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Abstract

Comparison of inference techniques on models with wide-ranging applications is important
and instructive. In this paper we investigate approximate inference algorithms applied
to the sparse factor analyser where rich prior information about the sparsity pattern is
available. Sparse factor analysis is used in diverse areas including vision, signal analysis and
computational biology. We explore four different approximate Bayesian inference methods,
based on sampling techniques and deterministic approximations. These include a novel
hybrid Expectation Propagation/Variational algorithm, which achieves encouraging results
particularly when taking the trade-off between accuracy and computational efficiency into
account.
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1. Introduction

Factor analysis is a general purpose technique for dimension reduction that linearly maps
high dimensional data samples onto points in a lower dimensional subspace. Variations of
factor analysis and mixtures of factor analysers have been extensively applied in a number of
important application domains. For example, in computer vision linear dimension reduction
techniques are used to model facial expressions (Turk and Pentland, 1991). In collaborative
filtering, factor analysis-type models are widely used to explain the similarity of user tastes
or related items (Srebro and Jaakkola, 2003). In computational biology, factor analysis
has been used to understand the variation of high-dimensional gene expression profiles
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across individuals or samples by mapping them onto lower dimensional transcription factor
activations (Liao et al., 2003; Sabatti and James, 2006; Pournara and Wernisch, 2007).

Sparse extensions of the factor analysis model are of considerable interest (West, 2003).
In some cases sparsity is employed simply as a regularisation mechanism to prevent over-
fitting in overparameterised models, but in others it reflects a genuine belief in the under-
lying structure of the model. For example, in the context of the computational biology
application mentioned above the use of a sparse model is motivated by a strong a priori
belief about the connectivity structure of the network of regulatory relationships between
transcription factors and genes. These gene regulatory networks are known to be sparsely
connected (Hartemink, 2005) and, for model organisms such as yeast, empirically derived
beliefs about their connectivity structure are available in public databases (e.g. Teixeira
et al., 2006).

In a Bayesian context, a prior belief in sparsity is modelled by a sparsity inducing
prior distribution on the elements of the mixing matrix. So called zero-norm priors assign
finite probability mass to sparse solutions and Markov chain Monte Carlo (MCMC) tech-
niques are typically used to solve the resulting intractable inference problem (Mitchell and
Beauchamp, 1988; West, 2003; Carvalho et al., 2008, 2009). An alternative approach is
to use so called shrinkage priors which are continuous heavy-tailed densities which favour
sparse solutions. The use of shrinkage priors is more closely related to non-Bayesian sparse
estimation techniques. The canonical example is the Laplace distribution which leads to L1
or LASSO regularisation under Maximum a Posteriori (MAP) parameter estimation (Tib-
shirani, 1996; Williams, 1995). LASSO regularisation has been used for the closely related
problem of sparse principal component analysis (Zou et al., 2006; Sigg and Buhmann, 2008).
Shrinkage priors with heavier tailed densities have been applied using variational Bayesian
inference in another closely related model (Archambeau and Bach, 2009).

Shrinkage priors offer considerable computational advantages over zero-norm priors be-
cause they transform an inference problem over discrete parameters into a continuous prob-
lem which is more easily addressed using standard deterministic approximate inference
methods (Seeger, 2008; Archambeau and Bach, 2009). However, although Maximum a Pos-
teriori (MAP) parameter estimates obtained with Shrinkage priors are sparse, samples from
the posterior distribution will not be truly sparse. This is a significant drawback if one is
interested in characterising the uncertainty about whether or not a parameter is exactly
zero. This is especially problematic in applications such as the transcriptional regulatory
network example which are believed to be genuinely sparse and where factors have a clear
physical interpretation. Another problem with shrinkage priors is that it is not obvious how
to incorporate specific prior knowledge about sparse structure when it is available.

In this work we focus on zero-norm priors which do assign finite probability mass to
sparse solutions. These priors better characterise a prior belief in sparsity and should
therefore lead to more meaningful posterior beliefs. A natural implementation of a zero-
norm sparsity prior in this context is a spike and slab prior. This is a mixture prior on the
entries of the mixing matrix, where one mixture component drives the weight to zero (“no
link”) while the other mixture component allows for non-zero entries (“link”). This prior,
suggested by West (2003), not only assigns finite probability mass to truly sparse solutions,
but also allows available information about the sparse structure to be included in a natural
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and interpretable manner: prior probabilities over specific entries in the mixing matrix can
be used to adjust the relative weights of the corresponding mixture components.

Unfortunately, it is challenging to perform Bayesian inference under this model, par-
ticularly in high dimensions. The likelihood contour is not log-concave and hence MAP
approaches as well as mean-field variational Bayes approximations are prone to trapping in
local optima. Similarly, MCMC methods tend to mix slowly due to the multimodal nature
of the posterior distribution. Consequently, the spike and slab prior remains unpopular
for the kind of large-scale inference problems seen in many of today’s Machine Learning
applications. Nevertheless, given its appealing properties it is important to explore and to
characterise the comparative performance of different approaches to inference in the face of
these challenges.

In this work we investigate and compare the performance of four alternative inference
methods applied to the sparse factor analysis model incorporating a spike and slab mixture
prior. Two of them are deterministic approximations. One is based on a standard variational
mean-field approach; the other is a novel extension implementing parts of the inference
using Expectation Propagation (EP) while keeping the remainder of the inference within
the variational framework. These deterministic methods are contrasted with two alternative
implementations of a Gibbs sampler. In addition to a refinement of the collapsed Gibbs
sampler used by Sabatti and James (2006) we consider a sampler based on a softened slab
and spike model. We evaluate all four algorithms in the context of a gene regulatory network
inference problem. We highlight practical and theoretical challenges in this context and we
demonstrate the utility of explicitly accounting for the label-switching problem that occurs
under an informative connectivity prior because factors are no longer exchangeable.

The paper is organized as follows. In Section 2 we introduce the sparse factor analysis
model. Section 3 addresses the principal challenges for inference in this model, in particular
the need of explicitly addressing the label-switching problem. In Section 4 we describe the
details of the two Gibbs samplers, followed by the two deterministic approximations which
are developed in Section 5, including the novel hybrid approach. Experiments on simulated
data (Section 6) highlight different efficiency-accuracy trade-offs depending on the size and
difficulty of the problem. We conclude with a large-scale case study on a real world dataset
from computational biology.

2. Sparse Factor Analysis

We introduce the sparse factor analysis model in the context of a gene regulatory network
inference problem where specific prior information on the sparse network structure is avail-
able. Here, the goal is to explain an expression data matrix Y, covering G gene expression
levels for each of J individuals or samples. These high-dimensional expression profiles are
linearly mapped into a lower-dimensional representation of K regulatory transcription fac-
tors with activations X. The G×K mixing matrix W weights the contribution from factor
activations to gene expression. The sparsity of this mixing matrix reflects the stucture of
the regulatory network.

First, we start by reviewing standard factor analysis. The generative model can be cast
as an inner product between weights W and factor activations X. The expression profile
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for a single individual j is then given by

yj = W · xj +ψj , (1)

where ψj represents observation noise. Assuming independent samples and Gaussian noise
with precisions τg for each gene, the likelihood for the expression matrix follows as

P (Y |W,X, τ ) =
J∏
j=1

N
(
yj
∣∣W · xj , diag{τ−1

g }
)
. (2)

A natural approach to achieve sparsity in this model is a mixture prior on the entries
of the mixing matrix (West, 2003), with one mixture component driving the weight to
zero (“no link”) and a second component allowing for non-zero entries (“link”). These
two distinct meanings of the mixture components render this prior interpretable, unlike
other sparsity priors in common usage, and allow the inclusion of additional information
about the connectivity structure. Choosing a Gaussian prior for the active weights, a single
weight wg,k is distributed as

P (wg,k) = πg,kN
(
wg,k

∣∣ 0, σ2
1

)
+ (1− πg,k) δ (wg,k) , (3)

where the coefficient πg,k denotes the prior probability that factor k regulates gene g and
δ (x) is the Dirac delta function, with non-zero density only for x = 0. In the absence of
strong prior information about the scale of the wg,k, the hyperparameter σ1 can be set to
some large value or it can be learned. This prior accurately models the idea that a rela-
tionship between a factor and a gene either exists or does not exist. It has been used in
the context of both strong (Sabatti and James, 2006) and weak (West, 2003) prior infor-
mation on each πg,k and is the exact model used in the collapsed Gibbs sampler described
in Section 4.2.

A practical relaxation of this prior is to replace the delta function by a second Gaussian
component,

P (wg,k) = πg,kN
(
wg,k

∣∣ 0, σ2
1

)
+ (1− πg,k)N

(
wg,k

∣∣ 0, σ2
0

)
, (4)

where σ2
0 � σ2

1 thereby forcing the corresponding weight to take near-zero values. Inference
using this relaxed prior can be easier (Section 3), and for the limiting case σ0 → 0 this
relaxation turns into the original form in Equation 3.

To incorporate prior information on the connectivity structure, we condition on an
indicator variable zg,k that chooses between the two mixture components

P (wg,k | zg,k = 0) = N
(
wg,k

∣∣ 0, σ2
0

)
P (wg,k | zg,k = 1) = N

(
wg,k

∣∣ 0, σ2
1

)
. (5)

Existing binary knowledge about the regulatory network structure can then be encoded as
a Bernoulli prior on the indicator variables zg,k

πg,k = P (zg,k = 1) =
{
η0 no link
1− η1 link

, (6)
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where η0 can be identified as the false negative rate (FNR) and η1 as the false positive rate
(FPR) of the observed prior network structure. In the most general setting, the probability
of a link P (zg,k = 1) can also be set individually for every link, reflecting the available prior
knowledge.

The hyperparameter σ2
1 can either be set to a fixed, large value or learned. For this

inference we put a gamma prior on the inverse variance

P (σ2
1) = Γ

(
1
σ2

1

| aσ1 , bσ1

)
. (7)

The specification of prior probabilities for factor activations

P (X) =
K∏
k=1

J∏
j=1

N (xk,j | 0, 1) (8)

and the noise precisions

P (τ ) =
G∏
g=1

Γ(τg | aτ , bτ ) (9)

complete the definition of the model. The corresponding graphical model representation of
this sparse factor analyser is shown in Figure 1.

3. Inference challenges for the Sparse Factor Analysis model

The most significant challenge for inference posed by the posterior distribution of the sparse
factor analysis model defined in the previous section is that it is highly multimodal. When
these modes are not equivalent, inference is challenging: greedy deterministic methods
become trapped in local optima and MCMC samplers suffering from slow mixing.

Here, multimodality arises from two sources. First, the sparsity-inducing mixture prior
(Equation (3)), being itself multimodal, induces large numbers of non-equivalent modes in
the posterior. The novel hybrid of VB and EP described in section 5.3, the collapsed Gibbs
sampler (Section 4.2) and the relaxation of the sparsity inducing prior, equation (5), are all
measures aimed at improving inference in the face of the multiple modes that arise in this
manner. However, the problem is exacerabated by multimodality arising from the inherent
symmetries of factor analysis models in general. This identifiability problem needs to be
addressed separately.

3.1 Factor model symmetry

The inherent symmetry of factor analysis models arises from the fact that factorisation of
the data matrix into weights and activations is not uniquely defined: the product, W ·X,
is invariant to simultaneous orthogonal transformations of W and X by an arbitrary non-
singular matrix R and its inverse:

Y = W
(
RRT

)
X = (WR)

(
RTX

)
= W̃X̃. (10)
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Figure 1: The Bayesian network of the sparse factor analysis model. Observed
data yg,j for genes g ∈ {1, . . . , G} in individuals j ∈ {1, . . . , J} are modelled by the product
between unobserved factor activations xj and weights wg, and Gaussian observation noise.
The indicator variables zg,k determine the state of the gate, either switching the correspond-
ing mixing weight off (wg,k ∼ N (0, σ2

0)) or on (wg,k ∼ N (0, σ2
1)). A priori knowledge about

the connectivity structure is introduced as a prior on the Bernoulli distribution parame-
ter πg,k. For the hybrid algorithm VB/EP, Expectation Propagation is used for inference
in the submodel enclosed in the grey shaded area “EP”.

These transformations R include arbitrary rotations, rescaling of the elements of W and X,
sign flips of the elements of any column of W and the corresponding row of X and arbitrary
permutations of the factor labels. The sign ambiguity can be resolved post-hoc subject to
application of suitable domain-specific knowledge. However, to render the model identifiable
in the face of the remaining symmetries, further constraints are required.

In a Bayesian context, these constraints are provided through the specification of infor-
mative prior distributions. For example, we address the scaling ambiguity in a standard
way by fixing the scale of the prior distribution over the latent factors to 1 (Equation (8)).
To break the rotation and permutation symmetries, one might expect that the necessary
constraints would be provided by the informative, sparsity inducing prior (Equation (5).
Unfortunately, however, it turns out that this prior is only weakly effective in breaking the
permutation symmetry: the magnitude of the symmetry breaking is small compared to the
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magnitude of the density associated with modes corresponding to different permutations of
the factor labels. Furthermore, for permutations involving the labels of factors with very
different sparsity patterns, these modes can be separated by regions of very low probability
density. This causes problems for both greedy, deterministic methods and Gibbs samplers:
both methods can become stuck in a single mode. In addition, when these modes are rel-
atively close, samplers can also suffer from the label-switching problem (Jasra et al., 2005)
rendering ergodic averages meaningless.

Finding a single mode would not be a problem if the factor labels did not map directly
to real entities and all permutations of the labels were equivalent. This is often the case in
machine learning where the latent factors are introduced primarily as a device to facilitate
the inference process. However, we are interested in situations where the meaning and
identity of the factors is important. Consequently, only modes corresponding to a correct
labelling of the factors are of interest.

To solve this problem, we exploit the informative prior in a more direct manner to
differentiate between the inequivalent modes by incorporating an additional step within both
deterministic and stochastic inference methods. The details of these steps are explained in
Sections 4.4 and 5.6 respectively. The crucial importance of such a step is investigated
in Section 6.1, where the reconstruction performance of the binary indicator matrix Z is
compared for different algorithms with and without a permutation step.

4. Gibbs sampling

Gibbs sampling (Geman and Geman, 1984) is a versatile, stochastic inference method for
approximating an intractable distribution by means of a finite set of samples. Each variable,
or variable group, is sampled iteratively from its distribution conditioned on the current val-
ues of all other variables. This procedure constitutes the transition kernel of a markov chain
under which the full joint distribution is invariant. Consequently, provided convergence to
the equilibrium distribution is attained, it can be thought of as providing a “gold-standard”
for the purpose of comparison. For a comprehensive introduction to such MCMC techniques
see Robert and Casella (2004).

In the remainder of this section we outline the details of the Gibbs samplers.

4.1 Sampler implementation

The conditional distributions are derived by considering the functional dependence of the
joint distribution on each variable or variable group. The choice of conjugate priors leads
to conditional distributions of known form.
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From equations (2),(3), (5) and (8) the full joint posterior for the sparse factor analysis
model can be written as

P
(
W,X,Z, τ , σ2

1 |Y,π
)
∝ P (Y |W,X,Z, τ )P (X)P (W |Z)P (Z |π)P (τ )P

(
σ2

1

)
=

G∏
g=1

J∏
j=1

N
(
yg,j

∣∣∣∣∣
K∑
k=1

wg,kxk,j , τg

)
K∏
k=1

J∏
j=1

N (xk,j | 0, 1)

×
G∏
g=1

K∏
k=1

N
(
wg,k

∣∣ 0, σ2
1

)zg,k δ (wg,k)
1−zg,k

G∏
g=1

K∏
k=1

π
zg,k
g,k (1− πg,k)1−zg,k

×
G∏
g=1

1
Γ (ατ )

βαττ τατ−1
g × exp (−βττ)

× 1
Γ (ασ)

βασσ

(
1
σ2

1

)ασ−1

× exp
(
−βσ
σ2

1

)
. (11)

Under this model, the elements of the matrix π representing the prior network structure
are all fixed and the variance of the prior Gaussian distribution over the latent factors is set
to 1 to aid identifiability. With ατ , βτ , ασ and βσ set to uninformative values, the width of
the ‘slab’, σ2

1, is the only hyperparameter that is learned. The choice of a conjugate gamma
prior distribution for the inverse width, 1

σ2
1
, ensures that its conditional distribution is of

known form (see Appendix A).
To derive conditional distributions for the four groups of parameters, W, X, Z and

τ , it is important to note the conditional independence structure of the model: zg1,.⊥zg2,.
for g1 6= g2, wg1,.⊥wg2,. for g1 6= g2, x.,j1⊥x.,j2 for j1 6= j2 and τg1⊥τg2 for g1 6= g2.
Wherever possible, we sample conditionally dependent variables in groups. Derivations
of the conditional distributions for the X and τ groups are straight-forward and lead to
standard distributions (see Appendix A) which may be easily sampled. However, due to
the strong mutual dependencies of W and Z, sampling of these parameter groups requires
careful design of the sampler.

Clearly, pairs of parameters zg,k and wg,k are highly correlated: the probability of sam-
pling a value of 1 for an indicator variable, zg,k, depends heavily on the value of the as-
sociated wg,k. However, while the zg,k remains zero, the associated wg,k cannot change
and hence remains uninfluenced by the observed data. Consequently, standard sampling of
these parameter groups leads to poor mixing: even if the data supports a non-zero value
for the weight wg,k (and hence the indicator zg,k) the algorithm will be slow to discover
this. To address this problem we employ two alternative approaches: a collapsed sampler
which samples from the true model (Equation (3)) and a soft spike and slab sampler which
samples from the relaxed sparsity prior (Equation (5)).

4.2 Collapsed Gibbs sampler

A collapsed Gibbs sampler represents an attempt to improve mixing in the case of correlated
variable groups by sampling one of them after first marginalising out the other. Such a
scheme has previously been used by Sabatti and James (2006) and Pournara and Wernisch
(2007) in the context of a similar sparse factor analysis model.
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In this case, the zg,k are sampled after first marginalising out the wg,k. This approach
may be viewed as a means of sampling from the joint conditional distribution of the zg,k
and wg,k by first sampling the elements of Z from P (Z |Y,π,X, τ ) followed by those of W
from P (W |Z,Y,π,X, τ ). Provided no other variables are sampled between these steps
the posterior remains an invariant distribution of the markov chain.

Extracting from equation (11) those terms that depend on the elements of Z and W we
find an expression for the joint conditional posterior of these variables:

P (W,Z | .) ∝
G∏
g=1

{
exp

(
−1

2

((
yg −XTχgwg

)T
τgI
(
yg −XTχgwg

)
+

1
σ2

1

((
χgwg

)T (
χgwg

))))

×
(

1
σ2

1

)|zg | K∏
k=1

{
π
zg,k
g,k (1− πg,k)1−zg,k

}}
(12)

Here yg is a J-dimensional column vector corresponding to a column of the data matrix,
Y; wg is a K-dimensional column vector corresponding to a row of the matrix W; and |zg|
stands for the cardinality of the gth row of Z. Multiplication of wg by the square matrix
χg = diag (zg) gives a parameter vector with the sparsity pattern indicated by zg.

Noticing that the exponent is a quadratic form in wg, we may express the exponential
term as the product of an unnormalised Gaussian and terms that depends on zg but not
wg:

P (W,Z | .) ∝
G∏
g=1

{(
1
σ2

1

)|zg |
exp

{
1
2
mT
g Σ−1

g mg

}
exp

{
−1

2
(wg −mg)

T Σ−1
g (wg −mg)

}}

×
G∏
g=1

K∏
k=1

π
zg,k
g,k (1− πg,k)1−zg,k ,

where the mean, mg , and covariance, Σg , of the unnormalised Gaussian are given by:

Σg =
(
τgχgXXTχg + σ−2

1 χg
)−1

mg = τgΣgχgXyg, (13)

This distribution factorises over the G dimensions of the data vector, so we consider each
dimension, g, separately. In the joint distribution, P (wg, zg | .), only the unnormalised
Gaussian term depends on wg. Consequently, marginalising over wg immediately yields the
following expression for the conditional distribution over zg:

P (zg | .) ∝
(

1
σ2

1

)|zg |
exp

{
1
2
mT
g Σ−1

g mg

}
det |Σg|1/2

K∏
k=1

π
zg,k
g,k (1− πg,k)1−zg,k . (14)

However, when no constraint is placed on the maximum number of ones in a row of
indicators, zg, normalisation of the resulting multinomial distribution scales exponentially
with the number of latent factors. To render the problem tractable, Sabatti and James
(2006) considered a simplified problem in which large numbers of the indicators zg,k were
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fixed to be exactly 0 or 1. We avoid imposing such a constraint by sampling each zg,k
individually from its distribution conditioned on the current values of all other zg,k, a
procedure previously suggested by Pournara and Wernisch (2007):

P (zg,k | .) =
1

Ng,k

{
πg,k

(
1
σ2

1

)zg,k [
det |Σg|1/2 exp

{
1
2
mT
g Σ−1

g mg

}]
δ (zg,k − 1)

+ (1− πg,k)
(

1
σ2

1

)zg,k [
det |Σg|1/2 exp

{
1
2
mT
g Σ−1

g mg

}]
δ (zg,k)

}
. (15)

The normalising term, Ng,k, is given by

Ng,k = πg,k

(
1
σ2

1

)[
det |Σg|1/2 exp

{
1
2
mT
g Σ−1

g mg

}]
zg,k=1

+ (1− πg,k)
[
det |Σg|1/2 exp

{
1
2
mT
g Σ−1

g mg

}]
zg,k=0

, (16)

where [.]zg,k=1 indicates that the quantity within square brackets is evaluated for zg,k = 1.
Once the K elements of the gth row of Z have been sampled, the collapsing step is

completed by sampling the corresponding row of W from its conditional distribution:

P (wg | .) = N (wg |mg,Σg) . (17)

Unfortunately, this procedure entails a number of comparatively costly operations. For
K latent factors, computing each normalising term, Ng,k requires the inversion of a matrix
with dimensionality equal to the number of non-zero elements in the gth row of Z. In the
worst case this could entail inversion of a K ×K matrix for each such variable, leading to
a time complexity scaling as GK4. Fortunately, provided the problem is inherently sparse,
the data will support non-zero values for only a small number, K1, of the elements in
a row of Z. Typically K1 is substantially smaller than K. In particular in applications
such as gene regulatory networks, this number is thought to increase very slowly with K.
Consequently, in practice the average time complexity of this sampling step O

(
GKK3

1

)
may scale approximately linearly with the number of factors.

Nevertheless, this step constitutes a bottleneck. The soft spike sampler discussed below
allows for faster sampling steps of the indicator variables zg,k.

4.3 Soft Spike Gibbs Sampler

A soft spike sampler was previously introduced by George and McCulloch (1993) as a means
of stochastic variable selection for regression. This algorithm samples from the relaxation
of the slab and spike prior (Equation (5)).

The relative widths of the narrow and broader Gaussians determine a trade-off between
the magnitude of wg,k necessary to infer zg,k = 1 and the mixing efficiency of the Markov
chains. Larger ratios are expected to result in better mixing, but poorer inference. The
sampling steps are the same as for the collapsed sampler with the exception of a different
form for the conditional distributions of wg and zg,k

P (wg |Y,X,Z, τ , ) = N
(
wg

∣∣µg,Λg

)
(18)

P (zg,k |πg,k, wg,k) ∝
(
πg,ke

−w2
g,k/2σ

2
1

)zg,k (
(1− πg,k) e−w

2
g,k/2σ

2
0

)1−zg,k
, (19)
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where

µg = τgΛgXyg (20)

Λ−1
g = τ gXXT +

(
σ−2

1 χg + σ−2
0

(
1− χg

))
(21)

χg = diag (zg) . (22)

This approach results in considerably cheaper sampling of the indicator variables zg,k. As
these variables are all conditionally independent in this model, their conditional distribu-
tions depend on only the single corresponding weight wg,k (Equation (19)). As a result,
there is no costly matrix inversion required in order to sample from these weights. Instead,
computation of the full covariance matrix for the multivariate normal distribution of each
vector wg requires a single matrix inversion. If this is done by computing the Cholesky
decomposition of the matrix in Equation (21), then the required ‘square-root’ of the co-
variance is already available for the sampling step. Consequently, sampling of one complete
group of zg and wg requires only a single Cholesky decomposition of a K ×K matrix and
so each Gibbs step has time complexity O

(
GK3

)
.

4.4 Permutation step

A common approach to addressing the problem of multiple modes due to label-switching
(first proposed by Diebolt and Robert (1994)) is to enforce a hard identifiability constraint:
at every iteration the labels are permuted so as to satisfy the constraint. However, aside
from the problems of determining a suitable constraint in a multivariate problem, Fruhwirth-
Schnatter (1998) demonstrated that an inappropriate choice can lead to a significant bias
towards the constraint. Our solution to this problem is to use a local, permutation step
that exploits the informative prior on the indicators zg,k to enforce a soft identifiability
constraint. The “softness” of the constraint arises as a result of the stochastic nature of
the step. It is local, in that it considers only pairwise swaps of factor labels. Locality is
essential for the algorithm to scale to the numbers of factors in realistic problems.

The local permutation step is integrated within the Gibbs sampling scheme, by treating
the configurations of pairs of factor labels as random variables. A single step consists of
sampling from the posterior distribution of the labelling of a given pair, conditioned on the
current values of all other variables, including all other factor labels. In each step we sample
a labelling, either (k,m) or (m, k), for a pair of factors from P (k,m |Y,W,X,Z, τ ,π). The
form of this distribution is easily derived by retaining only those terms in the expression
for the posterior that are not invariant to a permutation of the factor labels:

P (k,m |Y,W,X,Z, τ ,π) ∝ P (Y,W,X,Z, τ ,π)
∝ P (Y |W,X, τ )P (W |Z)P (X)P (Z |π)P (τ )
∝ P (Z |π)
∝ P

(
zk, zm |Z\k,m,πk,πm,π\k,m

)
. (23)

Here, zk and πk represent the kth columns of the binary matrix Z and the matrix of
parameters, π respectively; Z\k,m and π\k,m represent the remaining columns of these two
matrices.
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The simplification in the third line of Equation (23) arises from two observations.
Firstly, we note that P (τ ) does not depend on the factor labels. Secondly, we observe
that P (Y |W,X, τ ) is a product of Gaussian distributions in this model, each of which
depends on the factor labels only through scalar products of wg and xj . As the operation
of taking the scalar product is invariant to a permutation of these labels, P (Y |W,X, τ )
is therefore also invariant to such a permutation. Similar reasoning applies to P (W |Z)
and P (X). The fourth line follows simply because, in each step, we consider swapping the
labels of only one pair of factors with all other labels remaining fixed.

Thus we find that the conditional distribution for the configuration of a given label pair
is a Bernoulli distribution with parameter, µkm given by

µkm =

∏G
g=1 π

zik
im (1− πim)(1−zik) πzimik (1− πik)(1−zim)∑

j,l=(k,m)

∏G
g=1 π

zij
im (1− πim)(1−zij) πzilik (1− πik)(1−zil)

, (24)

The normalising sum in the denominator is over the two possible configurations of the indices
j, `, i.e., j = k, ` = m, or j = m, ` = k. Sampling from this distribution is straightforward.

It is clear from Equation (24) that this move ‘coaxes’ the markov chain to sample
predominantly from permutations of labels that have a high probability under the prior.
Consequently, it relies on the prior being informative.

The individual sampling steps of a Gibbs algorithm may be combined in a variety of
ways that all preserve the properties of the markov chain: in fixed order, random order or
palindromically. We implement the permutation steps in a fixed order, cycling through all
possible pairwise combinations of labels. This step has time complexity O

(
GK2

)
. How-

ever, it is likely that more efficient, though problem-specific, adaptive schedules could be
devised to exploit the fact that factors with larger numbers of links are learned more quickly
than those with few.

12
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This completes the description of the samplers. The steps of both algorithms are sum-
marised below.

Sampling scheme:
repeat

sample σ2
1 from P

(
σ2

1 |Z,W, ασ, βσ
)

for g = 1 to G do
if Collapsed Gibbs then

for k = 1 to K do
sample zg,k from P (zg,k | {Y,X, zg \ zg,k} , τ ,πg)

else
for k = 1 to K do

sample zg,k from P (zg,k |Y, wg,k,X, {zg \ zg,k} , τ , πg,k, )
sample wg from P (wg |Y,X, zg, τ , )

for j = 1 to J do
sample xj from P (xj |Y,W,Z, τ )

for g = 1 to G do
sample τg from P (τg |Y,W,Z)

for k = 1 to K − 1 do
for m = k + 1 to K do

sample a pairwise labelling k,m from P (k,m | zk, zm,πk,πm)
until convergence

5. Deterministic approximate inference

Deterministic approximations are appealing mainly because they typically converge faster
than sampling schemes. In the following we begin by reviewing variational Bayesian (VB)
learning and then discuss a novel, hybrid scheme. This combines VB with Expectation
Propagation (EP) for inference in the sparse factor analysis model. Both of these algorithms
are based on the relaxed sparsity prior (Equation (5)).

5.1 Variational Bayesian learning

Variational Bayesian (VB) learning is a general purpose technique for deterministic ap-
proximate inference in a wide range of probabilistic models (?). In this mean field ap-
proach the exact posterior distribution P (H |V) is approximated by a factorised distri-
bution Q(H |V) =

∏
iQ(Hi), where V denotes the set of all visible (observed) variables

and H are hidden variables – including both latent variables and model parameters. The
variational approximation is fitted by minimising the exclusive KL divergence, KL[Q ||P ],
between the approximate Q-distribution and the true posterior. Functional minimisation
of this KL divergence leads to update rules for individual factors Q(Hi), which require the
calculation of the log average likelihood under the current state of all other Q-distributions:

Q̃(Hi) ∝ exp
{
〈logP (V,H)〉Q\Hi

}
. (25)
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These updates are iterated in turn for all factors Q(Hi) until convergence to a fixed point
solution is reached.

To derive a variational algorithm for the sparse factor analyser, we choose a factorisation
of the form

Q(W,X,Z, τ ) =
G∏
g=1

[
Q(wg)Q(τg)

K∏
k=1

Q(zg,k)

]
J∏
j=1

Q(xj). (26)

The explicit update equations for individual factors Q(·) follow from Equation (25). In the
following a detailed treatment of the update rules of the mixing weights Q(wg) and the
indicators Q(zg,k) is provided. The remaining updates for factor activations Q(xj) and the
noise levels Q(τg) are fairly standard and are given in Appendix B. Using Equation (25),
the update for the mixture weights of one gene, Q(wg), is

Q(wg) ∝ exp
{
〈logP (Y,W,X,Z, τ )〉Q\wg

}
∝ exp

{
〈logP (yg |wg,X, τg) + logP (wg | zg)〉Q\wg

}
(27)

∝ exp
{
〈logP (yg |wg,X, τg)〉Q\wg

}︸ ︷︷ ︸
MW·X→wg

exp
{
〈logP (wg | zg)〉Q\wg

}︸ ︷︷ ︸
MW |Z→wg

, (28)

where the expectations are with respect to all Q-distributions except the one that is being
refined. The resulting Gaussian approximate factor, Q(wg), can be written as a product
of two unnormalised Gaussian terms. The first term represents the evidence coming from
the data likelihood, and the second term can be identified with the contribution from the
sparsity prior.

In a message-passing scheme (Winn and Bishop, 2006), we interpret MW·X→wg as the
message sent from the product factor fW·X to the variable wg. The parameters of this

Gaussian MW·X→wg ∝ N
(
wg

∣∣∣ m̃W·X→wg , Σ̃W·X→wg

)
are:

Σ̃W·X→wg =

〈τg〉 J∑
j=1

〈
xjxT

j

〉−1

(29)

m̃W·X→wg = Σ̃wg

〈τg〉 J∑
j=1

〈xj〉 (yj)

 . (30)

These follow directly from Equation (28), by writing out the individual likelihood terms.
In the same way we identify MW |Z→wg

as a message from the mixture prior to wg.
To facilitate the derivation of the VB/EP hybrid in Section 5.3, we split the sparse

factor analysis model into two models, treating W as a shared variable (see Figure 1). In
the following we will refer to the model defined over the observed data Y, noise precisions
τ , factor activations X and the shared weights W as the core factor analysis. The smaller
model, defined over the shared weights W, the mixture indicators Z and prior mixing
coefficients π will be referred to as the sparsity submodel.
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5.2 VB for the sparsity submodel

Making the conditioning on the incoming messages
{
MW·X→wg

}
g

explicit, the joint prob-
ability over weights and indicators in the submodel is

P
(
W,Z |

{
MW·X→wg

}
g

)
∝

G∏
g=1

[
N
(
wg

∣∣∣ m̃W·X→wg , Σ̃W·X→wg

) K∏
k=1

P (wg,k | zg,k)P (zg,k)
]
, (31)

which factorises over genes g. If we again choose Variational Bayes for approximate infer-
ence, we obtain update rules for the approximate factor Q(wg) that are consistent with
those derived earlier in Equation (27),

Q(wg) ∝ N
(
wg

∣∣∣ m̃W·X→wg , Σ̃W·X→wg

)
exp

{
〈logP (wg | zg)〉Q\wg

}
. (32)

Writing out both terms, we obtain

Q(wg) ∝ exp
{
− 1

2
(
wg − m̃W·X→wg

)T Σ̃
−1
W·X→wg

(
wg − m̃W·X→wg

)
− 1

2
wT
g diag

({
1∑
c=0

Q(zg,k = c)
1
σ2
c

}
k

)
wg

}
, (33)

and hence the explicit parameters of the Gaussian factor Q(wg) = N
(
wg

∣∣∣ m̃wg , Σ̃wg

)
follow as

Σ̃wg =

[
Σ̃
−1
W·X→wg

+ diag

({
1∑
c=0

Q(zg,k = c)
1
σ2
c

}
k

)]−1

m̃wg = Σ̃wgΣ̃
−1
W·X→wg

m̃W·X→wg . (34)

Update rules for the responsibilities, Q(zg,k = 1) = π̃g,k, can be obtained in the same vein
using

π̃g,k ∝ πg,k exp
{〈

logN
(
wg,k

∣∣ 0, σ2
1

)〉
Q\zg,k

}
(1− π̃g,k) ∝ (1− πg,k) exp

{〈
logN

(
wg,k

∣∣ 0, σ2
0

)〉
Q\zg,k

}
. (35)

With these updates for weights and indicator variables, the description of VB learning
in the sparse factor analyser is completed. It is important to reemphasise that, for VB, the
split of the model does not alter the inference and leads to identical effective update rules.

5.3 VB/EP hybrid inference

As an alternative to Variational Bayesian learning, we now consider Expectation Propaga-
tion (Minka, 2001b). As with VB, EP is based on the minimisation of a KL divergence,
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however with swapped arguments, KLEP = KL [P ||Q], which leads to an approximation
with rather different properties. In settings where the true posterior is multimodal, as it is
the case for the sparsity prior (Section 3), the VB KL divergence favours the approximation
to lock onto a single mode. In contrast, EP averages over the set of modes (see Discussion
in Minka (2005)). A comprehensive introduction to EP can be found in Minka (2001b) and
Bishop (2006, Chapter 10).

In general, there is no clear-cut answer as to which of VB and EP provides a better
approximation (for a number of problems where EP has been shown to be more accurate
see (e.g. Nickisch and Rasmussen, 2008; Frey et al., 2000)). A drawback of EP is that
it is more difficult to apply, can lead to improper messages, and for some models is not
tractable at all. In fact, full EP inference in the considered sparse factor analysis model
is not feasible. For EP we need the moments of the product factor fX·W, which are not
available in closed form. Note that for observed factor activations X, the factor analyser
reduces to sparse linear regression and inference with EP is possible (Seeger, 2008).

Applying EP to the model considered here, we follow an alternative route and connect
VB with EP. As it turns out the resulting hybrid inference algorithm combines the stability
and efficiency of VB for the core factor analysis with the improved accuracy of EP for the
sparsity mixture. For the sparsity mixture prior, EP is more accurate due to it’s mode
averaging behavior, retaining more uncertainty in the estimates of the indicator variables.
Note that the benefits of this mode averaging are linked to the strong prior information
that breaks the symmetry for the mixture components of the sparsity prior. When multiple
modes of the posterior are equivalent, for example in symmetric mixture models, VB is often
found to yield practical and accurate answers despite locking onto single mode (Paquet,
2008). However, in situations with strong prior knowledge, mode averaging of EP is likely
to yield fewer “false positives” in the sense of overconfident decisions regarding the state of
the indicator variables; see also the discussion in Minka (2005).

From a theoretical perspective this hybrid algorithm can be understood as choosing
alternative divergence measures for different parts of the graphical model (see Figure 1).
Minka has noted earlier (Minka, 2005) that combinations of EP and VB (in fact a more
general class of α-divergences) are possible. However, there are few applications where
hybrid inference schemes have been used in practise, probably because of the difficulty of
implementing such algorithms1

5.4 EP for the sparsity submodel

As for inference using VB (Section 5.2), the factorisation of the incoming messages,
{
MW·X→wg

}
g
,

induces a factorisation over genes. Hence, we consider inference for a single gene only.
Conditioned on the incoming message, the joint probability over a vector of weights and
corresponding indicators for a gene g is

P
(
wg, zg |MW·X→wg

)
∝ N

(
wg

∣∣∣ m̃W·X→wg , Σ̃W·X→wg

) K∏
k=1

P (wg,k | zg,k)P (zg,k). (36)

1. One example is Welling et al. (2008), who study a hybrid of Gibbs sampling and VB in another context.
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As for VB, we choose an approximate form:

Q(wg, zg) = s · N
(
wg

∣∣∣ m̃W·X→wg , Σ̃W·X→wg

) K∏
k=1

q(wg,k)q(zg,k), (37)

where the factors q(wg,k)q(zg,k) are meant to approximate P (wg,k | zg,k)P (zg,k). The explicit
scale of the approximation, s can be used to obtain estimates of the marginal likelihood
within the EP framework (Minka, 2005). As we aim to connect this model with VB we
drop this scale in the following. Choosing factor distributions that match the VB approx-
imation, Q-distributions for weights are Gaussian, q(wg,k) = N

(
wg,k

∣∣∣ µ̃wg,k , σ̃2
wg,k

)
, and

factors of indicators are Bernoulli distributed, q(zg,k) = Bernoulli(zg,k | π̃g,k). While the
overall approximation in Equation (37) is fully factorised over indicators zg,k, it is multi-
variate Gaussian in the weights wg. Writing out the product of the Gaussian prior and the
individual Gaussian factors q(wg,k) yields

Q(wg, zg) ∝ N
(
wg

∣∣∣ m̃wg , Σ̃wg

) K∏
k=1

q(zg,k). (38)

Defining µ̃ =
(
µ̃wg,1 , . . . , µ̃wg,K

)
and Σ̃ = diag(1/σ̃2

wg,1 , . . . , 1/σ̃
2
wg,K

), the covariance and the
mean of this Gaussian follow as

Σ̃wg =
(
Σ̃
−1
W·X→wg

+ Σ̃
)−1

m̃wg = Σ̃wg

[
Σ̃
−1
W·X→wg

m̃W·X→wg + Σ̃
−1
µ̃
]
. (39)

The idea of EP is to iteratively refine individual pairs of factors for indicators and weights,
leaving all other factors fixed. To update the ith pair, q(wg,i)q(zg,i), the local KL divergence
to be minimised is

KL
[
N
(
wg

∣∣∣ m̃W·X→wg , Σ̃W·X→wg

)∏
k 6=i

q(wg,k)q(zg,k)

exact factor︷ ︸︸ ︷
P (wg,i | zg,i)P (zg,i)

∣∣∣∣∣∣∣∣
N
(
wg

∣∣∣ m̃W·X→wg , Σ̃W·X→wg

)∏
k 6=i

q(wg,k)q(zg,k) q(wg,i)q(zg,i)︸ ︷︷ ︸
approximation

]
. (40)

As the arguments of the KL divergence differ only in that ith factor, all other dimensions
are marginalised out. This motivates the definition of a cavity distribution:

q\i(wg,i) =
∫
wg,\i

N
(
wg

∣∣∣ m̃W·X→wg , Σ̃W·X→wg

)∏
k 6=i

q(wg,k) dwg,\i

= N
(
wg,i

∣∣∣ µ̃\i, σ̃2
\i

)
. (41)

As the zg,k are independent in the approximation, marginalisation of the q(zg,k) is trivial
and factors other than q(wg,i) can be dropped. The cavity distribution q\i(wg,i) can be
calculated efficiently from the current full approximation (Equation (38)),by dividing out
the contribution of the ith factor (for an instructive tutorial on how to handle cavity distri-
butions efficiently, see Rasmussen and Williams (2006) chapter 3.6). Using the definition of
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the cavity distribution, the KL-divergence in Equation (40) can be expressed in a compact
form:

KL
[
q\i(wg,i)

exact factor︷ ︸︸ ︷
P (wg,i | zg,i)P (zg,i)

∣∣∣∣∣∣∣∣ q\i(wg,i) q(wg,i | µ̃wg,i , σ̃2
wg,i)q(zg,i | π̃g,i)︸ ︷︷ ︸

approximation

]
. (42)

Minimising Equation (42) with respect to the parameters of the Gaussian factor q(wg,i)
leads to moment-matching conditions (Minka, 2001a). As an exponential family member,
the new parameters of the approximate factor q(wg,i) are set such that the moments of
both arguments of the KL divergence match. The task hence reduces to calculating a set
of moments under the exact factor:

FC =
∫
wg,i

q\i(wg,i)
∑

c={0,1}

P (wg,i | zg,i = c)P (zg,i = c) dwg,i

Fµ =
1
FC

∫
wg,i

q\i(wg,i)
∑

c={0,1}

P (wg,i | zg,i = c)P (zg,i = c)wg,i dwg,i

Fσ2 + F 2
µ =

1
FC

∫
wg,i

q\i(wg,i)
∑

c={0,1}

P (wg,i | zg,i = c)P (zg,i = c)w2
g,i dwg,i. (43)

Analytic expressions for these moments are derived in Appendix C. In the same vein,
optimisation of Equation (42) with respect to π̃g,i leads to updates of the posterior over the
indicator variables

π̃g,i ∝ πg,i
∫
wg,i

q\i(wg,i)N
(
wg,i

∣∣ 0, σ2
1

)
dwg,i

1− π̃g,i ∝ (1− πg,i)
∫
wg,i

q\i(wg,i)N
(
wg,i

∣∣ 0, σ2
0

)
dwg,i. (44)

5.5 Connecting the EP submodel with VB

Having established EP-inference in the sparsity submodel, the remaining task is to connect
both models. In a joint inference schedule, first a VB iteration of the core factor analysis is
performed, updating hidden activations Q(X) and noise estimates Q(τ ) and calculating the
messages MW·X→wg . Subsequently, EP is applied to infer approximate marginals Q(W)
and Q(Z). These factors enter consecutive VB updates in a manner analogous to standard
VB factors.

For EP updates in the submodel, we need to choose a schedule for individual factor
updates, i.e. an order and the number of sweeps through all factors k for the local KL
updates in Equation (42). In the experiments, a single sweep in a randomised order is
used. Empirically we found that the results differ very little when performing additional
cycles. Most likely this is due to the fact that the speed of convergence of the VB model is
comparably slow and hence an approximate solution from a single EP iteration is sufficient.

An aspect left for future work is to investigate how to retain an approximation to
the model evidence within the hybrid inference scheme. Both VB and EP alone yield an
approximation to the model evidence, and in principle it should be possible to estimate the
evidence in the combined model as well (Minka, 2005).
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5.6 Label-switching move

The weak symmetry breaking discussed in Section 3.1 also affects deterministic inference
methods. The respective sparsity sub-models can be readily extended by representing the
permutation of factors explicitly

P (Z |π) =
K∏
k=1

P (Zk |πq(k)). (45)

In EM-type manner, label switching can be accounted for by optimising over the permu-
tation q(k). This is implemented greedily, optimising the permutation assignment for one
factor at a time.

6. Experiments

We compared the performance of the deterministic inference methods (VB, VB/EP) with
the two Gibbs samplers (collapsed Gibbs, soft spike and slab Gibbs) on simulated problems
of two different sizes and on real gene expression data from the baker’s yeast Saccharomyces
cerevisiae. For the real data we used a connectivity prior for the network empirically deter-
mined from genome-wide Chromatin Immunoprecipitation (ChIP-chip) data. The details
of these experiments are described below.

6.1 Simulated networks

First, we considered two simulated datasets of different sizes (small and large). The elements
of the matrices, Y, W, Z and X were drawn from the model – Equations (2), (3) and (8).
The simulation parameters for both datasets are summarised in Table 1.

Small Large

Dimension (genes) 486 1000
No. latent factors 20 60
No. of individuals 20 100
FNR (η0) 0.1 0.05
FPR (η1) 0.25 0.25
Sparsity 0.15 0.09
Noise hyperparameter (ατ ) 1.0 1.0
Noise hyperparameter (βτ ) 0.01 0.01
Slab width σ2

1 1.0 1.0

Table 1: Summary of simulation parameter for both synthetic datasets.

Sampling yields “gold standard”

When the Gibbs samplers reach convergence the inferred posterior can be regarded as a
“gold standard”. Sampler convergence was monitored by means of well established diag-
nostics: the Rhat test of Gelman and Rubin (Gelman and Rubin, 1992) applied to five
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independent markov chains. Figure 2d summarises the results of applying this test on the
small example, monitoring the fraction of parameters remaining unconverged as a function
of the runtime. From these data it is evident that both samplers reached convergence within
the allowed runtime, where the soft slab and spike sampler converged slightly quicker than
the collapsed sampler.

Performance as a function of CPU time

To study the trade-off between performance and computational cost, we examined the
performance of the different methods as a function of CPU time under three different
measures: predictive accuracy for the network reconstruction task, the mean log probability
of the true network under the posterior, and the mean squared error in estimating the real
valued parameters. The mean squared error was computed using the products of individual
elements of W and X, as these quantities are invariant to ambiguities of sign and scale.

Figure 2 shows the comparative performance of the different algorithms on the small
network example. The figure also illustrates the the effect of varying σ2

0, the hyperparameter
determining the variance of the narrow Gaussian. The corresponding results for the large
network are shown in Figure 3.

Two comparisons are particularly worthy of note. First, it can be seen from figure 2
that the best deterministic method, the VB/EP hybrid, suffers only a small reduction in
performance under all three measures when compared to the “gold standard” provided by
the samplers. At the same time, it achieves a considerable saving in computation time: the
approximate, deterministic methods converged at a rate more than two orders of magnitude
faster than the samplers. This result was qualitatively similar for the larger example as
shown in figure 3, suggesting that the VB/EP hybrid might provide a useful approximation
on real data sets where the convergence of samplers is likely to become prohibitively slow.

The second important comparison is between the performances of the two different
approximate inference algorithms. Under all three measures, the VB/EP hybrid, performing
EP on the sparsity submodel, consistently outperformed pure variational bayes. The results
also illustrate that the limit σ0 → 0 is not accessible in pure VB where performance degrades
for small σ0. This behaviour can be explained by the fully factorised form of the variational
approximation (Section 5.2), that in combination with the greedy behaviour of VB leads
to inflexible solutions. In contrast, the “mode averaging” behaviour of EP appeared to
be more robust: The approximation is well-behaved in the sense that the limit σ0 → 0 is
accessible in practice and the model performance increased as the true simulation prior was
approached.

Utility of the permutation move

Next, we investigated the utility of the permutation move, addressing the weak symmetry
breaking property of the model (Section 3.1). Figure 4 illustrates that, for both families
of methods – deterministic approximations and sampling methods – the permutation move
improved the accuracy of the inferred network by a significant margin. It is notable that
the problem is particularly severe for the sampling methods where, as explained in section
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(a) Predictive accuracy (b) Mean log probability

(c) Mean Squared error (d) Unconverged parameters (Gibbs)

Figure 2: Small: Performance on simulated dataset for different algorithms and
error measures. The performance of each model is plotted as a function of the CPU
time for alternative performance measures. (a) Predictive accuracy of the inferred network
structure. (b) Mean log probability of the true network under the marginal predictive
distribution. (c) Prediction error of weights and activation profiles, evaluated as the root
mean squared error of individual product terms, wg,k xj,k. (d) Convergence of samplers,
monitored as the fraction of unconverged parameters using 5 Gibbs chains. Empirical error
bars of plus or minus one standard deviation (a,b,c) are from 5 random restarts or Gibbs
chains respectively.

3.1, chains can easily become stuck in modes corresponding to an incorrect permutation of
the factor labels.

An explanation for this observation is the local nature of the sampling updates for
each iteration of the Gibbs sampler. Compared to these small moves, the deterministic
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(a) Predictive accuracy (b) Mean log probability

(c) Mean Squared error (d) Unconverged parameters (Gibbs)

Figure 3: Large: Performance on simulated dataset for different algorithms and
error measures. The performance of each model is plotted as a function of the CPU
time for alternative performance measures. (a) Predictive accuracy of the inferred network
structure. (b) Mean log probability of the true network under the marginal predictive
distribution. (c) Prediction error of weights and activation profiles, evaluated as the root
mean squared error of individual product terms, wg,k xj,k. (d) Convergence of samplers,
monitored as the fraction of unconverged parameters using 5 Gibbs chains. Empirical error
bars of plus or minus one standard deviation (a,b,c) are from 5 random restarts or Gibbs
chains respectively.

approximations progress faster and hence are able to overcome local optima boundaries;
however, at the price of being more greedy.

Comparison of marginal distributions for indicators Z

The analysis of the number of converged parameters (Section 6.1) suggests that the Gibbs
samplers converged to the true equilibrium distribution on the small dataset. Hence, it is
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Figure 4: Small: Accuracy of inferred network structure for different algorithms
with and without permutation move. Comparative results for the deterministic al-
gorithm VB/EB and the collapsed Gibbs sampler with and without a permutation move
addressing the weak symmetry breaking property. For samplers the move is essential; for
VB/EP it also leads to a significant gain in performance and reduced variance over different
initialisations.

interesting to compare the posterior marginal distributions inferred by the samplers and the
deterministic approximations. Figure 5a regresses the “gold standard” marginal probabili-
ties from the converged collapsed sampler against those inferred by both the pure VB and
the VB/EP hybrid. The scatter plot and correlation coefficients suggest that the posterior
inferred by the VB/EP approach provides a significantly better approximation than that
inferred by pure VB.

The accuracy of the posterior indicators at convergence are compared in Figure 5b which
shows ROC curves for the collapsed sampler, VB and VB/EP. This indicates that VB/EP
achieves the most significant performance increase over VB for indicator variables that are
highly ranked.

6.2 Real data

Having demonstrated the potential utility of the VB/EP hybrid inference method on larger
scale problems, we also carried out a performance comparison on a real biological network
infernece problem. This problem concerned inference of the parameters of the transcription
network of the baker’s yeast Saccharomyces cerevisiae. The data were combined from two
different sources. The data matrix Y consisted of microarray measurements of gene expres-
sion for 6217 genes under 205 varied experimental conditions from the study of Mnaimneh
et al. (2004). These data were normalised to have zero mean and unit variance across all
genes. The informative prior over the elements of the connectivity matrix Z was constructed,
as described in Section D, from the results of high throughput ChIP-chip experiments by C.
T. Harbison et al (2004). In total, this prior network consisted of 203 latent factors (tran-
scription factors).
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(a) Regression against MCMC
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(b) ROC at convergence

Figure 5: Comparison of the marginal posterior distribution of W · Z sampler
versus VB and VB/EP. a) Regression of VB and VB/EP against MCMC marginals. b)
ROC curves of marginal Z MCMC,VB and VB/EP at convergence. The results indicate
that VB/EP inference results are in greater accordance with sampling estimates than those
obtained from the pure VB model.

As there is no reliable gold-standard for the true network structure available, we com-
pared alternative methods by means of a fill-in test.

Fill-in Test

In this predictive test we trained each candidate model on the full set of genes and 95% of
the experimental conditions. For the 5% fo the conditions not used for training, we removed
a fraction ρ of the expression measurements and applied the trained model to fill-in these
missing values. The motivation behind this experiment is that models which better capture
the true network structure will be able to better predict the missing expression levels.

Figure 6 shows the mean squared error of the fill-in task for different fractions miss-
ing data ρ and alternative methods. We compared the two best deterministic models on
simulated data and the collapsed Gibbs sampler with either 750 samples (runtime: XX,
fraction of unconverged parameters: YY) or ZZZ samples (runtime: XXX, fraction of un-
converged parameters: YY). The results show, that on this real-world sized problems, the
deterministic approaches achieve a significantly better fill-in performance at a fraction of
the computational costs.

Strictly, the posterior over the model parameters inferred from the training runs should
be used as a prior for the test runs so that their distributions could also be influenced by the
test data. However, such an approach is difficult to implement for the samplers. Instead,
the distributions of these parameters were assumed to be known from the training runs and
were simply sampled uniformly from the samples collected in the training run.
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Figure 6: Fill-in results on yeast dataset. The prediction error for filling-in a fraction of
missing values on an independent test dataset. Mean denotes the error when solely fitting
the mean effect.

7. Discussion

In this work, we investigated alternative inference approaches for sparse factor analysis in
the context of strong prior information. We considered both – approaches based on MCMC
sampling and deterministic approximate inference techniques.

The empirical investigation on simulated and real datasets shows a tradeoff between
accuracy and efficiency. While on small problems, sampling is feasible and yields gold-
standard accuracy, MCMC fails short on larger problems. In this regime, deterministic ap-
proximations reach useful solutions in a fraction of the CPU runtime, allowing for real-world
applications such as the regulatory network inference problem considered in Section 6.2.
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Appendix A. Conditional Distribution of X,τ and σ2
1

For X we find that the posterior factorises into a product of Gaussian distributions:

P (X | .) ∝∏J
j=1N

(
xj |Mxj ,Σxj

)
(46)

where Mxj and Σxj , the mean and covariance of the distribution, are given by:

Σxj =

τg G∑
g=1

XgwgwT
g Xg + I

−1

(47)

Mxj = Σxj

τg G∑
g=1

ygjXgwg

 , (48)

where Xg = diag (zg). This ensures that only those wg,k for which the current state of the
corresponding zg,k is 1 contribute to the calculation.

For each τ g we find that the posterior is gamma distributed:

τ g ∼ Γ
(
τ g |α∗g, β∗g

)
(49)

with

α∗g =
J

2
+ αg

β∗g = βg +
1
2

J∑
j=1

(
ygj −

K∑
k=1

zg,kwg,kxkj

)2

(50)

With a vague, conjugate gamma prior over the precision σ−2
1 , the conditional posterior

is also gamma distributed:

1
σ2

1

∼ Γ
(

1
σ2

1

|α∗σ, β∗σ
)

with

α∗σ =
|Z|
2

+ ασ

β∗σ = βσ +
1
2

G∑
g=1

K∑
k=1

(zg,kwg,k)
2 (51)

where |Z| represents the cardinality of the set of nono-zero indicator variables; (ασ =
0.7,βσ = 0.3).

29



et. Al.

Appendix B. Full update rules for VB in sparseFA model

This section provides the full update rules of standard VB learning of factor analysis.
Starting form the chosen factorisation of the approximation (Equation 26), update can be
obtained by substituting VB factors into Equation (25).

This leads to the following functional forms and update rules of the approximate factors:

(Approximate distributions)

Q(X) =
J∏
j=1

N
(
xj
∣∣∣ m̃xj , Σ̃xj

)
(52)

Q(τ ) =
G∏
g=1

Γ(τg | ãτg , b̃τg) (53)

(Update rules)

Σ̃xj =
(
I +

〈
WTdiag (τ ) W

〉)−1

m̃xj = Σ̃xj

[〈
WT

〉
diag 〈τ 〉 (yj)

]
(54)

ãτg = aτ +
1
2

J∑
j=1

〈
(yg,j −wgxj)

2
〉

b̃τg = bτ +
J

2
. (55)

Appendix C. Moments for EP model

The required moments for the EP updates correspond to moment matching equations of a
mixture model with two mixing components (C = 1).

FC =
C∑
c=0

πc

∫
fi

N
(
fi

∣∣∣ µ̃\i, ν̃2
\i

)
N
(
fi
∣∣ ti, σ2

c

)
dfi

=
C∑
c=0

πc N
(
µ̃\i

∣∣∣ ti, ν̃2
\i + σ2

c

)
︸ ︷︷ ︸

Zc

. (56)
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The first moment is

Fµ =
1
FC

C∑
c=0

πc

∫
fi

N
(
fi

∣∣∣ µ̃\i, ν̃2
\i

)
N
(
fi
∣∣ ti, σ2

c

)
fi dfi

=
1
FC

C∑
c=0

πcZc

∫
fi

N
(
fi
∣∣uc, v2

c

)
fi dfi

=
1
FC

C∑
c=0

πcZcuc, (57)

and similarly

Fσ2 + F 2
µ =

1
FC

C∑
c=0

πc

∫
fi

ZcN
(
fi
∣∣uc, v2

c

)
f2
i dfi

=
1
FC

C∑
c=0

πcZc
[
u2
c + v2

c

]
. (58)

We defined Zc = N
(
µ̃\i

∣∣∣ ti, ν̃2
\i + σ2

c

)
and the relations v2

c =
(
ν̃−2
\i + σ−2

c

)−1
and uc =

v2

(
µ̃\i
ν̃2
\i

+ ti
σ2
c

)
.

An alternative derivation of the moment equations can be found in Kuss et al. (2005),
who derived these moment matching equations in the context of robust Gaussian process
regression.

Appendix D. Connectivity prior for yeast data

The connectivity prior used for inference on the real data set in section 6.2 was derived
from the ChIP-chip study of C. T. Harbison et al (2004). Based on a combination of
more restricted, follow-up experiments and literature mining the following FPR and FNR
estimates were provided:

Estimated FP rate – Pr (z̃g,k = 1|zg,k = 0) ∼ 3.7/6500 (59)
Estimated FN rate – Pr (z̃g,k = 0|zg,k = 1) ∼ 0.3 (60)

Confirmatory FP rate – Pr (zg,k = 0|z̃g,k = 1)) ∼ 0.06 (61)

where zg,k represents the truth about the presence or absence of a regulatory link and z̃g,k
represents whether or not such a link was ‘observed’ based on thresholded ChIP data.

These can be used to determine the required parameters, πg,k:

Pr (zg,k = 1|z̃g,k = 1) = 1− Pr (zg,k = 0|z̃g,k = 1)) (62)

Pr (zg,k = 1|z̃g,k = 0) = Pr (z̃g,k = 0|zg,k = 1) Pr (zg,k = 1) /Pr (z̃g,k = 0)

=
1

1 + (1− P1)P3 (1− P2) /P2P1 (1− P3)
(63)
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where P1, P2 and P3 are given by 59, 60 and 61 respectively. This leads to the following
estimates:

Pr (zg,k = 1|z̃g,k = 1) = 0.94
Pr (zg,k = 1|z̃g,k = 0) = 0.0038 (64)

which were consistent with estimates of the marginal probabilities Pr (z̃g,k = 0) and
Pr (z̃g,k = 1) based on the observed frequencies of binding relationships in the experiment.
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