." (Francis Bacon; 1561-1626)

Background

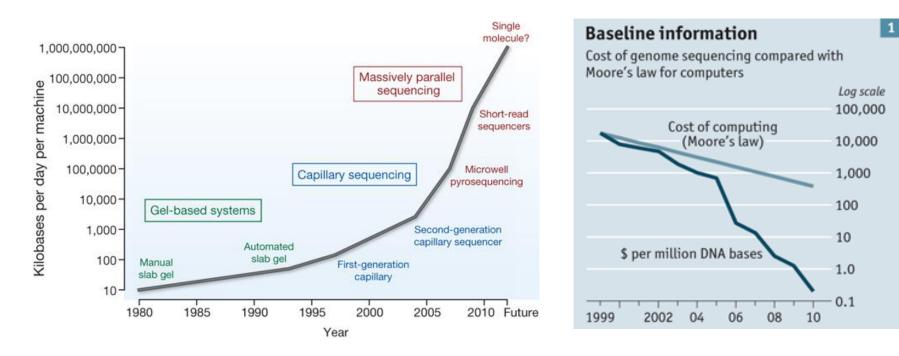
- During a lifespan, 41% of the US population will develop cancer and 21% will die from cancer
- Biggest improvements in survival early detection, prevention strategies, better surgery
- Cancer is a genomic disease
- Can next-gen sequencing improve survival by offering more effective treatments?

Cancer A Disease of the Genome

ger

>11))1111()11				il il				
111	line))))][°) ((an () ((1 1 12		
))))) 21	i f 14	8848 15		1 Ì 18	11	ð f 18		
) 19	20		* * * 21	\$ A '6 22	1. ×v		
		1 i	d 6 e a mars					

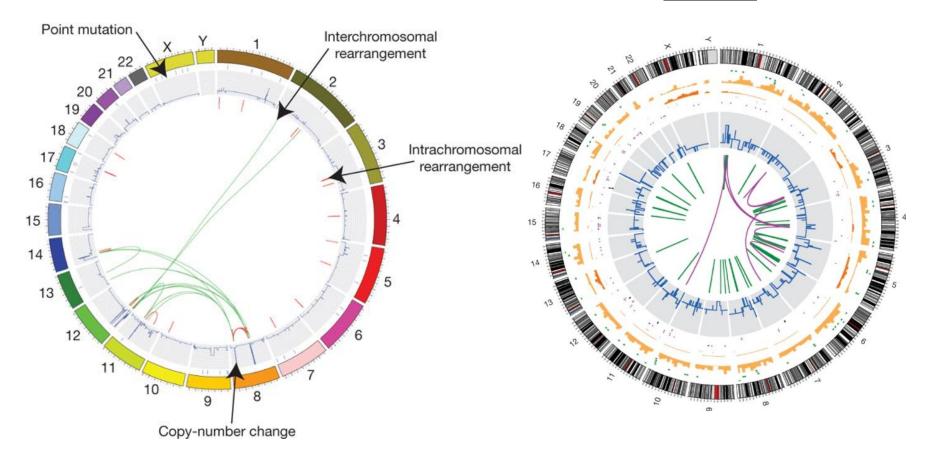
Challenge in Treating Cancer:


- Every tumor is different
- Every cancer patient is different

Improvements in the rate of DNA sequencing

Increased data....

...decreased cost



Catalogue of somatic mutations in cancer cell lines

<u>NCI-H2171</u>

<u>NCI-H209</u>

MR Stratton *et al. Nature* **458**, 719-724 (2009) ED Pleasance *et al. Nature* **000**, 1-7 (2009)

HOME PAG	Е Т	ODAY'S PAPER	VIDEO	MOST POPU	LAR TIM	ES TOPICS	Try Times Reader 2.0 Log In Register Now								
The New York Times Search All NYTimes.com Go									Go						
WORLD	U.S.	N.Y. / REGION	I BUSII	NESS TECH	INOLOGY	SCIENCE	HEALTH	SPORTS	OPINION	ARTS	STYLE	TRAVEL	JOBS	REAL ESTAT	E AUTOS
EDITORIALS COLUMNISTS CONTRIBUTORS LETTERS THE PUBLIC EDITOR GLOBAL OPINION															
EDITORIAL The Genome, 10 Years Later Published: June 20, 2010 E-MAILED BLOGGED SEARCHED VIEWED															
							Ш., т	Iallucina	tions in T	Icapital De	ao Diale to Eld	onlar			

On June 26, 2000, two scientific teams announced at the White House that they had deciphered virtually the entire human genome, a prodigious feat that involved determining the exact sequence of chemical units in human genetic material. An enthusiastic President Clinton predicted a revolution in "the diagnosis, prevention and treatment of most, if not all, human diseases."

Now, 10 years later, a sobering realization has set in. Decoding the genome has led to stunning advances in scientific knowledge and DNA-processing technologies but it has done relatively little to improve medical treatments or human health.

f	FACEBOOK
6	TWITTER
✓	RECOMMEND
Ø	SIGN IN TO E-MAIL
₿	PRINT
ē	REPRINTS
+	SHARE

 Hallucinations in Hospital Pose Risk to Elderly
 What Broke My Father's Heart
 Errol Morris: The Anosognosic's Dilemma: Something's Wrong but You'll Never Know What It

- 4. Regulators Failed to Address Risks in Oil Rig Fail-Safe Device
- 5. Nicholas D. Kristof: My Father's Gift to Me
- 6. Affordable Boutique Hotels in New York City
- 7. Surgeon vs. Knee Maker: Who's Rejecting Whom?
- 8. N.Y.U. Abu Dhabi Scours Globe for Top Students
- 9. Now, Dad Feels as Stressed as Mom

Is (Part 1)

10. John Updike's Archive: A Great Writer at Work

THE **SUNDAY TIMES**

Archive Article

Please enjoy this article from The Times & The Sunday Times archives. For full

From The Sunday Times

June 13, 2010

Genetics to solve why Ozzy Osbourne is still alive

Jack Grimston

THE mystery of why Ozzy Osbourne is still alive after decades of drug and alcohol abuse may finally be solved.

The 61-year-old former Black Sabbath lead singer — who this week begins his health advice column in The Sunday Times Magazine — is to become one of only a few people in the world to have his full genome sequenced.

In addition to giving Osbourne information that could help prevent diseases, it is hoped the results will provide insights into the way drugs are absorbed into the body.

The first full genome was sequenced in 2003 after 13 years of work. Today, analysing a genome takes three months and costs about $\pounds 27,000$.

EXPLORE HEALTH NEWS

The elephant in the room...

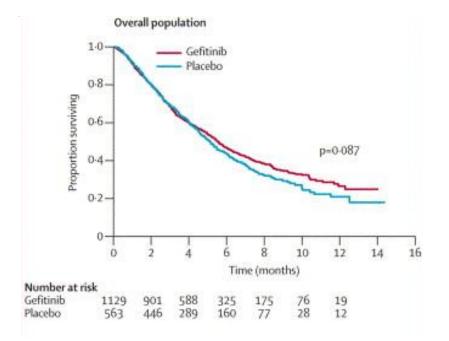
Clinical impact

Rapid & dramatic response to gefitinib in a NSCLC patient

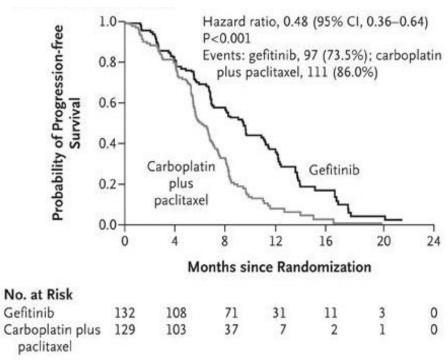
Before Gefitinib

After Gefitinib (6 weeks)

But responses are limited to 10-20% of treated patients = EGFR mutations



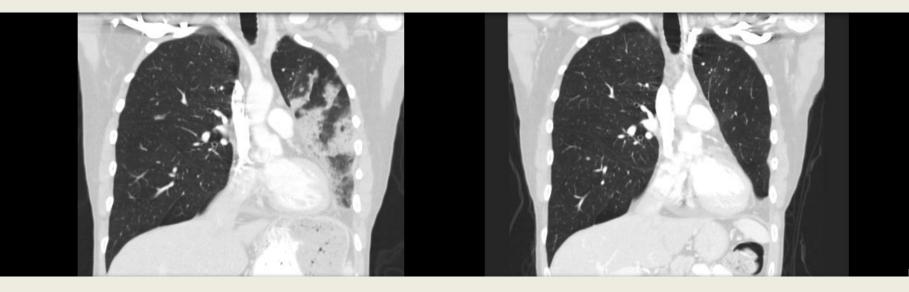
Traditional trial design versus targeted


ISEL study (2005) Gefitinib vs placebo in NSCLC

Mok et al (2009) Gefitinib vs 1st line chemo

EGFR-Mutation-Positive

EGFR mutation: RR 38% *EGFR* wild-type: RR 3% **Cost: \$44 million**

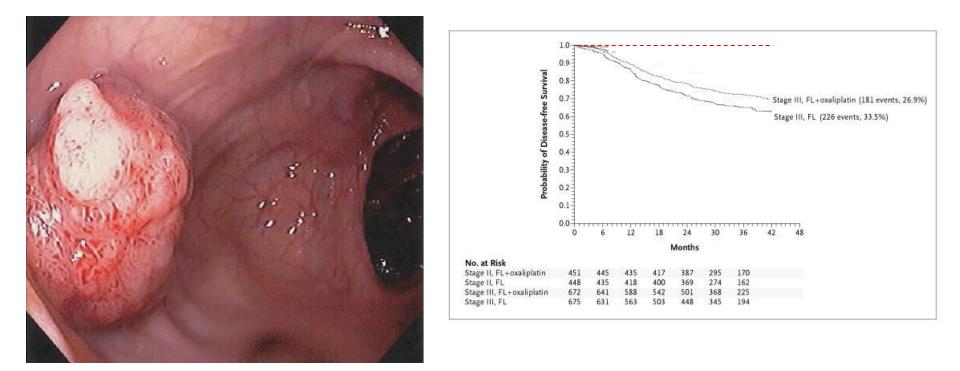

46 yr old Male Non-Smoker with NSCLC ALK Fusion

Pre-Treatment

After 2 Cycles PF-2341066

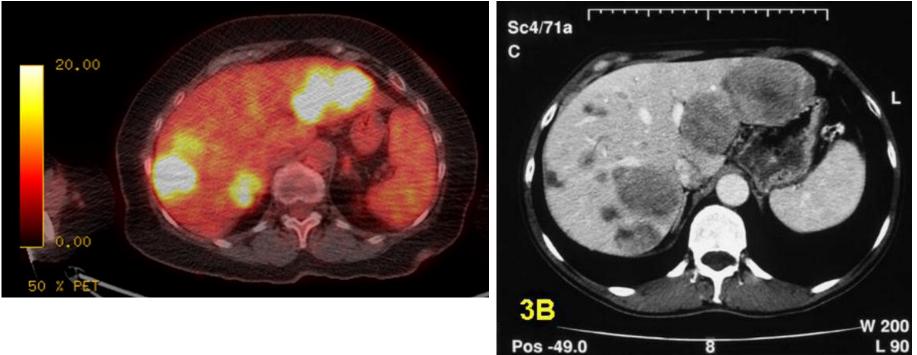
Tumour Responses to PF-2341066 for NSCLC

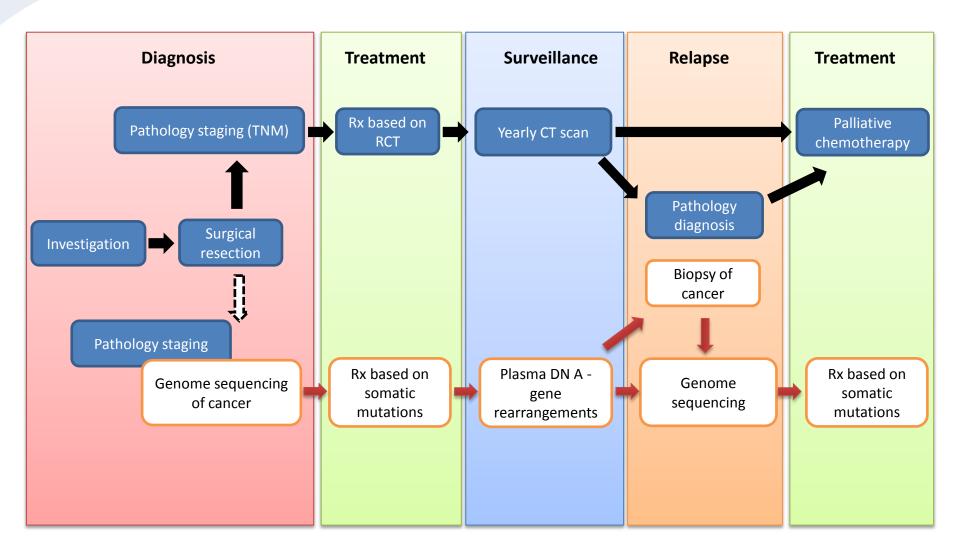
Green - PR Blue - SD Black - PD


Targeted therapies in cancer

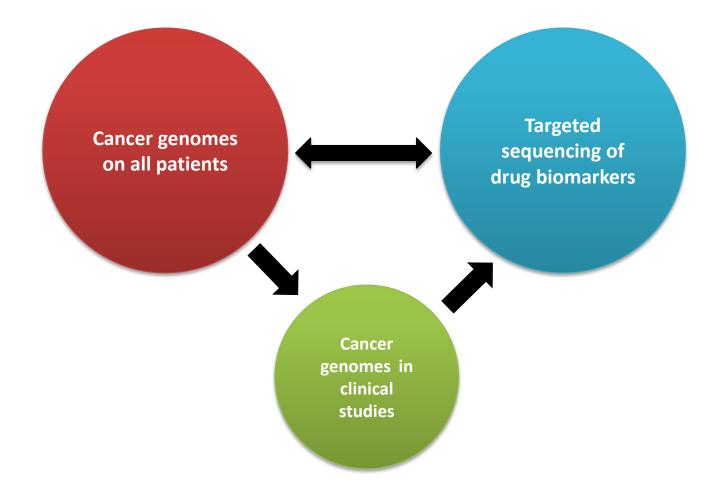
Kinase	Alteration	Tumour types	Therapeutic agent					
Receptor tyrosine kinases								
EGFR	Mutation, amplification	Lung, GBM	Gefitinib, erlotinib					
ERBB2	Amplification	Breast	Lapatinib					
FGFR1	Translocation	CML	PKC412, BIBF 1120					
FGFR2	Amplification, mutation	Gastric, breast, endometrial	PKC412, BIBF 1120					
FGFR3	Translocation, mutation	Multiple myeloma	PKC412, BIBF 1120					
PDGFR alpha	Mutation	GBM, GIST	Sunitinib, sorafenib, imatinib					
PDGFRA beta	Translocation	CMML	Sunitinib, sorafenib, imatinib					
ALK	Mutation/amplification	Lung, neuroblastoma, ALCL	PF-2341066					
c-MET	Amplification	Gefitinib-resistant NSCLC, gastric	PF-2341066, XL184, SU11274					
IGF-1R	Activation by IGF-II ligand	Colorectal, pancreatic	CP 751 871, AMG479					
c-KIT	Mutation	GIST	Sunitinib, imatinib					
FLT3	Internal tandem duplication	AML	Lestaurtinib, XL999					
RET	Mutation, translocation	Thyroid medullary carcinoma	XL184					
Non-receptor tyrosine kinases								
Abl	Translocation (Bcr-Abl)	CML	Imatinib					
JAK2	Mutation (V617F), translocation	CML, MPD	Lestaurtinib, INCB018424					
Serine/threonine/lipid kinases								
BRAF	Mutation (V600E)	Melanoma, colon	SB-590885, PLX-4720, RAF265, XL281					
РІЗК	PIK3CA mutations	Colorectal, breast, GBM, gastric	BEZ235					

Patient JS; 56-year old architect


6 month history of altered bowel habit, weight loss, bleeding


Patient JS

2 years later – right-sided abdominal pain, nausea, weight loss



Current NHS cancer management

The future of genomics in the NHS

And the winners are...

- Expertise in next-gen sequencing (clinical samples)
- In vitro model organisms to define biologically significant mutations $oldsymbol{V}$
- High-throughput screens of the latest cancer drugs from pharma
- Bioinformatics expertise to identify driver genes
- Strategic alliances with industry
- International leadership