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Module 7 – Genome Annotation and Differential Expression

Introduction to Genome Annotation
One of the key goals of producing a draft genome is to define the genes encoded in it. This is the 
first step in answering many important questions. How many genes does this organism have? 
What metabolic pathways are present? Are there novel gene families encoded in the genome? 
Subsequent uses of the genome, such as proteomics and transcriptomics experiments rely on 
accurate gene models. We concentrate here on protein coding genes, however one would also try 
to identify non-protein coding RNAs such as tRNAs, rRNAs, miRNAs, transposons etc.

Producing accurate gene models is just as hard as producing a good assembly. You have seen 
that one way of producing a set of gene models is to transfer them from a closely related 
organism. However, if there is not a closely related genome, or the most closely related genome 
is not well annotated, this may not be an option. Furthermore, even if there is a closely related, 
well annotated reference genome as in the case of the malaria parasite - Plasmodium falciparum 
strain 3D7 and P. falciparum strain IT, there may be regions of your genome of interest which 
are not syntenic to the reference. Indeed, this is the case here, as the subtelomeric regions of 
Plasmodium chromosomes are highly variable and cannot be used to transfer gene models, even 
between strains of the same species.  

When there is no reference genome, or for regions which are not syntenic to the reference, we 
can use ab initio gene finding methods. These identify genes based on properties of the genome 
sequence independent of whether they show homology to known genes. They can be trained and 
it is common to identify the most well conserved genes by homology, then to train an ab inito 
gene finding algorithm using these well conserved genes so that it can learn what a gene looks 
like in the particular genome you are interested in. In this module we will use the program 
Augustus to predict gene models ab initio.

Another approach to identifying gene models is to determine those regions of the genome which 
are transcribed. Prior to the advent of second generation sequencing technologies Sanger 
capillary sequencing was used to sequence mRNAs and generate Expressed Sequence Tags 
(ESTs). These could be used to identify the most highly expressed genes and improve some 
gene models. With second generation sequencing technologies we are able to sequence mRNA 
transcripts from essentially all the genes which are expressed. This is known as RNA 
sequencing or RNA-seq (Mortazavi et al., 2008; Wang et al, 2009) and the resulting data 
provides incredible resolution of gene structure. This method is not biased by which genes are 
present in previously sequenced genomes (as with RATT) or by how much their structure 
reflects that of other genes in the genome (as with Augustus), but rather by how highly 
expressed they are and how extensively we sequence the transcriptome.
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Module Summary
1. Generating an initial set of gene models (merging RATT and   

Augustus)

2. Mapping RNA-seq data to a reference

3. Viewing RNA-seq mapping in Artemis

4. Correcting gene models based on RNA-seq data

5. Automatically generating gene models based on RNA-seq data

6. Using RNA-Seq to improve annotation

In this module you will generate a set of gene models ab initio using the gene prediction 
tool Augustus. It has been trained using the highly accurate, manually curated gene 
models of P. falciparum 3D7. These gene models will be used to fill in those regions of 
the P. falciparum IT assembly which could not be annotated using RATT because they 
are not syntenic to P. falciparum 3D7. You will then map RNA-seq data to your 
assembly and use this to improve the gene models. There will be inaccuracies from the 
RATT transfer due to technical error and due to real differences in the gene structures. 
There will be inaccuracies in the Augustus predictions due to gene models which do not 
follow the expected pattern of a Plasmodium gene and due to inaccuracies in the genome 
assembly. These can be addressed using the RNA-seq mapping.

Below is a model of the eukaryotic protein-coding gene highlighting features relevant to 
their annotation. Note that compared to bacteria, eukaryotic genes frequently have 
multiple exons, separated by un-translated introns and 5` and 3` Un-Translated Regions 
(UTRs) which do not encode part of the protein sequence.

Figure showing the key features of a eukaryotic gene. The exact DNA 
sequence of the splice sites may vary. 
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1. Generating an initial set of gene models
A. Generate gene models ab initio

The ab initio gene prediction algorithm Augustus has already been trained with 
gene models from Plasmodium falciparum 3D7. You will now run it on your 
Plasmodium falciparum IT strain chromosome to predict a set of gene models.

Navigate to the module 7 data directory. On the command line, type:

augustus --species=pfalciparum IT.genome.fa > augustus.gtf

The file augustus.gtf now contains your predicted gene models

Next we are going to convert the Augustus GFF to EMBL format. On the command line, 
type:

cat augustus.gtf | augustus2embl.pl > augustus.embl 

Although Artemis can display gff files, the visualization is better for embl files (if you want 
you can also try loading the gff file into Artemis).

It is typically much more challenging to train an ab initio gene finder than to run it. 
Most ab initio gene finders require a set of very accurate models to train them, 
which may be predicted from highly conserved genes, RNA-Seq and typically 
manual curation of a few hundred gene models. The chosen training set can 
influence which types of gene models get better or worse predictions, so should 
be carefully chosen.
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B. Examine gene model predictions

We will open some gene models which we transferred from P. falciparum 3D7 
using the tool RATT. We can compare them to the gene models predicted de 
novo by Augustus. 

On the command line, type:

art Transfer.ordered_Pf3D7_05.final.embl &

Load in Augustus models. In Artemis:

File -> Read An Entry and select the file augustus.embl.

Right click in genome window, select “One Line Per Entry”.

The transferred models have different colours and annotation, while the newly predicted 
genes have the default colour (blue), and are named g1, g2, g3…

Check out different loci in this chromosome to appreciate the difference in the annotation 
files
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Have a look at the gene PF3D7_0515600. Does Augustus perform better than 
RATT? What has gone wrong with the prediction? Go to the gene by Goto -> 
Navigator -> “Goto Feature With Gene Name”. Tip: you don’t have to type in the 
complete gene name.

Look at the gene PF3D7_0504800. Perhaps due to the low GC content of this 
region Augustus decided that it is intronic (Graph -> GC content (%) ). How could 
you verify the prediction? 
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C. Combine RATT and Augustus gene models

Augustus is able to predict gene models in regions of the IT genome which have 
no synteny with the 3D7 genome, principally the subtelomeres. However, on the 
whole, the RATT-transferred gene models ought to be more accurate because 
the IT and 3D7 genome are otherwise very similar. Therefore it is perhaps most 
useful to add in only those Augustus gene models which do not overlap 
RATT-transferred models. To do this, the Augustus gene models must be 
converted into EMBL format.

If you want to keep any augustus gene model you have edited, then delete the 
overlapping RATT model. How does the annotation look? How many extra gene 
models do we have compared to using the RATT-transferred ones alone? Use the 
function View -> Overview with and without the “augustus.embl” entry selected to 
see some stats. In the next section we are going to show how RNA-Seq data can 
be used to correct gene models.

Unselect the 
“augustus.embl” entry.

Go to Select -> All CDS features

Re-select the 
“augustus.embl” entry.

Go to Select -> Features 
Overlapping Selection

The Augustus gene models which 
overlap RATT models should now 
be selected. Delete them! Edit -> 

Selected Features -> Delete

n.b. deselect any augustus 
(blue) gene models which you 

have edited and want to keep by 
shift-clicking that model.
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We need to save the merged annotation:
File -> Save An Entry As -> New File -> augustus.embl

Save to … “augustus_keep.embl”

Now merge it into the original file:
File -> Read Entry Into -> Transfer… Transfer.ordered_Pf3D7_05.final.embl Select 
a file … “augustus_keep.embl”

And now save the merged file: 
File -> Save An Entry As -> New File -> Transfer.ordered_Pf3D7_05.final.embl

Save to … “Merged_annotation.embl”

This file “Merged_annotation.embl”  can now be used as a basis for further annotation. 
Always remember to save your work! You can deselect the “augustus_keep.embl” entry.

Gene models can also be merged/overlapped/removed bioinformatically using 
custom scripts or the free command-line software BEDtools 
http://bedtools.readthedocs.org/en/latest/. The most convenient formats for 
manipulating annotation are GFF/GFF3/GTF and BED. Artemis works best with 
EMBL files, but we hope to improve compatibility with GFF in the future
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D. Functional annotation
For those gene models transferred by RATT, you will have a range of functional 
information which will help you identify the types of genes present in your 
genome. This functional information has been manually curated for P. falciparum 
3D7 based on the literature. For those genes predicted de novo by Augustus 
there is no such information. It is beyond the scope of this module to present a 
solution for assigning functional annotation for all these extra genes, but you can 
annotate a few of them yourself. Product calls for genes are usually defined by 
looking for orthologues or best BLAST hits in other organisms for which a gene 
has been annotated with a useful name. Many annotation databases exist for 
different purposes; Pfam for functional domains pfam.sanger.ac.uk, Gene 
Ontology for functional terms http://www.geneontology.org/ and KAAS for 
enzymes www.genome.jp/tools/kaas/. There are often specialized databases for 
specific classes of genes/organisms you might be particularly interested in. 

For Plasmodium annotation, the best place to look is PlasmoDb, a large resource of 
comparative genomics data for these species. 

Right click on an augustus gene model (blue ones), View -> Amino Acids of Selection 
as Fasta -> Ctrl-A -> Ctrl-C

In a web browser, navigate to http://plasmodb.org/

Under the Tools menu, select BLAST. In the web form, select “Proteins”, “blastp”, 
select all Target Organisms, paste in your sequence (Ctrl-V) and “Get Answer”. It is 
essential that your BLAST-search parameters match the search you are trying to do 
(protein versus protein in this case).

If the top hit has a good E-value (e.g. less than 1e-20), select it and copy the description. 
Then select the gene model, press “Ctrl+e”, and add a new line as below. In the example 
below Augustus prediction g17 is a gene from the rifin (RIF) family. 
/product=“rifin (RIF)”

Click OK to save the annotation. Now, when someone comes across this gene, they will 
know what sort of gene it is - well done!

http://plasmodb.org/
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We will use the program TopHat, part of the Tuxedo suite, to map RNA-Seq reads 
to our references genome, chromosome 5 of P. falciparum IT. In this case we are 
mapping single-end reads generated from RNA extracted during the blood stage of 
malaria.

TopHat requires an index of the reference. Create the index:

bowtie2-build IT.genome.fa IT.genome

Now run TopHat (n.b. this may take several minutes depending on computer):

tophat -o 30h_map -I 10000 IT.genome blood_stage_30h.fastq.gz

To read the BAM file:

samtools view 30h_map/accepted_hits.bam | head

2. Mapping RNA-Seq data to a reference

TopHat will generate several files in the new “30h_map” directory you have 
specified. The most important is accepted_hits.bam. This contains the mapping. 
Briefly read through the file if you like. For some reads, there are Ns in the Cigar 
line (column 6, see below). What might these mean?

We have to index the bam using SAMtools, in order to view the data in Artemis.
samtools index 30h_map/accepted_hits.bam

The output index file is called 30h_map/accepted_hits.bam.bai

So that the mapping would go faster, you have only mapped reads to part of the genome. 
We will now view the much larger, pre-computed file which does cover the whole genome:
blood_stage_30h.bam
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We will now examine the read mapping in Artemis using the BAM view feature.

What do the grey lines in the middle of some of the mapped reads mean? Right 
click on one of these reads, select “Show details of” and examine the cigar string. 

3. Viewing RNAseq mapping in Artemis

If you have closed the Artemis window, then first type:

art Merged_annotation.embl &

In Artemis, highlight gaps in the assembly which might mislead you about the meaning of 
the RNAseq data:

Create -> Mark Ambiguities

Load the BAM file:
File -> Read BAM / VCF -> Select, “blood_stage_30h.bam” -> “OK”

This opens a new window at the top. Right click on the BAMview window, select Graph -> 
coverage.
 

BAM
view

Right click on the coverage plot 
and select Options... Set the 

window size to 1 to see the exon 
boundaries (You have to disable 

“Automatically…”)

Examine the exon boundaries of 
a couple of genes. Can you see 

how RNA-seq helps us to identify 
exon boundaries and UTRs?
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Scroll along the chromosome and examine the read coverage. How well does it 
agree with the gene models? Notice how different genes have different numbers 
of reads mapping. Why do some genes have little or no reads mapping? What 
does this mean for annotation?

Why do some reads map where there are no genes models?

Scroll along the chromosome. Can you see any gene models which might be 
incorrect based on the RNAseq data? PF3D7_0529900 is a good example. 

Bonus question: Can you figure out why RATT got this gene model so wrong!

4. Correcting gene models based on RNA-seq data

Can you see why this 
model isn’t correct? 

The reads should map over 
exons and not introns.

Is the start of the gene model correct? There seem to be 
spliced reads confirming another exon. 
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5. Automatically generating gene models based on 
RNA-seq data

Cufflinks is another program in the Tuxedo suite. It can be used to generate gene 
models based on the RNA-seq mapping. Rather than fix each gene model by 
hand, we could replace them with RNA-seq based predictions if these are better.

Run Cufflinks:
cufflinks blood_stage_30h.bam

The key results file from Cufflinks is transcripts.gtf. When the output file 
transcripts.gtf  has been created, change the format to display better in Artemis: 

Read this into Artemis and compare the results to the RNAseq coverage plots and to the 
existing gene predictions. In Artemis,
File -> Read An Entry, select “Files of type: All files”, select “transcripts.gtf”

Look through the annotation. Does cufflinks confirm the Augustus predictions? What can 
we say where a gene model has no coverage? How can we remedy this? 

Why are the Cufflinks predictions often longer than the gene model predictions? 
Remember we are examining a eukaryote. Why does this make it difficult to 
incorporate these models directly into our gene set? Would this explain the spliced 
reads of the gene PF3D7_0529900 on page 11? What does the Cufflinks gene 
model look like?
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6. Using RNA-seq to improve predictions
Perhaps the best option would be to use the RNA-seq to guide the ab initio 
predictions? Augustus allows you to to create hints files from RNA-seq. These files 
tell Augustus about intron/exon boundaries observed in the RNA-seq data. You 
can read more about how to create your own hints on augustus help pages: 
augustus.gobics.de/binaries/readme.rnaseq.html 

On the command line, you first have to copy a suitable configuration-file from the augustus 
folder:
cp /opt/augustus-3.2.1/config/extrinsic/extrinsic.M.RM.E.W.cfg 
.

Make RNA-seq hints from the bam-file. On the command-line, type:
bam2augustusHints.pl blood_stage_30h.bam > hints.introns.gff

Now predict new models using RNA-seq hints, you’ll notice it takes a bit longer than 
running without hints, expect a few minutes. On the command-line, type (as one line). 

augustus --species=pfalciparum 
  --extrinsicCfgFile=extrinsic.M.RM.E.W.cfg
  --hintsfile=hints.introns.gff IT.genome.fa > 
augustus.hints.gtf

Convert the Augustus GFF to EMBL format, so you can view it nicely in Artemis. On the 
command line, type:

cat augustus.hints.gtf | augustus2embl.pl > 
augustus.hints.embl 

Load the new predictions into Artemis like you did before, and compare this prediction to 
your earlier prediction without hints, to see which one you think is better. Look for instance 
at PF3D7_0528500. What additional information is Augustus now able to uncover?

Tip: if you want to see the difference between the models more clearly, you can in Artemis 
un-tick all files except for augustus.hints.embl at the bar at the top, choose Select -> “All 
CDS features”. Click Edit -> “Qualifier of selected feature(s)” -> Change. In the drop-down 
menu in the pop-up box choose “colour”, and then click “Insert qualifier:”.  Change the text 
in the box to /colour=3 and click “Add”. All your models predicted using hints are now 
green. 
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Optional 2: Try to look at all the differences between augustus predictions with and 
without hints: 1. using programming, 2. in Artemis. How would you choose which 
predictions are the best? If you had to write a script to automatically choose between the 
models, what would that script contain? 

Optional 1: Learn more augustus; a) learn how to train augustus with your favorite species 
from the online manual, b) check out the useful scripts that come with augustus; 
/usr/local/augustus.2.7/scripts/ , c) What does the Augustus option 
--alternatives-from-evidence do?
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Key aspects of genome annotation
Quality
The better the genome prediction is, the better the gene-models will be. If the 
genome is miss-assembled that can lead to partial or chimeric gene-models. The 
gold standard for gene-models is manual gene-model curation, but for draft 
genomes there often not resources available to do this. So for draft genomes you 
may have to accept that you will not have a perfect set of genes. Ten years of 
annotating the malaria genome by hand using all possible lines of evidence has not 
resulted in a perfect annotation (although it is a very good one)! How do you think 
the quality of the gene-models affect the analysis you can do, and the conclusions 
you can draw?
Several lines of independent evidence are best
Predicting gene-models, you will find that one of the hardest things to do is to 
choose which set of models are the best; all methods are good at some types of 
genes and bad at others. Augustus has a built-in quality check, in which you can 
compare your training models with your predicted models. Use a variety of 
prediction approaches, as you have done here, to capture as many of the genes as 
possible and to improve their accuracy. It is always a good idea to try different 
programs for any particular problem in computational biology: if they all produce the 
same answer you can be more certain it is correct. In the case of gene model 
predictions they will frequently disagree. If several predictions are of similar high 
quality, perhaps the best option is to combine different sets of gene using tools such 
as Jigsaw (Allen & Salzberg, 2005) and EVM (Haas et al., 2008)?
Over-prediction
There is a balance to strike between having almost all the genes and lots of 
erroneous ones as well, or to miss some genes but have relatively few incorrect 
ones. It may be important to find as many of the real genes as possible. However 
once you have published an erroneous model to the public sphere, for instance by 
submitting it to GenBank, it can be very hard to retract it later, and it may cause 
problems for other people using that gene for their analyses.
Bacteria are simpler
If you work on bacteria you will encounter fewer problems with accurately predicting 
gene models as they almost always have single-exon genes. The program 
Glimmer3 (Delcher et al., 1999) is an alternative to Augustus for ab initio gene 
prediction in bacteria, but since version 2.7 Augustus has improved its prediction 
methods for bacterial genomes. Another alternative for both gene prediction and 
functional annotation for bacteria is Prokka 
www.vicbioinformatics.com/software.prokka.shtml 
Alternative splicing
Many genes in more complex organisms have several alternative splice-forms, 
including/excluding different UTRs and exons. Predicting alternative splicing is 
much harder than predicting a “canonical”; most complete, gene-model (like the 
ones you have just predicted). It is currently only possible to predict alternative 
transcripts reliably for model genomes which already are very well assembled and 
annotated, and have a wealth of supporting evidence (like human and C. elegans).
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Key aspects of RNA-seq mapping
Non-unique/repeat regions
A sequence read may map equally well to multiple locations in the reference 
genome. Different mapping algorithms have different strategies for this problem, so 
be sure to check the options in the mapper. A low GC content, such as in 
Plasmodium falciparum (81% AT) means that reads are more likely to map to 
multiple locations in the genome by chance.

Insert size
When mapping paired reads, the mapper (e.g. TopHat/Hisat2) takes the expected 
insert size into account. If the fragments are expected to be 200bp on average, and 
the reads are 50bp, then the insert between the paired reads should be ~100bp. If 
the paired reads are significantly further apart than expected, we can suspect that 
the reads have not mapped properly and discard them. Removing poorly mapping 
reads can produce a more reliable mapping.

Spliced mapping
Eukaryotic mRNAs are processed - the introns are spliced out after transcription. 
Therefore some reads (those crossing exon boundaries) should be split when 
mapped to the reference genome sequence in which intron sequences are still 
present. TopHat, Hisat2, STAR and Gmap are examples of mappers which can 
split reads while mapping them, making them suitable for mapping RNA-seq.

Alternative mappers 
Alternative short read mappers which do not split reads include SOAP (Li et al., 
2008b), SSAHA (Ning et al., 2001), BWA (Li et al., 2009) and Bowtie2  (Langmead 
B, Salzberg S. 2012), SMALT (https://www.sanger.ac.uk/science/tools/smalt-0). 
All of these may be appropriate for bacterial RNA-seq.

New tools for mapping sequence reads are continually being developed. This 
reflects improvements in mapping technology, but it is also due to changes in the 
sequence data to be mapped. Long reads from PacBio and Oxford Nanopore 
platforms are being used more and more. The tools best for these reads include 
minimap2 and Gmap.

Beware of the genes!
In spite of our very best efforts, it is not always possible to predict genes accurately. 
There are many phenomena which can throw both automatic and manual 
predictions off track. For instance (but not limited to): seleno-proteins containing 
“stop-codons” as part of the coding sequence, polycistronic genes, splice-leader 
trans-splicing, long non-coding RNAs, repetitive genomic regions and 
pseudogenes. Before publishing, it is always a good idea to try to estimate how 
correct the models are, and do some sanity-checking of the gene-models.
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Introduction to Differential Expression analysis

Differential Expression

Understanding the genome is not simply about understanding which genes are there. 
Understanding when each gene is used helps us to find out how organisms develop and 
which genes are used in response to particular external stimuli. The first layer in 
understanding how the genome is used is the transcriptome. This is also the most 
accessible because like the genome the transcriptome is made of nucleic acids and can be 
sequenced using the same technology. Arguably the proteome is of greater relevance to 
understanding cellular biology however it is chemically heterogeneous making it much 
more difficult to assay. 

Over the past decade or two microarray technology has been extensively applied to 
addressing the question of which genes are expressed when. Despite its success this 
technology is limited in that it requires prior knowledge of the gene sequences for an 
organism and has a limited dynamic range in detecting the level of expression, e.g. how 
many copies of a transcript are made. RNA sequencing technology, using for instance 
Illumina HiSeq machines, can sequence essentially all the genes which are transcribed 
and the results have a more linear relationship to the real number of transcripts generated 
in the cell.

The aim of differential expression analysis is to determine which genes are more or less 
expressed in different situations. We could ask, for instance, whether a bacterium uses its 
genome differently when exposed to stress, such as excessive heat or a drug. 
Alternatively we could ask what genes make human livers different from human kidneys. 

In this module we will address the effect of vector transmission on gene expression of the 
malaria parasite. Is the transcriptome of a mosquito-transmitted parasite different from 
one which has not passed through a mosquito? The key reason for asking this question is 
that parasites which are transmitted by mosquito are less virulent than those which are 
serially blood passaged in the laboratory. Figure 1A shows the malaria life cycle, the 
blue part highlighting the mosquito stage. Figure 1B shows the difference in virulence, 
measured by blood parasitemia, between mosquito-transmitted and serially blood 
passaged parasites. The data in this exercise, as well as figures 1B and 1C are taken from 
Spence et al. (2013).
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Figure 1. Serial blood passage increases virulence of malaria parasites. (A) The 
lifecycle of plasmodium parasites involves mammalian and mosquito stages. Experiments in 
the lab often exclude the mosquito stage (red) and instead remove parasites from the blood 
of a mouse to infect another mouse (serial blood passage). (B) Serially blood passaged 
parasites (red) are more virulent than mosquito-transmitted parasites (blue) as shown by 
their higher parasitemia over the course of infection. (C) As mosquito transmitted parasites 
are serially blood passaged an increasing number of times, they return to a higher level of 
parasitemia.
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Figure 1C shows that increasing numbers of blood passage post mosquito transmission 
results in increasing virulence, back to around 20% parasitemia. Subsequent mosquito 
transmission of high virulence parasites renders them low virulence again. We hypothesise 
that parasites which have been through the mosquito are somehow better able to control the 
mosquito immune system than those which have not. This control of the immune system 
would result in lower parasitemia because this is advantageous for the parasite. Too high a 
parasitemia is bad for the mouse and therefore bad for the parasite. Are there any 
differences between the transcriptomes of serially blood passaged parasites and 
mosquito-transmitted parasites which might explain how they are able to do this? 

Module Summary
1. Mapping RNA-seq reads to the genome using HISAT2

2. Using Artemis to visualise transcription

3. Using Kallisto and Sleuth to identify differentially expressed genes

4. Using Sleuth to quality check the data

5. Interpreting the results
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1. Mapping RNA-seq reads to the genome using 
HISAT2

We have two conditions: serially blood-passaged parasites (SBP) and mosquito 
transmitted parasites (MT). One with three biological replicates (SBP), one with two 
(MT). Therefore we have five RNA samples, each which has been sequenced on an 
Illumina HiSeq sequencing machine. For this exercise we have reduced the number of 
reads in each sample to around 2.5m to reduce the mapping time. However this will be 
sufficient to detect most differentially expressed genes.

Firstly, make a HISAT2 index for the P. chabaudi genome reference sequence.

hisat2-build PccAS_v3_genome.fa PccAS_v3_hisat2idx

Map the reads for the MT1 sample using HISAT2. Each of the following steps will 
take a couple of minutes. 

hisat2 --max-intronlen 10000 -x PccAS_v3_hisat2idx -1 
MT1_1.fastq -2 MT1_2.fastq -S MT1.sam

Convert the SAM file to a BAM.

samtools view -b -o MT1.bam MT1.sam

Sort the BAM file (otherwise the indexing won’t work)

samtools sort -o MT1_sorted.bam MT1.bam

Index the BAM file so that it can be read efficiently by Artemis

samtools index MT1_sorted.bam

Now map, convert SAM to BAM, sort and index with the reads from the MT2 
sample.

Note the BAM files and .bai index files provided for the SBP samples:

ls *bam*



-21-

Module 7 – Genome Annotation and Differential Expression

2. Using Artemis to visualise transcription
Index the fasta file so Artemis can view each chromosome separately

samtools faidx PccAS_v3_genome.fa

Load chromosome 14 into Artemis from the command line, displaying the mapped reads 
from each sample:

art 
-Dbam="MT1_sorted.bam,MT2_sorted.bam,SBP1_sorted.bam,SBP2_sorted.
bam,SBP3_sorted.bam" PccAS_v3_genome.fa +PccAS_v3.gff.gz &

Select ”Use index” so Artemis will show individual chromosomes.
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1
2

3

4

5

6

7

1. Drop-down menus
2.  Entry (top line): shows which entries are currently loaded with the default entry 

highlighted in yellow You can select different chromosomes to view here.
3. BAM view: Displays reads mapped to the genome sequence. Each little horizontal 

line represents a sequencing read. Some reads are blue indicating that they are unique 
reads. Green reads represent multiple reads mapped to exactly the same position on the 
reference sequence. Grey lines in the middle of reads mean that the read has been split 
and this usually means it maps over an intron. If you click a read its mate pair will also 
be selected. If you want to know more about a read right-click and select ‘Show details 
of: READ NAME’.

4. Sequence view panel. The central two grey lines represent the forward (top) and 
reverse (bottom) DNA strands. Above and below these are the three forward and three 
reverse reading frames (theoretical translations of the genome). Stop codons are 
marked as black vertical bars. Genes and other annotated features are displayed as 
coloured boxes. We often refer to predicted genes as coding sequences or CDSs.

5. This panel has a similar layout to the main panel but is zoomed in to show nucleotides 
and amino acids. 

6. Sliders for zooming view panels.
7. Sliders for scrolling along the DNA.
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Right click on the BAM window showing the reads and hover over BAM files. 
This will show you which colours in the coverage plot relate to which samples. 
Scroll through the chromosome and see if you can identify genes which might 
be differentially expressed between SBP and MT parasites. Is looking at the 
coverage plots alone a reliable way to assess differential expression? Hint: what 
is the difference between read count and RPKM? Are the libraries all the same 
size?

Select chromosome PccAS_14_v3 from the drop down box on the Entry line.

Press Ctrl-g and use “Goto Feature With Gene Name” to navigate to the gene 
PCHAS_1402500. 

Right click on the BAM view, select Graph, then Coverage.
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This gene looks to be up-regulated in serially blood passaged parasites; SBP samples 
have RPKMs several times greater than the MT samples. Is it statistically significant? In 
the next section we will find out.

Investigate the coverage for this gene. Does the RNA-seq mapping agree with the 
gene model in blue?

You can determine read counts and RPKMs for individual genes within Artemis.

Click on the blue gene model, right click on the BAMview window, select Analyse, 
then RPKM value of selected features. 

Artemis asks whether you want to include introns in the calculations. We are only 
interested in reads mapping to the spliced transcript, so you should exclude these.  
Select Use reads mapped to all reference sequences. Is this important?

After the analysis is done a window will appear behind Artemis.
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3. Using Kallisto and Sleuth to identify differentially 
expressed genes

Kallisto is a read mapper, but instead of mapping against the genome it is designed to 
map against the transcriptome, i.e. the spliced gene sequences inferred from the genome 
annotation. Rather than tell you where the reads map it’s aim is in quantifying the 
expression level of each transcript. It is very fast because it uses pseudoalignment rather 
than true read alignment. 

Sleuth uses the output from Kallisto to determine differentially expressed genes. It is 
written in the R statistical programming language, as is a lot of other RNA-seq analysis 
software. Helpfully, it produces a web page that allows interactive graphical analysis of 
the data. However, I would recommend learning R for anyone doing a significant 
amount of RNA-seq analysis.  It is not as hard to get started with as full-blown 
programming languages such as Python!

We first need to make a fasta file containing out transcript sequences, which we 
can extract from our reference genome using a gff annotation file

gffread -g PccAS_v3_genome.fa -w PccAS_v3_transcripts.fa 
PccAS_v3.gff3

Kallisto needs an index of the transcript sequences.

kallisto index -i PccAS_v3_kallisto PccAS_v3_transcripts.fa

Quantify the expression levels of your transcripts for the MT1 sample.

kallisto quant -i PccAS_v3_kallisto -o MT1 -b 100 MT1_1.fastq 
MT1_2.fastq

The results are contained in the file MT1/abundance.tsv

Use the kallisto quant command four more times, for the MT2 sample and the 
three SBP samples.

We have provided a series of R commands which will get Sleuth running. These 
are in the file sleuth.R. Open the file and have a look. It is not as hard as it seems, 
I copied most of this from the manual! To run this R script, you will have to open R:

R

And then copy and paste commands from the file sleuth.R
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4. Using Sleuth to quality check the data

Sleuth provides several tabs which we can use to determine whether the data is of good 
quality and whether we should trust the results we get.

In the web page which has been launched click on Summaries->processed data.

Even though we have used the same number of reads for each sample, there are 
large differences in the number of reads mapping for each one. Why might this be? 
Is it a problem?

Click on map->PCA.

The Principal Components Analysis plot shows the relationship between the 
samples in two dimensions (PC1 and PC2). In this case almost all the variation 
between the samples is captured by just Principal Component 1. The MT samples 
are well separated from the SBP samples, meaning that the replicates are more 
similar to each other than they are to samples from the different condition. This is 
good.

In some cases we identify outliers, e.g. samples which do not agree with other 
replicates and these can be excluded. If we don’t have many replicates, it is hard to 
detect outliers and our power to detect differentially expressed genes is reduced.
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5. Interpreting the results

In the R script we printed out a file of results describing the differentially expressed genes 
in our dataset. This is called “kallisto.results”.

The file contains several columns, of which the most important are:

Column 1: target_id (gene id)
Column 2: pval (p value)
Column 3: qval (p value corrected for multiple hypothesis testing)
Column 4: b (fold change)
Column 12: description (some more useful descriptionof the gene than its id) 

With a little Linux magic we can get the list of differentially expressed genes with 
only the columns of interest as above. The following command will get those 
genes which have an adjusted p value less than 0,01 and a positive fold change. 
These genes are more highly expressed in SBP samples.

cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 > 0’

These genes are more highly expressed in MT samples:

cut -f1,3,4,12 kallisto.results | awk ‘$2 < 0.01 && $3 < 0’

How many genes are more highly expressed in each condition?

Do you notice any particular genes that come up in the analysis?

The most highly up-regulated genes in MT samples are from the cir family. This is a 
large, malaria-specific gene family which had previously been proposed to be involved in 
immune evasion (Lawton et al., 2012). Here however we see many of these genes 
up-regulated in a form of the parasite which seems to cause the immune system to better 
control the parasite. We now think that expression of these genes is epigenetically reset 
during mosquito transmission, whereas serially blood passaged parasites end up 
expressing one particular cir gene which results in more rapid growth in this artificial 
situation. Expressing a wide range of cir genes may allow the parasite to cause less harm 
to its host, maximise the length of infection and increase transmissibility.
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Remember PCHAS_1402500? Of course you do. It was the gene we looked at in 
Artemis that seemed absolutely definitely differentially expressed.

What does Sleuth think about it?

grep PCHAS_1402500 kallisto.results | cut –f1,3,4,12

Although this gene looked like it was differentially expressed from the plots in Artemis 
our test did not show it to be so. This might be because some samples tended to have 
more reads, so based on raw read counts, genes generally look up-regulated in the SBP 
samples. Alternatively the reliability of only two biological replicates and the strength of 
the difference between the conditions was not sufficient to be statistically convincing. In 
the second case increasing the number of biological replicates would give us more 
confidence about whether there really was a difference. 

In this case, the lower number of reads mapping to MT samples mislead us in the Artemis 
view. Luckily careful normalisation and appropriate use of statistics saved the day!

If you want to read more about the work related to this data it is published: Spence et al. 
2013 (PMID: 23719378). A follow up paper explores the role of cir genes in chronic 
infections: Brugat et al. 2017 (PMID: 28165471).
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Key aspects of differential expression analysis

Replicates and power
In order to accurately ascertain which genes are differentially expressed and by how 
much it is necessary to use replicated data. As with all biological experiments doing 
it once is simply not enough. There is no simple way to decide how many replicates 
to do, it is usually a compromise of statistical power and cost. By determining how 
much variability there is in the sample preparation and sequencing reactions we can 
better assess how highly genes are really expressed and more accurately determine 
any differences. The key to this is performing biological rather than technical 
replicates. This means, for instance, growing up three batches of parasites, treating 
them all identically, extracting RNA from each and sequencing the three samples 
separately. Technical replicates, whereby the same sample is sequenced three times 
do not account for the variability that really exists in biological systems or the 
experimental error between batches of parasites and RNA extractions.

n.b. more replicates will help improve power for genes that are already detected at 
high levels, while deeper sequencing will improve power to detect differential 
expression for genes which are expressed at low levels.

P-values vs. q-values
When asking whether a gene is differentially expressed we use statistical tests to 
assign a p-value. If a gene has a p-value of 0.05 we say that there is only a 5% 
chance that it is not really differentially expressed. However, if we are asking this 
question for every gene in the genome (~5500 genes for Plasmodium), then we 
would expect to see p-values less than 0.05 for many genes even though they are not 
really differentially expressed. Due to this statistical problem we must correct the 
p-values so that we are not tricked into accepting a large number of erroneous 
results. Q-values are p-values which have been corrected for what is known as 
multiple hypothesis testing. Therefore it is a q-value of less than 0.05 that we 
should be looking for when asking whether a gene is differentially expressed.
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Alternative software
If you have a good quality genome and genome annotation such as for model 
organisms e.g. human, mouse, Plasmodium, I would recommend mapping to the 
transcriptome for determining transcript abundance. This is even more relevant if 
you have variant transcripts per gene as you need a tool which will do its best to 
determine which transcript is really expressed. As well as Kallisto (Bray et al. 2016; 
PMID: 27043002), there is eXpress (Roberts & Pachter, 2012; PMID: 23160280) 
which will do this.

Alternatively you can map to the genome and then call abundance of genes, 
essentially ignoring variant transcripts. This is more appropriate where you are less 
confident about the genome annotation and/or you don’t have variant transcripts 
because your organism rarely makes them or they are simply not annotated. Tophat2 
(Kim et al., 2013; PMID: 23618408), HISAT2 (Pertea et al. 2016; PMID: 
27560171), STAR (Dobin et al., 2013; PMID: 23104886) and GSNAP (Wu & 
Nacu, 2010; PMID: 20147302) are all splice-aware RNA-seq read mappers 
appropriate for this task. You then need to use a tool which counts the reads 
overlapping each gene model. HTSeq (Anders et al., 2015; PMID: 25260700) is a 
popular tool for this purpose. Cufflinks (Trapnell et al. 2012; PMID: 22383036) will 
count reads and determine differentially expressed genes.

There are a variety of programs for detecting differentially expressed genes from 
tables of RNA-seq read counts. DESeq2 (Love et al., 2014; PMID: 25516281), 
EdgeR (Robinson et al., 2010; PMID: 19910308) and BaySeq (Hardcastle & Kelly, 
2010; PMID: 20698981) are good examples.

What do I do with a gene list?
Differential expression analysis results is a list of genes which show differences 
between two conditions. It can be daunting trying to determine what the results 
mean. On one hand you may find that that there are no real differences in your 
experiment. Is this due to biological reality or noisy data? On the other hand you 
may find several thousands of genes are differentially expressed. What can you say 
about that?

Other than looking for genes you expect to be different or unchanged, one of the 
first things to do is look at Gene Ontology (GO) term enrichment. There are many 
different algorithms for this, but you could annotate your genes with functional 
terms from GO using for instance Blast2GO (Conesa et al., 2005; PMID: 16081474) 
and then use TopGO (Alexa et al., 2005; PMID: 16606683) to determine whether 
any particular sorts of genes occur more than expected in your differentially 
expressed genes.


