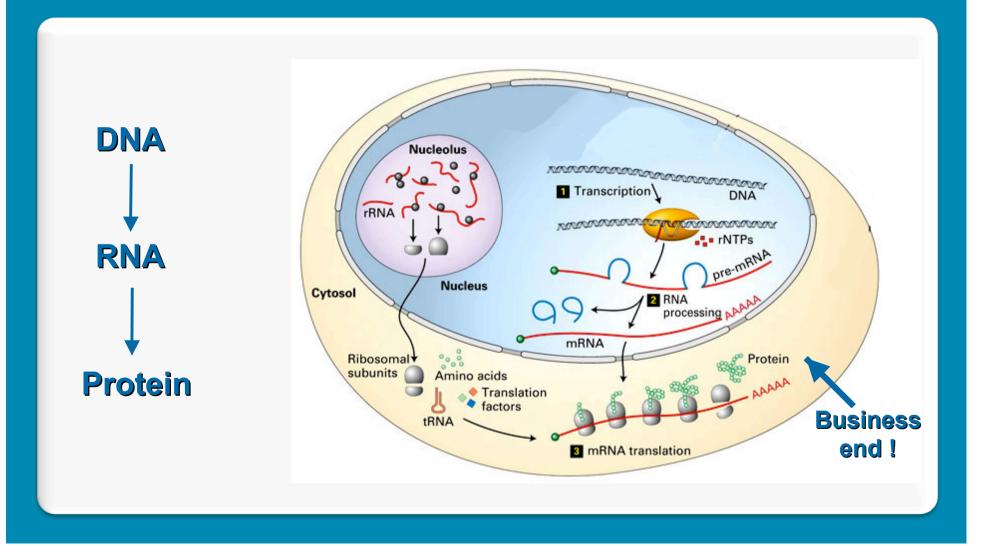
Genes & Disease

George Vassiliou T82


Genes play a role in (nearly) all human diseases!

Increasin g role of genes Lead poisoning Chickenpox Diabetes Schizophrenia Cystic fibrosis Myxomatosis!!!!!!

Talk outline

1. How can genes cause disease? 2. Mutations and Polymorphisms 3. Types of genetic inheritance 4. Monogenic Disorders 5. Polygenic disorders 6. Chromosomal disorders 7. Cancer

How can genes cause disease?

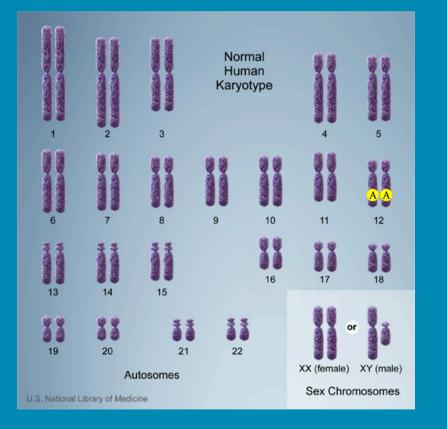
Changes in gene DNA and disease

1. Mutations

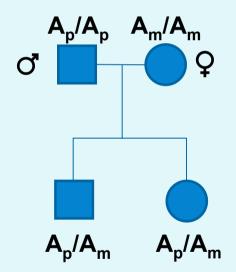
Rare variants in DNA code or copy number
Inherited or acquired during life
Defective forms of a gene (e.g. Cystic fibrosis

mutation)

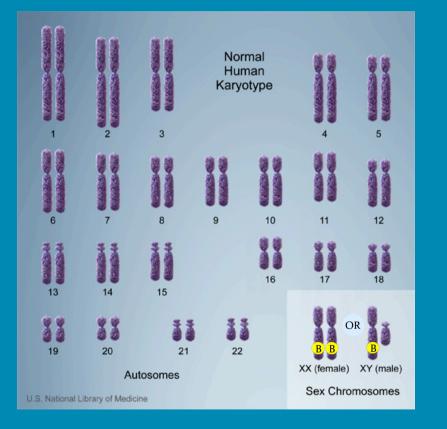
2. Polymorphisms

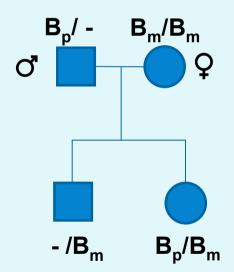

Common variants in DNA code or copy number Always inherited

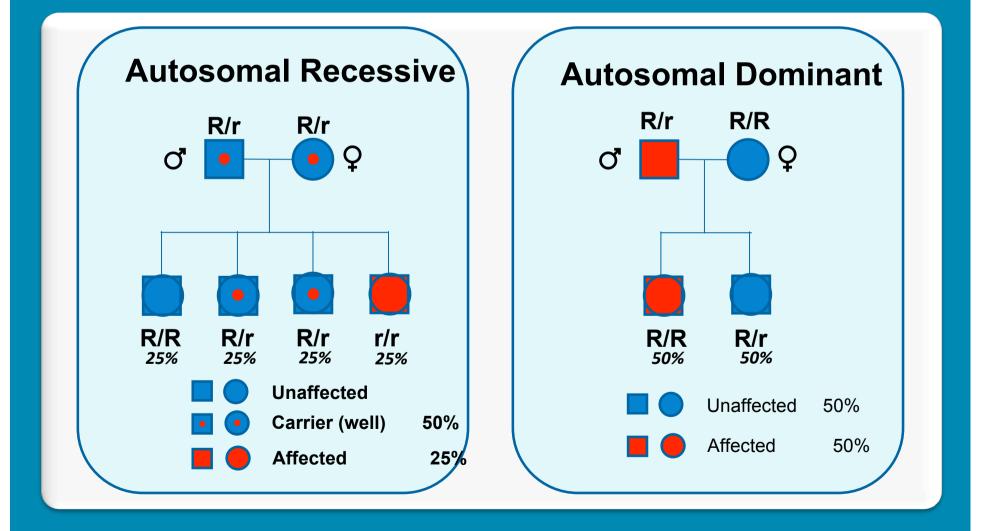
~ Normal versions of a gene (e.g. blue vs brown eyes)

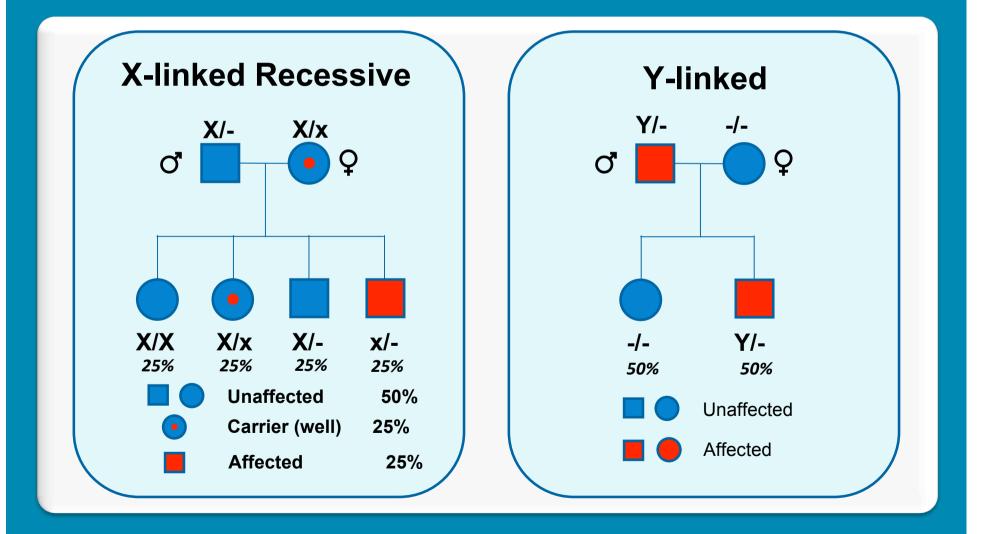

Mutations and polymorphisms

DNA :	ACT	CAT	ATT	TCA	ATT	TCA	TCA	ACT	GAA	GAA	ССТ	TAA
PROTEIN:	Т	H	I	S	I	S	S	Т	3	12	Р	*
<u>Silent</u>												
DNA:	ACT	CAT	ATT	TCA	ATT	TCA	TCA	ACT	GAG	GAA	CCT	TAA
PROTEIN:	т	H	I	S	I	S	S	т	12	E	Р	*
Missense												
<u>Missense</u> DNA:	ACT	CAT	ATT	TCA	ATT	ТСА	ТСА	АСТ	GAA	GAA	СТТ	ТАА
	ACT T	CAT H	ATT I	TCA S	ATT I	TCA S	TCA S	ACT T	GAA E	GAA E	CTT L	TAA *
DNA:												
DNA:												
DNA: PROTEIN:	Т	H	I	S	I	S	S	Т		E	L	*


Chromosomes, genes & inheritance

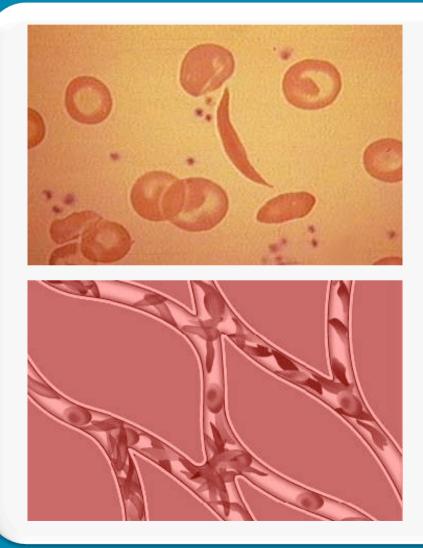

Autosomal Inheritance


Chromosomes, genes & inheritance


X-linked Inheritance

Dominant and recessive diseases

Sex-linked diseases



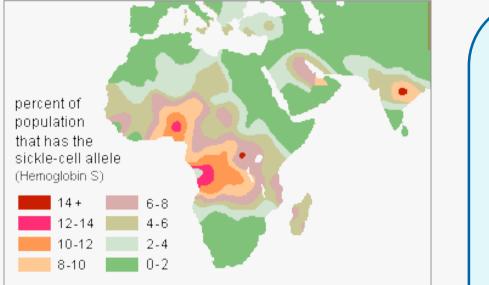
Single gene diseases (monogenic)

Mutations – Who gets it?

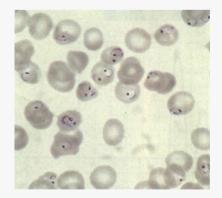
Disease	Gene (protein)	Tissue(s)	Inheritanc
Thalassaemia	Haemoglobin	Red Blood Cells	AR
Tay Sachs	Hexosaminidase A	Brain	AR
Cardiomyopathy	e.g. MYH7	Heart	AD
Huntington's disease	Huntingtin	Brain	AD
Muscular Dystrophy	Dystrophin	Muscle	XLR
Haemophilia A	Factor VIII	Clotting System	XLR
Sickle Cell Anaemia	Haemoglobin	Red Blood Cells (Blood/Brain/Bones/Splee n/Eyes/Heart/Lungs/Liver)	AR
Cystic Fibrosis	CFTR	Lungs/Liver/Pancreas	AR
Neurofibromatosis 1	NF1	Nerves/Brain/Skin/Eyes/ Adrenals/Skeleton/Blood	AD

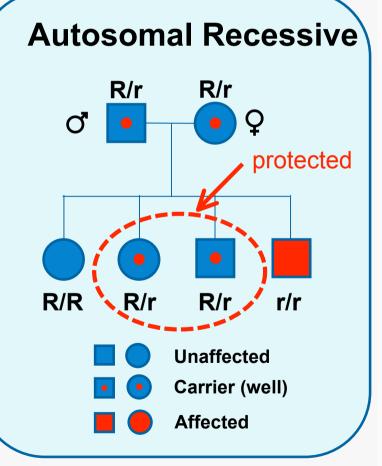
Sickle Cell Disease

Autosomal Recessive


Missense point mutation in the β -globin gene(Haemoglobin).

Abnormal Haemoglobin (HbS) precipitates and deforms red blood cells.


Chronic anaemia due to destruction of red cells and intermittent "crises" caused by obstruction of small blood vessels


Affects most organs

Sickle Cell Disease & Malaria

Huntington's Disease (Chorea)

Autosomal Dominant Neurodegenerative disorder

Deposition of abnormal protein in neurons Symptoms usually begin between ages of 30-50 years

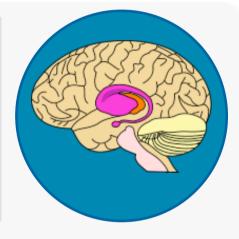
Loss of coordination, involuntary movements (chorea), psychiatric illness, suicide. Death comesuon average 12 years after onset

PHILADELPHIA, APRIL 13, 1872. No. 789.] [Vol. XXVI .- No. 15.

ORIGINAL DEPARTMENT.

Communications.

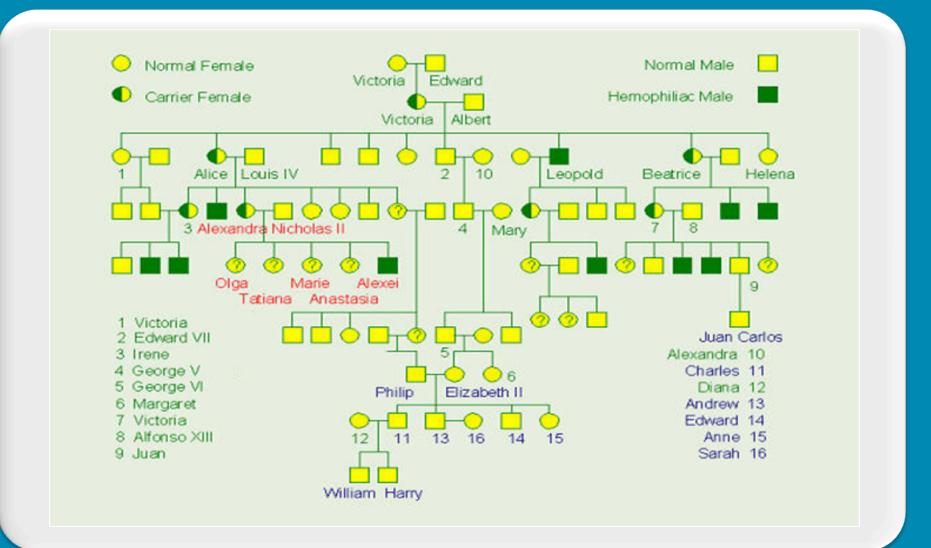
ON CHOREA. BY GEORGE HUNTINGTON, M. D., Of Pomeroy, Ohio.


Essay read before the Meigs and Mason Academy of Medi-cine at Middleport, Ohio, February 15, 1872

vous system. The name "chorea" is given to backs. The shoulders are shrugged, and the the disease on account of the dancing propen. feet and legs kept in perpetual motion; the sities of those who are affected by it, and it is toes are turned in, and then everted; one foot a very appropriate designation. The disease, is thrown across the other, and then suddenly as it is commonly seen, is by no means a withdrawn, and, in short, every conceivable dangerous or serious affection, however dis. attitude and expression is assumed, and so tressing it may be to the one suffering from it, varied and irregular are the motions gone or to his friends. Its most marked and char- through with, that a complete description of

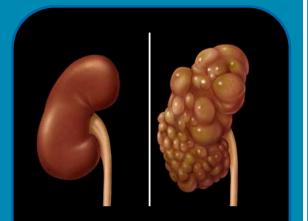
The upper extremities may be the first affected, or both simultaneously. All the voluntary muscles are liable to be affected, those of the face rarely being exempted.

If the patient attempt to protrude the tongue it is accomplished with a great deal of difficulty and uncertainty. The hands are kept Chorea is essentially a disease of the ner- rolling-first the palms upward, and then the

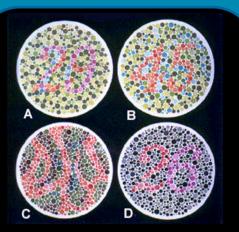

Haemophilia A

The first bleeding disorder described Mutation in factor VIII gene X-linked recessive Severity varies according to amount of factor VIII Most patients have severe disease (<1%) Spontaneous bleeding Treated with Factor VIII replacement

Up to 30% have no family history !! Spontaneous mutations arise in sperm more often than eggs (3:1)


Haemophilia A – the royal disease

Autosomal Recessive



Autosomal Dominant

Polycystic Kidney Disease

X-linked Recessive

Colour Blindness

X-linked Dominant

Albinism

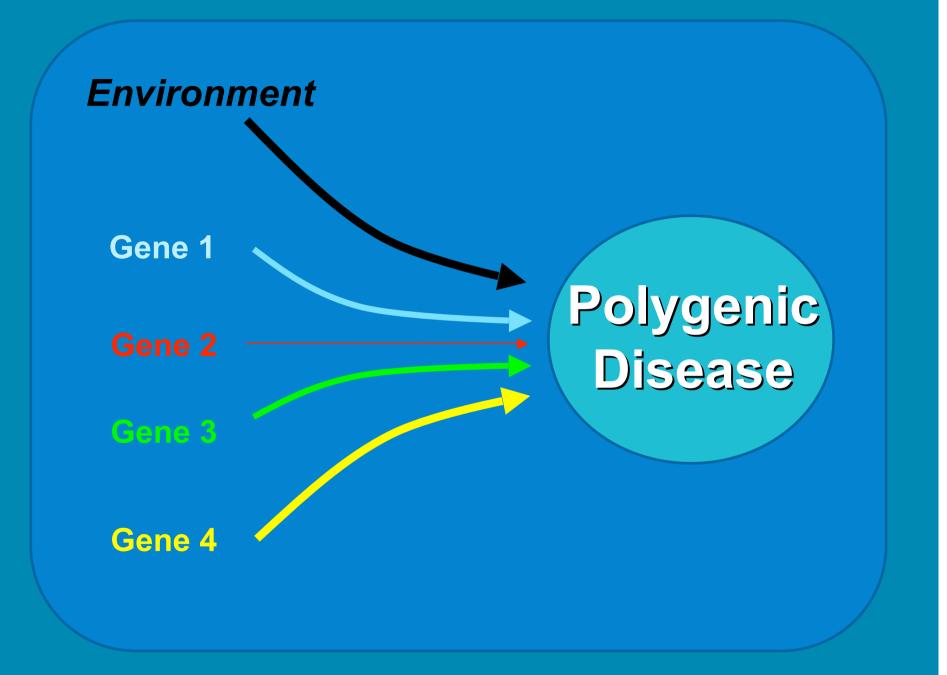
Progeria

Vitamin D resistant rickets

Y-linked condition ?

Hairy ears !!!

All his sons would get it, but thankfully not his daughters !!

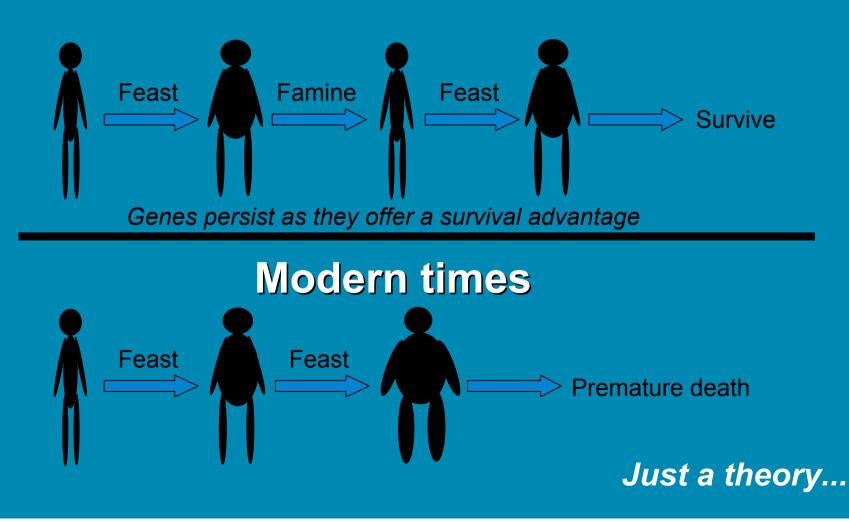

Multi-gene diseases (polygenic)

Polygenic disorders

- Common
- Multiple genes involved
- Environment plays a significant role
- Many gene variants identified that increase/decrease the risk of most common polygenic diseases
- Many remain unknown
- Each variant affects the function of the gene only slightly

Prevalence of some polygenic disorders

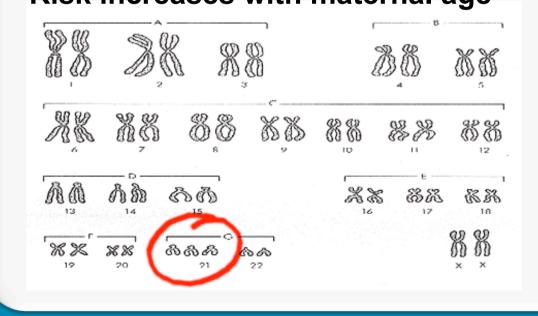
Disorder	Frequency (%)
Schizophrenia	1
Asthma	4
Ankylosing spondylitis	0.2
Crohn's disease	0.15
Hypertension (essential)	5
Osteoarthritis	5
Type II diabetes	5



What % of the risk of polygenic diseases is due to inherited genes ?

Disorder	Frequency	Heritability (%)
Schizophrenia	(%) 1	85
Asthma	4	80
Ankylosing spondylitis	0.2	70
Crohn's disease	0.15	55
Osteoarthritis	5	55
Type II diabetes (NIDDM)	6	26

Concordance rates in twins (%)					
	dentical	Non-identical			
Cystic Fibrosis	100	25			
Die on a Monday	14	14			
Hypertension	30	10			
Rheumatoid Arthritis	30	5			
Type I diabetes (IDDN	1) 36	5			


Why are diabetes & obesity so common? Ancient times

Chromosomal disorders

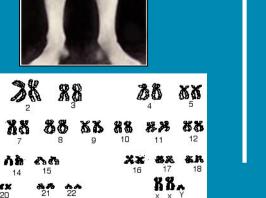
Down Syndrome

Spontaneous mutation, 1 in 800 births Three copies of chromosome 21 (contains approx. 350 genes) >90% due to failure of chromatids to separate during meiotic cell division (eggs) Risk increases with maternal age

Down Syndrome - features

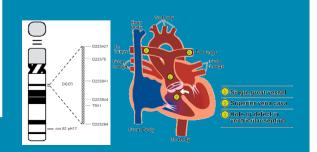
Symptoms are due to all cells having 3 copies of all the genes on chromosome 21. The genes themselves are normal.

- Characteristic facial appearance
- Single deep crease across center of palm
- Excessive space between first and second toe
- Flexible joints
- Low muscle tone
- Mild to moderate learning difficulties


- Increased incidence of Alzheimer's disease (? dosage effect of APP)
- Increased risk of leukaemia
- Decreased risk of other cancers

Klinefelter's syndrome Turner's syndrome Di George syndrome (XXY) (XO) (del 22q)

XX


XX XX 19 20

How and why does cancer develop?

- Gene mutations are responsible for cancer
- Cancers develop due to many mutations in a single cell
- Most cancer gene mutations are acquired during life
- -Environmental risk factors accelerate acquisition of mutations
- Some inherited mutations increase the risk of cancer
- Some people inherit combinations of gene variants that increase the risk of cancer

- Some people develop cancer in the absence of evident inherited or environmental risks...

Heritable cancer risk **Increased cancer risk** Little heritable Very high cancer risk risk (in most cases) **BRCA1** mutations Lung Cancer Neurofibromatosis 1 Melanoma **Prostate Cancer** Adenomatous Polyposis Col

The golfing chimp theory of Cancer !!!

1.Chimp is a very poor golfer2.Everybody has their own chimp3.Hole = mutation

4.18-hole golf course

5.If you inherit a high cancer risk, the chimp starts at later hole (e.g. No 9)6.If you smoke, drink, suntan etc the monkey takes shots more often

7.On average the chimp finishes the course after 90 years (5 years per hole)– but can be shorter or longer

- 1. Childhood leukaemia
- 2. Familial breast cancer
- 3. Lung cancer in a heavy smoker

Genes & disease - Summary

- Our genes make us what we are
- Changes in our genes can cause disease
- Our environment and behaviour modify the effects of genes
- Some diseases are cause by single gene changes
- Several common diseases are due to many genes + the effects of the environment
- Most genes changes that lead to cancer happen during life, some are inherited

• Monkeys do not cause cancer !!