
​CoNVex_Pipeline_Doc.R

​# TODO: CoNVex batch execution example -- ONLY FOR DOCUMENTATION
​# A copy of this script is ALSO AVAILABLE from inst/Rbatch folder within CoNVex package installation!
​# Author: Parthiban Vijayarangakannan (pv1)
​# Date (last update): 17.04.2013
​#
​# This example explains:
​# * Running CoNVex in a batch environment (can also be customised for non-batch environment)
​# * For non-batch environment, you use the same code below. Run the Unix commands in .sh files with a 'wait' command in between.
​# 	This waits for the previous command to finish execution before running the next one.
​# * Each step must **FINISH** before running the next step
​# * WTSI specific example bsub commands for running (batch) unix commands in the farm
​# (optional: may or may not be suitable non-WTSI environment)
​# * You can customise this for your project, copy/paste them in an interactive R session,
​# or make it more professional using a sophisticated batch execution pipeline (e.g., VRpipe at WTSI)
​# * Don't try running the same commands in this example in the Sanger farm, these may be part of a real project (some harmless commands are
allowed!)
​# * This original R script should be available from your CoNVex installation here:
​# CoNVex_Pipeline_Doc = paste(getLibPath(),"/CoNVex/inst/Rbatch/CoNVex_Pipeline_Doc.R",sep=""); # - Useful, IF formatting is lost in the
PDF file of this example
​# * This example is under constant improvement. Please copy this locally for a secure copy!!
​#
​# CoNVex REQUIRES the following from you:
​# * BAM files (full path)
​# * Gender of the samples (if you include chr X)
​# * Sample IDs (something like MYPROJ_12345 for each sample)
​###
​
​# Install required external packages first
​# If your network/proxy works fine, you should be able to install them easily
​install.packages("mgcv") # mgcv package
​install.packages("R2HTML") # R2HTML package
​
​# Install CoNVex package - current version (August 2012) is v0.3. Look for the latest version in the folder below!
​install.packages("CoNVex_0.4.tar.gz") # locally copied file [OR]
​install.packages("/nfs/users/nfs_p/pv1/ConvexPackage/CoNVex_0.4.tar.gz") # directly from my NFS folder
​
​# Load CoNVex
​require(CoNVex)
​# Load basic sample info - an example file is bundled with CoNVex in the inst/extdata folder
​baminfoRD = read.table("/path/to/BAMfileLocations_SampleIDs_Gender_Example.txt", header=TRUE)

​Page 1

​CoNVex_Pipeline_Doc.R

​
​# STEP 1a: Preparation - Required input/output files
​# INPUT files bundled with package / For regions other than Agilent V3, check the folder and/or the list of files below.
​# Agilent V3 regions / bundled with CoNVex package / other exomes (human, mouse) - are listed at the end of this file
​regions_file = paste(getLibPath(),"/CoNVex/extdata/SureSelect_50Mb.txt",sep="");
​centromere_regions_file = paste(getLibPath(),"/CoNVex/extdata/gaps_table_hg19.txt",sep="") # bundled with package; use gaps_table_hg18.txt
for Agilent V1 exomes
​
​# INPUT variables (R vectors) that are given as parameter options to SampleInfoPrep() function in Step 1b and other functions
​sample_ids = as.character(baminfoRD[,1]); # sample_ids - vector
​bamfiles = as.character(baminfoRD[,2]); # Input bam files - vector
​# Must have 'M' or 'F' if you include chr X (cX=1) for analysis in Step 3. 'M', 'F' or even 'U' (unknown) for all if you exclude!
​gender = as.character(baminfoRD[,3]); gender[gender=='Male'] = 'M'; gender[gender=='Female'] = 'F';
​output_folder = "/path/to/my/proj/";
​RDfiles = paste(output_folder,"/ProbeRD_",sample_ids,".dat",sep="") # Read depth file names - vector - to be created in STEP 2
​L2Rfiles = paste(output_folder,"/L2R/L2R_",sample_ids,".dat",sep="") # Log2 ratio file names - vector - to be created in STEP 3
​GAMfiles = paste(output_folder,"/L2R/GAM_",sample_ids,".dat",sep="") # ADM scores file names - vector - to be created in STEP 5
​
​# INPUT - SW array parameters - folders and output CNV calls
​p=3; swt_del=5; swt_dup=5; dv=0.5;
​sw_exec = paste(getLibPath(),"/CoNVex/exec/swa_lin64",sep=""); # SW-Array execution binary
​swa_folder = paste(output_folder,"/CNVcalls",sep=""); # CNV calls will be stored in this folder; create it if it's not there already
​# system(paste("mkdir",swa_folder)); # Use this command within R or CREATE swa_folder FOLDER in the Unix prompt separately
​CNVfiles = paste(swa_folder,"/CoNVex_",sample_ids,"_p",p,"_tdel",swt_del,"_tdup",swt_dup,"_dv",dv,"_.txt",sep="") # one file per sample
​
​# OUTPUT files (for consequtive steps these may act as input) - define the file names here
​sample_info_file = "/path/to/my/proj/MYPROJ_SampleInfo.txt" # Output file name -- this will be created in STEP 1b
​features_file = "/path/to/my/proj/MYPROJ_Features.txt" # Output file name -- this will be created in STEP 2
​BPfile = "/path/to/my/proj/MYPROJ_Breakpoints.txt" # # Output file name -- this will be created in STEP 4
​
​# STEP 1b: Evaluates input data above - automatically saves them in a tab-delimited file (file name as in 'sample_info_file' above)
​# Save all vectors in a fixed format - SampleInfoPrep() automatically saves them in the specified sample_info_file
​baminfoALL = SampleInfoPrepInteractive(sample_id=sample_ids, gender=gender, bamfiles=bamfiles, RDfiles=RDfiles, L2Rfiles=L2Rfiles,
GAMfiles=GAMfiles, CNVfiles=CNVfiles, sample_info_file=sample_info_file, output_folder=output_folder, overwrite = FALSE);
​# baminfoALL object is _not_ required for further analysis, but useful to have in memory
​
​# STEP 2: Calculate READ DEPTH (java commands) -- Create, Save and Execute these commands in the farm using bsub (use of perl wrapper
recommended)
​# ReadDepth java program requires CLASSPATH; Use getClassPath() function without arguments - this gives you the list of jars for CLASSPATH
config

​Page 2

​CoNVex_Pipeline_Doc.R

​rdc_file = "/path/to/my/proj/Depth_04052011_missing.sh" # List of unix commands
​rdc =
ReadDepthCommands(regions_file=regions_file,sample_ids=sample_ids,bamfiles=bamfiles,RDfiles=RDfiles,chr_prefix="",output_folder=output_folde
r,max_memory=2);
​write.table(rdc,file=rdc_file,row.names=FALSE, col.names=FALSE, sep="\t", quote=FALSE)
​# Run bsub job array:
​bsub_command = paste("bsub -q normal -R'select[mem>2200] rusage[mem=2200]' -M2200000 -o ",rdc_file,".farm.out -J'PRD[1-",length(rdc),"]
%",length(rdc),"' /software/cnpoly/bin/submit_job_array.pl ",rdc_file, sep="")
​print(rdc[1]) # print and test the unix command - just the first one as an example
​print(bsub_command) # print and test the bsub command
​system(bsub_command) # run the bsub command
​
​# STEP 3: Generate and save log2 ratio
​# FOR LARGE SAMPLE SIZES (e.g., 100+ samples) USE ALTERNATIVE STEP 3 FROM BELOW!
​# SampleLogRatio Command - This is a SINGLE command line call to R
​slr_command =
SampleLogRatioCallCommands(sample_info_file=sample_info_file,regions_file,features_file=features_file,cX=1,Rbatch_folder="",version=1) # if
Rbatch_file's "" (or unused), the default lib location will be used
​# Execute *_command using bsub or VRpipe or <your-method-for-running-parallel-jobs-in-cluster>
​bsub_command = paste("bsub -q normal -R'select[mem>2500] rusage[mem=2500]' -M2500000 -o SLR.farm.out -J'SLR' '",slr_command,"'", sep="")
​print(slr_command)
​print(bsub_command)
​system(bsub_command)
​
​# STEP 4: Generate and save Breakpoints file - This is a SINGLE command line call to R
​bp_command = BreakpointsCallCommands(RDfile_RepSample=RDfiles[1],BPfile=BPfile,Rbatch_folder="")
​# Execute *_command using bsub or VRpipe or <your-method-for-running-parallel-jobs-in-cluster>
​bsub_command = paste("bsub -q normal -R'select[mem>500] rusage[mem=500]' -M500000 -o BP.farm.out -J'BP' '",bp_command,"'", sep="")
​print(bp_command)
​print(bsub_command)
​system(bsub_command)
​
​# STEP 5: GAM correction commands -- one per sample
​gam_commands = GAMCorrectionCommands(features_file,L2Rfiles,GAMfiles,RDfiles,BPfile,output_folder,sample_ids,Rbatch_folder="");
​gam_file = "/path/to/my/proj/GAM_04052011.sh"
​write.table(gam_commands,file=gam_file,row.names=FALSE, col.names=FALSE, sep="\t", quote=FALSE)
​# Execute *_commands using bsub (perl wrapper) or VRpipe
​bsub_command = paste("bsub -q normal -R'select[mem>1000] rusage[mem=1000]' -M1000000 -o ",gam_file,".farm.out -
J'GAM[1-",length(gam_commands),"]%",length(gam_commands),"' /software/cnpoly/bin/submit_job_array.pl ",gam_file, sep="")
​print(gam_commands[1])

​Page 3

​CoNVex_Pipeline_Doc.R

​print(bsub_command)
​system(bsub_command)
​
​# STEP 6: CNV detection using Smith-Waterman algorithm -- one command per sample
​# Input calling parameters
​# SW-Array execution parameters
​# Recommended p values (p=3 for Agilent V3, p=2, DDD exome+, p>3 (3.5,4) for Agilent V1 (not tested extensively)
​# p values decide how far the CNV boundaries can be extended, looking at the multipanel plots (each CNV separately) later is mandatory
​
​sw_commands =
SWCNVCallCommands(p,swt_del,swt_dup,dv,GAMfiles,CNVfiles,sample_ids,centromere_regions_file,swa_folder,sw_exec,Rbatch_folder="");
​sw_file = "/path/to/my/proj/SW_04052011.sh"
​write.table(sw_commands,file=sw_file,row.names=FALSE, col.names=FALSE, sep="\t", quote=FALSE)
​
​# Execute *_commands using bsub (perl wrapper) or VRpipe or <your-method-for-running-parallel-jobs-in-cluster>
​bsub_command = paste("bsub -q normal -R'select[mem>1000] rusage[mem=1000]' -M1000000 -o ",sw_file,".farm.out -
J'SWCNV[1-",length(sw_commands),"]%",length(sw_commands),"' /software/cnpoly/bin/submit_job_array.pl ",sw_file, sep="")
​print(sw_commands)
​print(bsub_command)
​system(bsub_command)
​
​######### ######### ######### ######### ######### #########
​
​######### REGIONS FILES -- bundled with CoNVex / use ONE of these depending on your project
​regions_file = paste(getLibPath(),"/CoNVex/extdata/SureSelect_V1.txt",sep=""); # Agilent V1 regions - ** hg18 build **
​regions_file = paste(getLibPath(),"/CoNVex/extdata/SureSelect_50Mb.txt",sep=""); # Agilent V3 regions
​regions_file = paste(getLibPath(),"/CoNVex/extdata/SureSelect_50Mb_DDD.txt",sep=""); # Agilent V3 - DDD exome+ regions
​regions_file = paste(getLibPath(),"/CoNVex/extdata/SureSelect_MouseV1_S0276129.txt",sep=""); # Agilent - Mouse V1 exome regions - NCBI37
build
​
​######### PLOTTING AND VISUALISATION #########
​# OPTIONAL: If 'CNVfiles' is not in memory, you can load it from sample_info_file:
​sample_info_file = "/path/to/my/proj/MYPROJ_SampleInfo.txt" # Copied/pasted from above -- this was created in STEP 1a/1b
​d = read.table(sample_info_file); CNVfiles = as.character(d[,7]);
​
​# Get all CNV calls of all samples (from each sample's CNV file)
​CNVcalls = GetCNVCalls(CNVfiles)
​
​# Plot CNV stats
​setwd(output_folder);

​Page 4

​CoNVex_Pipeline_Doc.R

​PlotCNVStats(CNVcallsAll=CNVcalls);
​# This will create two plots in output_folder currently; (1) Number of calls vs Samples; (2) #Dels/#Duls ratio in all samples
​
​# Plot Known CNVs (%)
​# Options:
​# -- mark_outliers=0 (default) does not highlight outliers; highlighted otherwise
​# -- outlier_from_median = (default=5) marks the outliers that have known (%) lower than median(known%)-outlier_from_median
​setwd(output_folder);
​PlotKnownCNVStats(CallsAll=CNVcalls,mark_outliers=1,outlier_from_median=5);
​
​# Plot Known CNVs (%) - Version 2 [#Calls vs. Plot Known CNVs (%)] - since CoNVex v0.4
​PlotKnownCNVStatsV2(CallsAll=CNVcalls);
​
​# Genome-wide plots of ADM scores
​GAMfiles = as.character(d[,6]);
​for(i in 1:length(sample_ids)) { GenomePlot(GAMfiles[i],sample_id=sample_ids[i],output_folder=output_folder); }
​# This will create a plot from the scores; and use sample_id in the plot title; if sample_id is "", it uses GAMfile name in plot title
​
​## Sample QC metrics - are there any dodgy outlier samples?
​## Sample Means and MADs - [Method 1] ## - REQUIRES UNIX - uses large amount of memory - helpful to identify noisy samples in the batch
​## SampleMeans can be calculated using Step 3 by speciying a file name to 'sample_means_file' option
​## SampleMads, SampleMediansAuto, and SampleMediansX can be calculated using the following Java command (fast and efficient on 1000s os
samples)
​smm_command = "java -Xmx500m SampleMediansMads -sample_info_file /path/to/MYPROJ_SampleInfo.txt -num_probes_auto <N> -num_probes_X <M> -
output_file /path/to/SampleMediansMadsOutput.txt"
​bsub_command = paste("bsub -q normal -R'select[mem>520] rusage[mem=520]' -M520 -o smm.out '",smm_command,"'",sep="")
​print(bsub_command)
​system(bsub_command)
​
​## Sample Means and MADs - [Optional Method 2] ## - REQUIRES UNIX - uses large amount of memory - helpful to identify noisy samples in the
batch
​## PlotKnownCNVStatsV2 - already available from DDD_03102013.pptx slides ##
​smm_command = SMMCallCommand(sample_info_file = sample_info_file, regions_file=regions_file, output_file="/path/to/output/
SampleMeansMads.txt")
​bsub_command = paste("bsub -q normal -R'select[mem>15000] rusage[mem=15000]' -M15000 -o ",output_folder,"/SMMCC.farm.out -J'SMM'
'",smm_command,"'", sep="")
​print(smm_command)
​print(bsub_command)
​system(bsub_command)
​

​Page 5

​CoNVex_Pipeline_Doc.R

​## Call QC - this is optimised for V3 and V3+ libraries, you may like to fine tune this to V4 and V5
​# Call QC is implemented using two functions:
​# - CallQCChrX() - applied only on ChrX (?CallQCChrX for documentation)
​# - CallQCAll() - applied on all chromosomes including X (?CallQCAll for documentation)
​#
​# The following QC metrics are needed:
​# - SampleMediansX vs. SampleMediansAuto (already calculated during SampleQC - available above)
​# - CoNVex score (convex_score) - available from Step 6
​# - #Probes (num_probes) - available from Step 6
​# - Mean log2 ratio (mean_l2r) - available from MeansMadsCommands() below
​# - MAD of log2 ratio (mad_l2r) - available from MeansMadsCommands() below
​# - Internal frequency proportion at ANY and 50% reciprocal overlap (internal_freq and rc50_internal_freq) using GetFrequency() function
​# - common_forward and common_backward overlap proportion (output of recipeB package's toverlap() function OR CoNVex's ChrOverlap()
function)
​
​## Multi panel plots [for visualising each CNV]
​setwd(output_folder)
​sample_info_file = "/path/to/my/proj/MYPROJ_SampleInfo.txt" # Copied/pasted from above -- this was created in STEP 1a/1b
​features_file = "/path/to/my/proj/MYPROJ_Features.txt" # Copied/pasted from above -- this was created in STEP 3
​# cnv_file contains all CNVs that need to be plotted from all samples - this should match the output of GetCNVCalls()
​cnv_file = "path/to/cnv_file.txt"
​# Optional file - probe regions in this format: chr, start, end, gene_symbol
​gene_file = paste(getLibPath(),"/CoNVex/extdata/SureSelect_50Mb_GENES.txt",sep="");
​
​# Correlation matrix file is required if you use median reference from a subset of samples - created in Step 3
​cor_matrix = paste(output_folder,"/AllSamples_CorMatrix.txt",sep="") ## All other options as in STEP 3 on top
​# If you use median reference from 'all' samples, cor_matrix is optional.
​# Warning: If you use a 'all' samples each command in the shell script will read all samples' log2 ratio files.
​# This is a highly parallel command, please make sure this is not too IO intensive
​
​mpp_commands = MultiPanelCommands(CNVcallsfile=cnv_file, cor_matrix=cor_matrix_file, sample_info_file=sample_info_file,
features_file=features_file, gene_file=gene_file)
​mpp_commands_file = paste(output_folder,"/MPP_execute.sh",sep=""); # List of Unix commands to run - one for each 'sample' in the cnv_file
​write.table(mpp_commands,file=mpp_commands_file,row.names=FALSE, col.names=FALSE, sep="\t", quote=FALSE)
​# Execute *_commands using bsub (perl wrapper) or VRpipe or with 'wait' command
​bsub_command = paste("bsub -P ddd -q normal -R'select[mem>2000] rusage[mem=2000]' -M2000000 -q normal -o ",mpp_commands_file,".farm.out -
J'MPP[1-",length(mpp_commands),"]%10' /software/cnpoly/bin/submit_job_array.pl ",mpp_commands_file, sep="")
​print(mpp_commands[1])
​print(bsub_command)
​system(bsub_command)

​Page 6

​CoNVex_Pipeline_Doc.R

​
​## How to calculate Mean log2 ratio and MAD of the mean log2 ratio for each CNV?
​## INPUT requirements similar to above (multi panel plots) - you also need the regions file
​mpp_cmm = MeansMadsCommands(CNVfiles=CNVfiles, sample_ids=sample_ids, cor_matrix=CMfile, sample_info_file=sample_info_file,
regions_file=regions_file, features_file=features_file)
​mpp_cmm_file=paste(output_folder,"/CNVMeansMeads_ALlsamples.sh",sep="");
​write.table(mpp_cmm,file=mpp_cmm_file,row.names=FALSE, col.names=FALSE, sep="\t", quote=FALSE)
​# Execute *_commands using bsub (perl wrapper) or VRpipe
​bsub_command = paste("bsub -q normal -R'select[mem>1000] rusage[mem=1000]' -M1000000 -q normal -o ",mpp_cmm_file,".farm.out -
J'MMC[1-",length(mpp_cmm),"]%100' /software/cnpoly/bin/submit_job_array.pl ",mpp_cmm_file, sep="")
​print(mpp_cmm[1])
​print(bsub_command)
​system(bsub_command)
​
​## How to retrieve Ensembl VEP consequences for each CNV?
​## You should have ENSEMBL PERL API installed or accessible locally
​## Link here: http://www.ensembl.org/info/docs/api/index.html
​## Two Perl scripts are bundled with CoNVex (Modify the script to use your local Ensembl API / Perl location):
​## (1) GetVEPAnnotation.pl [retrieves/shows all consequences and #transcripts]; (2) GetVEPAnnotation2.pl [shows only the most severe
consequence]
​## these are available here:
​paste(getLibPath(),"/scripts/GetVEPAnnotation.pl",sep="") # (1)
​paste(getLibPath(),"/scripts/GetVEPAnnotation2.pl",sep="") # (2)
​vep_command1 = "perl GetVEPAnnotation.pl /path/to/cnv_file.txt" # all CNVs from all samples (as above)
​vep_command2 = "perl GetVEPAnnotation2.pl /path/to/cnv_file.txt" # all CNVs from all samples (as above)
​
​## How to calculate the INTERNAL/EXTERNAL FREQUENCY? ##
​## INTERNAL FREQUENCY
​cnv_calls = read.table(file=cnv_file, header=TRUE) # Columns should match the output of GetCNVCalls()
​cnv_calls_freq = GetFrequency(cnv_calls) # Internal frequency - any overlap [OR]
​cnv_calls_freq = GetFrequency(cnv_calls, ro_threshold=50) # Internal frequency >50% reciprocal overlap
​
​## EXTERNAL FREQUENCY
​cnv_calls_external = read.table(file=cnv_file_external, header=TRUE) # cnv_file_external file contains the CNV calls from another dataset
​cnvs_calls_ext_freq = GetFrequency(chr_list1=cnv_calls, chr_list2=cnv_calls_external) # External frequency - any overlap
​cnvs_calls_ext_freq = GetFrequency(chr_list1=cnv_calls, chr_list2=cnv_calls_external, ro_threshold=50) # External frequency - 50% recip.
overlap
​
​## How to calculate % overlap with KNOWN CNVs?
​cnv_calls_knownpc = GetKnownCNVPC(CallsAll=cnv_calls)

​Page 7

​CoNVex_Pipeline_Doc.R

​ 	 	
​## How to retrieve GENES/TRANSCRIPTS from Ensembl?
​## You should have ENSEMBL PERL API installed or accessible locally
​## Link here: http://www.ensembl.org/info/docs/api/index.html
​## Two Perl scripts are bundled with CoNVex (Modify the script to use your local Ensembl API / Perl location):
​## (1) GetEnsemblGenes.pl [retrieves genes only]; (2) GetEnsemblGenesTranscripts.pl [retrieves genes and transcripts]
​## these are available here:
​paste(getLibPath(),"/scripts/GetEnsemblGenes.pl",sep="") # (1)
​paste(getLibPath(),"/scripts/GetEnsemblGenesTranscripts.pl",sep="") # (2)
​command1 = "perl GetEnsemblGenes.pl /path/to/cnv_file.txt" # all CNVs from all samples (as above)
​command2 = "perl GetEnsemblGenesTranscripts.pl /path/to/cnv_file.txt" # all CNVs from all samples (as above)
​
​#### MORE PLOTS/EXAMPLES ARE COMING SOON ####
​######### ######### ######### ######### ######### #########
​
​######### ######### ######### ######### ######### #########
​######## ALTERNATIVE ########## to the functions above #
​
​# ALTERNATIVE STEP 3: Generate and save log2 ratio
​# SampleLogRatio Command - This is a SINGLE command line call to R
​# PLEASE NOTE THE FOLLOWING OPTIONS: version=3,RPKM=0,min_samples=50
​# CORRELATION MATRIX: Correlation matrix holds the list of correlations between samples
​# SAMPLE MEANS FILE: Sample mean depth can be calculated in this step itself
​# VERSION: version=1 uses the all samples in the batch for estimating median reference; version=2 and version=3 use correlated subset of
samples to estimate median reference; version=3 requires Unix (cut command, etc.) - memory efficient than version=2 (generic R)
​# RPKM: RPKM=0 uses read depth for correlating samples (preferred); RPKM=1 use RPKM/FPKM to correlate samples [IGNORED IF version=1 is used]
​# min_samples: minimum number of correlated samples to use; ALSO required the same number of males and females if ChrX=1 [IGNORED IF
version=1 is used]
​# If you use Unix, the most friendly options are given below:
​cor_matrix = paste(output_folder,"/AllSamples_CorMatrix.txt",sep="") ## Correlation matrix All other options as in STEP 3 on top
​sm_file = paste(output_folder,"/AllSamples_Means.txt",sep="") ## Sample means - All other options as in STEP 3 on top
​slr_command =
SampleLogRatioCallCommands(sample_info_file=sample_info_file,regions_file,features_file=features_file,cX=1,Rbatch_folder="",version=3,RPKM=0
,min_samples=25, cor_matrix=cor_matrix, sample_means_file=sm_file)
​
​

​Page 8

