
Ensembl Tutorial

July 2001 Michele Clamp (michele@sanger.ac.uk),

edited by Ewan Birney, Oct 2001

updated Jan 2002 MC (NCBI_26).

updated Mar 2002 MC (NCBI_28).

Remote Access to Ensembl, set up

Ensembl provides an internet accessible host (kaka.sanger.ac.uk) with the latest databases. This means you can do a lot
of work from an internet connected host only installing “client” software. In general, we’ve noticed that the best route for
developers trying to use Ensembl is as follows

• Play around with the data on kaka.sanger.ac.uk with just a mysql client
• Start using the object layer API (perl based) against kaka.sanger.ac.uk (you will need to download ensembl

and bioperl software)
• Install the database locally. You may as well install the web site locally while you are about it as it is pretty

easy to get up and running

Of course, you might want to jump straight to installing the Ensembl web site or the API. Take your pick.

Currently a rather hard thing to do is being able to use the software system to generate the features (computes) that
Ensembl has. This is called the “pipeline”. For comparison we have about 30 remote web sites running but only 2 remote
pipelines. We expect the documentation and understanding of the pipeline to improve as the number of remote sites go
up.

For more documentation go to the Ensembl web page (www.ensembl.org) and follow the Docs link. In there there are a
number of useful “big” documents, including this one and web installation instructions.

For more detailed documents click on the “wiki” that has documents some of which are up to date, some not. Use the
search button at the bottem of the page. Also browse the mailing list for some idea of questions. Finally, feel free to ask a
question on the mailing list ensembl-dev – we respond quickly and generally are nice about it if you just haven’t bothered
to read the documentation.

Mysql only access

You probably have mysql clients installed if you are running a standard linux distribution. Go

 %mysql –u anonymous –h kaka.sanger.ac.uk

If it is not installed, go to www.mysql.com for downloads of the client

Inside the mysql prompt you generally want to start with the database “current” and the database “lite”

Use the “show databases” command to show all the databases available, followed by “use current” say to use the current
database. The current database is the latest release of human Ensembl. Other databases are named like
“homo_sapiens_lite_110” being species tag, database type and then release number.

In the current database (we also call this the core database) here are some nice queries to start off with

Switches the database to current;

 “use current;” or "use homo_sapiens_core_4_28;"

The first 2 EMBL/GenBank entries stored in the database

 “select id from clone limit 2;”

The first 2 confirmed genes in the database

 “select * from gene limit 2;”

The EMBL/GenBank entries on the first 200,000 base pairs of chr1. The assembly information is stored in static golden
path, and we need to make a join across the clone, contig and static_golden_path tables.

 “select distinct(clone.id) from clone clone,contig contig,static_golden_path s where
s.chr_name = ‘1’ and s.chr_end < 200000 and s.raw_id = contig.internal_id and
contig.clone = clone.internal_id”

(for more information on which columns join to which look at
http://www.ensembl.org/Docs/wiki/html/EnsemblDocs/TableLinks.html)

The exons which are on the first 200,000 base pairs of chr1

 “select exon.id from exon exon,static_golden_path s where s.chr_name = ‘1’ and
s.chr_end < 200000 and s.raw_id = exon.contig”

(NB, just to pre-warn people, in Ensembl 1.2 or 120 series, this will become select exon.exon_id which will give back an
integer. To get the ENSE number you will need to join to exon_stable)

At this point you can see that any data querying on ensembl core database in chromosomal coordinates will always mean
joining to the static_golden_path table. This is a bit painful. Thankfully we have developed a query-optimised database
that is derived from this database (a datamart in trendy computer speak), called ensembl-lite. This is changing rapidly, but
is well worth playing around with

 “use homo_sapiens_lite_4_28;”

To get genes in a particular region

 “select name from gene where gene_chrom_start > 100000 and gene_chrom_end < 300000 and
chr_name = ‘1’”

Or in a particular band

 “select name from gene where band like ‘p33.%’ and chr_name = ‘1’”

(notice the use of like to truncate to the major band)

ensembl-lite will expand over time to allow progressively richer queries. To investigate more use the commands

 “show tables”

and

 “describe tablename “

to investigate the database.

Now – so you can play with the data, but where are things like the translation? Or the cDNA? Or can I make find all the
BLAST hits which overlap exons which are in my region? To do this you will need to write code often, and you can take
advantage of our API which we use every day to get to this data.

Introduction to the Perl object API

These notes are from a half day introduction course to the ensembl code base. They take you through connecting to an
ensembl database and how to access the data. They require you to have the relevant ensembl and bioperl modules
installed. These are :

bioperl-0.7
ensembl
ensembl-trace
ensembl-external
ensembl-map

Instructions on how to install these are contained on the ensembl website www.ensembl.org. Basically you need to do the
following steps (in both cases we are using cvs to get the code, which is much better than ftp as you get the latest bug
fixes. Notice the –r commands which indicate the branch for each repository to get out. Branches are stable versions of
the code)

 Bioperl (check out cvs.bioperl.org for more details)

cvs -d :pserver:cvs@cvs.bioperl.org:/home/repository/bioperl login
when prompted, the password is 'cvs'

cvs -d :pserver:cvs@cvs.bioperl.org:/home/repository/bioperl checkout –r branch-07
bioperl-live

 Ensembl

cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/CVSmaster login
...password CVSUSER...
cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/CVSmaster co –r branch-ensembl-4
ensembl
cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/CVSmaster co –r branch-ensembl-4
ensembl-external
cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/CVSmaster co –r branch-ensembl-4
ensembl-map

If you don’t have (or don’t want) to install the ensembl database locally you can point your scripts at a publically available
one at the Sanger Centre. Use the following fields in your scripts

host kaka.sanger.ac.uk
dbname homo_sapiens_core_4_28
user anonymous

Companion script

There is a script called tutorial.pl which contains all the example code in this document and should run successfully if you
have the right database and version of the code installed. The companion script is in the ensembl/docs/ directory.

What does Ensembl contain?

The Core Database

• Clones (embl accessions) both finished and unfinished.

• Each contiguous piece of sequence is called a contig. These are the basic lengths of dna that we analyse and
annotate.

• Each clone will contain one or more contigs.

• Finished clones - 1 contig

• Unfinished clones - any number of contigs.

• Each contig (whether finished or unfinished) has certain features associated with it that are the result of various
analysis programs (e.g. RepeatMasker, blast, genscan). These are the basic computes used to build the genes.

• The raw analysis results are used to build genes which are also stored in the database. Each gene contains one or
more transcripts and each transcript will contain a translation.

• Each gene has various information attached to it describing whether it is a known gene or corresponds to a swissprot
or trembl protein. Some genes are novel genes which have been built out of similarities to other sequences. In these
cases this information will be absent.

• Each translation has had a variety of protein analysis programs run on it and you can access information about the
results of these. This includes information on pfam, prosite and prints.

• There are other features accessible through external databases such as snps, mouse trace hits and embl annotations.

Setup

Before starting with the ensembl modules you have to set up your environment so perl knows where to find them. As
ensembl is built on top of bioperl this includes telling it where bioperl lives.

The environment variable to do this is PERL5LIB. If you are using csh or tcsh you need to type in the following
(changing /nfs/croc/michele/branch to your directory containing the perl modules you downloaded).

 setenv ENSHOME /nfs/croc/michele/branch

 setenv PERL5LIB $ENSHOME/ensembl/modules:$ENSHOME/bioperl-0.7:$ENSHOME/ensembl-
external/modules:$ENSHOME/ensembl-trace/modules

You are now ready to write your first script.

Connection

All the ensembl data is stored in a mysql relational database. If you want to access this database the first thing you have
to do is to connect to it. This is done underneath using a perl module called DBI and you need to know three things
before you start :

 host the hostname where the ensembl database lives
 dbname the name of the ensembl database
 user the username to access the database

First we need to declare to perl the modules we want to use so it can go and check the syntax of them. This is done by a
use statement.

use Bio::EnsEMBL::DBSQL::DBAdaptor;

This line has to be in all your ensembl scripts;

my $host = 'kaka.sanger.ac.uk';
my $user = 'anonymous';
my $dbname = 'current';

The all important variables telling perl where and what your database is.

And now we connect

my $db = new Bio::EnsEMBL::DBSQL::DBAdaptor(-host => $host,
 -user => $user,
 -dbname => $dbname);

We've made a connection to an ensembl database and passed parameters in using the -pog => 'somevalue' syntax. This
is very common in the ensembl code. Formatted correctly it lets you see exactly what things you are passing.

The $db variable is now your friend and you can now start using it to extract data. If, heaven forbid, the connection fails
an error message will come up.

Let's get some data

There are methods you can call on your database adaptor to fetch sequences and genes. We'll now try out a few of them

my @clones = $db->get_all_Clone_id;

This returns an array of strings listing all the clones in the database. The strings themselves are not that much use to us.
To get more information we need to create clone *objects* that have access to all the data associated with that clone.

To get a clone by its accession number

my $clone = $db->get_Clone('AC005663');

You can check it is the right clone by calling the id method

print "Clone is " . $clone->id . "\n";

We now have a clone object. To get the most use out of this object we now need to ask it about its contigs (Remember
clones have 1 or more contigs which are the basic sequence units).

my @contigs = $clone->get_all_Contigs;

We now have an array of contig objects which we can ask questions of

Say we want to get the sequence for each contig

foreach my $contig (@contigs) {
 my $seqobj = $contig->primary_seq;
 my $length = $contig->length;
 my $id = $contig->id;

 # Remember this is a bioperl sequence *object* and not a string.
 # If we want the actual sequence string we can do

 print $seqobj->seq . "\n";

 # We can get a substring of this sequence too

 print $seqobj->subseq(1,100) . “\n”;

 # If we want to write it out to a file we use bioperl again
 # (Note: if we are creating a new object we need to include
 # a use Bio::SeqIO line at the start of our file

 use Bio::SeqIO;

 my $seqio = new Bio::SeqIO(-fh => *STDOUT,
 -format => 'fasta');

 $seqio->write_seq($seqobj);

}

Contigs have all sorts of features attached to them. One set of features that is extremely useful if you're going to do any
analysis on them are the repeat features. These can be used to mask out the
sequence ready for a blast search for example.

Ensembl has a handy call to output the repeatmasked sequence without you having to rerun RepeatMasker

my $maskedseq = $contig->get_repeatmasked_seq;

Exercises

1. Connect to the database - how many clones are in there

 (Hint: Make a $db object and call get_all_Clone_id);

2. What is the average number of contigs per clone for the first
 100 clones in the database

 (Hint: get_all_Contigs on clone);

3. Print out in fasta format the repeat masked sequence for the
 last 10 clones.

Sequence Features

So now we're pretty happy about getting out dna sequence. The more interesting things associated with contigs are the
features attached to them. These include the repeat features mentioned in the previous section and also similarity
features (blast results), prediction features (genscan results) and marker features. Not to mention the genes of course.

Each contig has a set of features and (you're probably getting used to this by now) these are returned to us as feature
objects. For instance

my @repeats = $contig->get_all_RepeatFeatures;

We now have an array of feature objects. An easy way to print these out is to call the method gffstring which returns
information about the feature as a string.

e.g.

foreach my $repeat ($contig->get_all_RepeatFeatures) {

 print "Feature is " . $repeat->gffstring . "\n";

}

You should get a series of output lines like

91272515 wublastp similarity 4895 4933 58.0000 1 . Q9SQ95.1 10
22
91272551 wublastp similarity 4937 4960 58.0000 1 . Q9SQ95.1 23
30
91272582 wublastp similarity 4787 4825 62.0000 1 . O15769.1 216
228
91272612 wublastp similarity 4838 4951 62.0000 1 . O15769.1 229
266
91272656 wublastp similarity 4799 4816 55.0000 1 . Q9Q936.1 22
27

The different columns have the following meaning

1 sequence name
2 feature type
3 main feature type
4 sequence start
5 sequence end
6 score
7 strand
8 phase (no phase in this case)
9 hit sequence name
10 hit start
11 hit end

Alternatively we can ask the feature objects directly about their properties

foreach my $repeat ($contig->get_all_RepeatFeatures) {

 print "Name : " . $repeat->seqname . "\n";
 print "Start : " . $repeat->start . "\n";
 print "End : " . $repeat->end . "\n";
 print "Strand : " . $repeat->strand . "\n";
 print "Score : " . $repeat->score . "\n";

}

Some features (like CpG islands for instance) are simple features and only have the methods printed above.

Other features are more complex in that as well as having coordinates on the contig sequence they also have
coordinates on a hit sequence. The classic example of this is a set of blast results where the query sequence is similar
to another sequence (protein, est, cdna) and so we need to store which sequence it has hit and whereabouts in that
sequence it has hit. These have the generic name similarity features and the object name is Bio::EnsEMBL::FeaturePair.

To find this out we can call

foreach my $repeat ($contig->get_all_RepeatFeatures) {
print "Hit name " . $repeat->hseqname . "\n";
print "Hit start " . $repeat->hstart . "\n";
print "Hit end " . $repeat->hend . "\n";

}

As well as a raw score sequence features also have other scores. Blast features will have a probability and also a
percent identity which we can also retrieve.

Let's try this with similarity features.

foreach my $feat ($contig->get_all_SimilarityFeatures) {

 print "Feature scores are " . $feat->score . "\t" .

 $feat->percent_id . "\t" .
 $feat->p_value . "\n";

}

Note we're using a different method to only get the similarity (FeaturePair) features out.

Feature types

All features have a type string associated with them that tells us what sort of feature they are. This is accessed through
the gff_source method. These types are things like 'genscan','repeat','cpg' and give us an idea of what each feature is
about.

Each feature knows somewhat more about its origin and it stores this information in an analysis object.

my $analysis = $feature->analysis;

print "Database : " . $analysis->db . “\n”;
print "Program : " . $analysis->program . “\n”;
print "Parameters : " . $analysis->parameters . “\n”;

For instance a feature that comes out of a blast run will have an analysis object that tells us it was run with 'blastx' and
was run against database 'sptr';

Overlaps

A very, very useful feature of bioperl is it makes it easy to find whether one feature overlaps another. This comes in jolly
handy if you want to find all genscan prediction that don't overlap exons or all snps that do overlap exons or mouse trace
hits that don't overlap exons (I sense a trend here).

If we have two features - say an exon $exon and a snp $snp

 if ($exon->overlaps($snp)) {
 print "Whey! coding snp " . $snp->gffstring . "\n";
 } else {
 print "Boo! non coding snp " . $snp->gffstring . "\n";
 }

i.e. overlaps returns 1 if the two features overlap and 0 if they don't

Marker features

To retrieve marker features you need to connect to the maps database and attach it to the core database as follows:

use Bio::EnsEMBL::Map::DBSQL::Obj;

my $mapdb =new Bio::EnsEMBL::Map::DBSQL::Obj(-host => $host,
 -user => $user,
 -dbname => 'homo_sapiens_maps_4_28');

$db->mapdbname('homo_sapiens_maps_4_28);
$db->mapdb($mapdb);

Markers are types of feature pair and can be retrieved for a contig using the call

my @markers = $contig->get_landmark_MarkerFeatures

foreach my $marker (@markers) {
print $marker->gffstring . “\n”;

}

Exercises

1. Print out all the repeat features for the first 100 contigs. (Hint: Use the gffstring method for easy printing)

2. What proportion of dna is repeat for the first 100 contigs and is this what you expect. (Hint: tot up the length for each
repeat feature and compare to the total contig length)

3. For clone AC005663 retrieve all the similarity features. How many different sequences did this clone hit and were
these hits significant? (Hint: Use the hseqname method and the p_value method)

Genes

Genes are build on virtual contigs (see next section) and as a lot of genes span more than one contig it makes the most
sense to use virtual contigs to access them. However, having said that you can access genes via contigs as follows and
the process is identical for genes on virtual contigs.

my @genes = $contig->get_all_Genes;

As usual we are returned an array of objects - gene objects this time. They contain all the information about the
exon/intron structure, dna sequence.

Genes have ensembl identifiers which can be accessed using the stable_id method

foreach my $gene (@genes) {
 print "Gene : " . $gene->stable_id . "\n";
}

Ensembl identifiers don't really tell us much about the gene (and they're not intended to) and some genes will have one
or more more common names.

We can tell immediately if a gene is a known gene (refseq or sptrembl) by calling the is_known method. If it is a known
gene then we can call the each_DBLink method to find out more about it.

foreach my $gene (@genes) {
 if ($gene->is_known) {

 my @dblinks = $gene->each_DBLink;

 foreach my $link (@dblinks) {
 print "Gene " . $gene->stable_id . " links to " .

 $link->display_id . " " .
 $link->database . "\n";

 my @syns = $link->get_synonyms;
 print "Synonyms for gene are @syns\n”;
 }
 } else {
 print "Gene " . $gene->stable_id . " is not a known gene\n";
 }
}

Other information about a known gene is contained in its description method. This information is extracted from the
relevant swissprot or refseq entry.

My $description = $gene->description;

Genes are quite complicated objects and are constructed like this.

Each gene object has one or more transcript objects (one for each alternatively spliced cdna).

my @transcripts = $gene->each_Transcript;

Each transcript is made up of a series of exons. We can access the exons and find out their sequence and coordinates.

foreach my $exon ($transcript->get_all_Exons) {
 print "Found exon " . $exon->stable_id . " " .
 $exon->start . " " .
 $exon->end . " " .
 $exon->seq->seq;
}

Notice that again calling the seq method on an exon object returns us a sequence object and we have to call seq again to
get a string.

We can get the protein sequence of a transcript by calling the translate method. So to get all the protein translations from
a gene into a file we would do

my $seqio = new Bio::SeqIO->(-format => 'fasta',
 -fh => *STDOUT);

foreach my $transcript ($gene->each_Transcript) {
 my $peptide = $transcript->translate;

 $seqio->write_seq($peptide);
}

Note that when writing to a bioperl seqio object we pass the peptide object and not a string but when writing out to the
screen we have to stringify it first.

Exercises

1. How many genes are alternatively spliced for the first 100 genes (Hint: Count the number of transcripts using the
$gene->each_Transcript method)

2. What is the average size and number of exons per gene (Hint: Use the each_unique_Exon method and remember
that exons are like features with $ex->start $ex->end)

3. Translate the first 10 genes;

supporting evidence

The information that was used to make a gene is also stored in the database in the form of FeaturePairs. This can be
retrieved when the genes are retrieved by using the call

my @genes = $contig->get_all_Genes(‘evidence’);

The evidence is attached as an array of feature pairs to each exon and can be retrieved

foreach my $gene (@genes) {
 foreach my $transcript ($gene->each_Transcript) {

 foreach my $exon ($transcript->get_all_Exons) {
 my @evidence = $exon->each_Supporting_Feature;

 foreach my $f (@evidence) {
print “Evidence “ . $f->gffstring . “\n”;

 }
 }

 }
}

Prediction features

Ensembl stores ab initio gene predictions from genscan. Each predicted exon is represented as a separate feature and
each genscan gene is returned as a set of these features.

my @genscan = $contig->get_all_PredictionFeatures;

Each element of the genscan array is a separate genscan gene. To access the exons of these predictions we use the
bioperl sub_SeqFeature method

foreach my $genscan (@genscan) {
 my @exons = $genscan->sub_SeqFeature;

 foreach my $exon (@exons) {
 print $exon->start . " - " .
 $exon->end . " : " .
 $exon->strand . " " .
 $exon->phase ."\n";
 }
}

As these predictions should translate there is a nifty method to call to retrieve the translations. It is a utility method to
convert any feature set into a transcript object.

my $transcript = Bio::EnsEMBL::DBSQL::Utils::fset2transcript($genscan,$contig);

print "Peptide is " . $transcript->translate->seq . “\n”;

You have to give fset2Transcript a contig so it can retrieve the sequence for the gene.

Virtual Contigs

Up to now we've only been dealing with clones and contigs which are only about 150kb long at most. The set of human
sequences has been assembled (by Jim Kent at UCSC) into a complete genome. The route traced through these
sequences to make up this is known as the 'golden path'. All the methods you have been using on individual contigs can
also be applied to the golden path. This
makes it very easy to access features on megabases of sequence up to whole chromosomes.

But how do we get at this golden path?

First of all we need to retrieve something called a static_golden_path_adaptor (not a great name I know). This is akin to
your database adaptor ($db) that you used to retrieve individual clones and contigs but now we can ask it to get whole
regions of chromosomes.

To create one of these (sgp for short)

We need to tell it what golden path to use.

$db->static_golden_path_type('NCBI_28');

my $sgp = $db->get_StaticGoldenPathAdaptor;

Instead of getting contigs from out sgp we now get 'VirtualContigs' (virtual because they're many pieces of sequence
pretending to be one single piece).

We can still get an individual contig

my $vcontig = $sgp->fetch_VirtualContig_of_contig('AC005663.2.1.103122',10000);

and a single clone

my $vcontig = $sgp->fetch_VirtualContig_of_clone(‘AC005663’,1000);

and now regions of chromosome

my $vcontig = $sgp->fetch_VirtualContig_by_chr_start_end('1',1,1000000);

and also regions of chromosome around a gene

my $vcontig = $sgp->fetch_VirtualContig_of_gene('ENSG0000099889',5000)

Even though we now have many contigs stitched together we can still pretend
it is a single sequence. i.e.

my @rept = $vcontig->get_all_RepeatFeatures;
my @pred = $vcontig->get_all_PredictionFeatures;
my @sims = $vcontig->get_all_SimilarityFeatures;
my @genes = $vcontig->get_all_Genes;

If you don’t want to translate your genes use

my @genes = $vcontig->get_all_Genes_exononly;

as it is much faster than get_all_Genes;

All these features behave exactly the same way as if we'd retrieved
them from a single contig.

In addition we can find out what contigs make up our virtual contigs.

my @contigs = $vcontig->_vmap->each_MapContig

When virtual contigs are retrieved their coordinates start from one. We can find out the absolute position of the
sequences and features using the global_start and global_end methods.

my $chrstart = $vcontig->_global_start;
my $chrend = $vcontig->_global_end;

The name of the chromosome can be got from the _chr_name method

my $chrname = $vcontig->_chr_name;

Exercises

1. Fetch 1Mb of repeatmasked sequence from the contig of your choice (Hint: Create a virtual contig using
fetch_VirtualContig_by_chr_start_end($chr,$start,$end and have a look back at section 1)

2. Get all the genes on that contig and print their ensembl ids.

3. Which of those genes are known genes and what is their more common name. (Hint. Use the is_known method and
use the each_DBLink->display_id)

4. Translate all of the genes - are there any stop codons (there shouldn't be!!) (Remember there may be more than one
transcript per gene)

5. Fetch a virtual contig of the gene ENSG00000100259

6. Print out the 200 bases of sequence that flanks each exon (Use the $gene->each_unique_Exon method and call
$vcontig->subseq($start,$end) method to retrieve the dna)

7. Extract all the introns from the first 10 genes and write them to a file (be careful about reverse strand genes).

8. Print the 200bp flanking each exon for the first 10 genes. (Again be careful of reverse stranded genes and also be
careful of alternative transcripts).

9. Print out all the 5’ and 3’ utrs for the first 10 genes.

Translation

Each transcript could be split into a 5’ untranslated region, a CDS and a 3’ untranslated region. The points in the cdna
where the translation starts and stops are stored in a translation object which is attached to each transcript. I.e.

my $translation = $transcript->translation;

The translation object has methods

$translation->start_exon->stable_id
$translation->end_exon->stable_id

which denotes which exons the translation starts and ends in. To find the exact coordinate of the start and stop of
translation use the methods

$translation->start
$translation->end

The start and end methods refer to the exon coordinates so they should never be less than one or greater than the
exon’s length.

Protein

If you have a gene id you can retrieve which interpro hits it contains as follows

My @interpro = $db->get_GeneAdaptor->get_Interpro_by_geneid(‘ENSG00000099889’);

This just returns you a list of strings of the interpro ids.

If we want more detail about the protein we have to use the ensembl protein adaptor which returns us a protein object

my $protein_adaptor = $db->get_Protein_Adaptor;

my $protein =
 $protein_adaptor->fetch_Protein_by_dbid($translation->dbID);

This gets a protein by the translation identifier

my $protein =
 $protein_adaptor->fetch_Protein_by_transcriptId($transcript->stable_id)

As every transcript only has one translation we can fetch proteins using the transcript identifier as well.

Once we have a protein object we can look at its features

my @prot_features = $protein->all_SeqFeature;

These features are the usual feature pairs (with a couple of extras) and can be printed out as normal.

foreach my $pf (@prot_features) {
 print $pf->gffstring . "\n";
}

Exercises

1. Find all the pfam domains contained in the first 100 genes. Which ones are most common and is this surprising?

2. How many of those genes have no protein features at all.

3. How many WD40 domains are there in the database. – whoops – can’t do this without sql.

External Features

The General Idea

The core ensembl database (the one you've been using up to now) contains dna, genes and some sequence features.
There are extra satellite databases that contain other features that can also be accessed.

The idea is that you take your main ensembl database handle ($db - way back in the first section) and give it another
database handle to look after. This external database could contain all manner of things e.g. snps, mouse trace hits or
embl annotations. You can now access the features in the second database as though they were all in the same place
even though they could be sitting
on a completely different machine.

Let's give the EST database as a first example

First we need to connect to the main ensembl database;

use Bio::EnsEMBL::ExternalData:ESTSQL::DBAdaptor;
use Bio::EnsEMBL::DBSQL::DBAdaptor;

my $db = new Bio::EnsEMBL::DBSQL::DBAdaptor(-host => 'kaka.sanger.ac.uk',
 -dbname => 'current',

 -user => 'anonymous');

And then to the mouse-human database

my $mouse = new Bio::EnsEMBL::ExternalData::EXONERATESQL::DBAdaptor
(-host => ‘kaka.sanger.ac.uk’,
 -dbname => 'mus_musculus_hs428_3_1',

 -user => 'anonymous’);

We now tell the main database to also look in the mouse db

my $external_feature_factory = $mouse->get_ExonerateAdaptor;

$db->add_ExternalFeatureFactory($external_feature_factory);

We now forget about the mouse database and to access the mouse features we call
get_all_ExternalFeatures on our $contigs or $virtual_contigs

my @mouse_features = $contig->get_all_ExternalFeatures;

foreach my $mouse (@mouse_features) {
 print "Mouse hit : " . $mouse->gffstring . "\n";
}

We can add as many external feature databases as we like.

SNPS

These can also be accessed using an external feature factory

use Bio::EnsEMBL::ExternalData::SNPSQL::DBAdaptor;

my $snpdb = new Bio::EnsEMBL::ExternalData::SNPSQL::DBAdaptor(
-host => $host,
-user => $user,
-dbname => 'homo_sapiens_snp_4_28',

$db->add_ExternalFeatureFactory($snpdb);

my @feature = $db->get_all_ExternalFeatures;

foreach my $snp (@feature) {
 if ($snp->isa("Bio::EnsEMBL::ExternalData::Variation")) {
 print $snp->id . "\t" . $snp->status . "\t" . $snp->clone_name . "\t" . $snp-
>start_in_clone_coord . "\n";
 } elsif {$snp->isa("Bio::EnsEMBL::FeaturePair")) {
 print $snp->gffstring . "\n";
 }
}

Exercises

1. Connect to the main ensembl database and the mouse database and add the mouse database to the ensembl
database.

2. Create a virtual contig of 1Mb of sequence from your chromosome of choice (hint - remember back to the virtual
contig exercises)

3. How many mouse hits are there to this sequence

4. How many mouse hits hit exons. (Hint - get all genes and use each_unique_Exon to get the exons. Then use the
overlaps method to compare each mouse hit to each exon)

5. Compare the fraction of hits to exons to the total. Can you infer anything from this?

