The adventures of Superbug; tracking the global spread of MRSA

Matthew Holden

Staphylococcus aureus

Image kindly provided by Sharon Peacock, Cambridge University

- Widespread Gram +ve bacteria
 - Natural flora of the skin
 - ~40% carriage in humans
 - Farm animals and pets
- Versatile pathogen associated with a wide range of diseases
 - Minor wound infections
 - Food poisoning
 - Toxic shock syndrome
 - Endocarditis
 - Haemolytic pneumonia
- Complex pathology

Virulence factors

Staphylococcus aureus

Image kindly provided by Phil Hill, Nottingham University

- Hospital-acquired infections
 - In the USA 1 million cases of hospital acquired *S. aureus* infections a year
 - Prolonged hospital stay
 - 2.5 times longer
 - Increased costs
 - £1 billion a year
- Community-acquired infections
 - Invasive
 - Low levels of drug resistance
 - Increase in the levels of infection

Antibiotic resistance

•

- Antibiotic resistance
 - **MRSA** Methicillin resistant *S. aureus*
 - VISA Vancomycin insensitive S. aureus (MIC, 8-16 µg ml⁻¹)
 - **VRSA** Vancomycin resistant *S. aureus* _
- On the increase....

Waves of drug resistant S. aureus

Chambers and De Leo Nature Reviews | Microbiology

Spread of MRSA in Europe 2001-2009

Voluntary reporting of *Staphylococcus aureus* bacteraemia in England, Wales and Northern Ireland, 2009

Figure 1: Trend in *Staphylococcus aureus* bacteraemia laboratory reports and meticillin susceptibility (voluntary reporting scheme): England, Wales and Northern Ireland 2000-2009

What can genomics do for superbugs?

- Complete gene map
 - Unravel the mechanisms of disease
 - Look for the genes of proteins that attack the host virulence factors
 - Identify new targets for antimicrobial therapies
 - New drugs
 - Vaccine
- How do superbugs evolve?
 - Antibiotic resistance
 - Mobile cassettes
 - Virulence factors
 - Bacteriophage

Sequenced Staphylococcus aureus strains

N315	Hospital-acquired MRSA
Mu50	Hospital-acquired VISA
MW2	Community-acquired MRSA
MRSA252	Hospital-acquired MRSA
MSSA476	Community-acquired MSSA
COL	Early MRSA from the 1960s
USA300_FPR3757	Community-acquired MRSA
NCTC8325	Lab strain
JH1	Hospital-acquired MRSA
JH9	VISA derivative of JH9
RF122	Bovine isolate
USA300_TCH1516	Community-acquired MRSA
Newman	Hospital-acquired MSSA
Mu3	Hospital-acquired VISA

Kuroda *et al.* (2001) Kuroda *et al.* (2001) Baba *et al.* (2002) Holden et al. (2004) Holden et al. (2004) Gill et al. (2005) Diep *et al.* (2006) Gillapsy et al. (2006) Mwangi *et al.* (2007) Mwangi *et al.* (2007) Herron-Olson (2007) Highlander et al. (2007) Baba et al. (2008) Neoh et al. (2008)

Genomics: from individual to the population

The S. aureus ST239 lineage

Collaboration with Hermínia de Lencastre, Ed Feil, Sharon Peacock

- The most common worldwide strain of MRSA
 - ~90% of Asian strains in the MLST database
 - Significant in 26 countries outside Asia
 - Particularly Brazil
 - Recent outbreak in Guy's and St Thomas', London (TW20)
- The assembled collection includes 62 isolates:
 - Wide geographical range:
 - Europe, North and South America, Asia, Australia
 - 20 year temporal range
 - 20 isolates from a 7 month hospital transmission study
- Collection sequenced using Illumina multiplexing
 - High resolution genotyping and pan-genome diversity

Holden et al. (in press) Genome sequence of a recently emerged highlytransmissible, multi-antibiotic and antiseptic resistant, variant of methicillinresistant *Staphylococcus aureus* (MRSA) sequence-type 239 (TW) *J Bacteriol*

- Harris *et al.* (2010) Evolution of MRSA during hospital transmission and intercontinental spread. *Science*

Whole genome sequencing as a typing tool

Geographic structure within ST239

Genetic variation within the lineage

Clinical practice is shaping the genetic makeup of ST239

Sappasithiprasong Hospital

Summary

- S. aureus generate diversity by a variety of means
 - Core and accessory genomes
 - Horizontal gene transfer is important
 - Evidence of the rapid movement of virulence and drug resistance determinants
 - Point mutations SNPs
- Whole genome sequencing provides a high-resolution view of the epidemiology and microevolution
 - Geographical structuring and temporal spread
 - Evidence of intercontinental movement of the lineage
 - Potential to trace person-to-person transmission
- Reducing costs and improving performance of sequencing
 - Future technology transit, from lab to bedside?

S. aureus ST239 Collaborations

Stephen Bentley Simon Harris Julian Parkhill Michael Quail

University of Bath Ed Feil

Mahidal-Oxford Tropical Medicine Unit, Bangkok

Mahidol Oxford

Sharon Peacock Emma Nickerson Narisara Chantratita Nick Day

University of London Jodi Lindsay

King's College Jonathan Edgeworth

Universidade Nova de Lisboa

Hermínia de Lencastre

Susana Garadete

Ana Tavares

Imperial College

Imperial College London Brian Spratt David Aanensen

