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Abstract

__________________________________________________________________________

Background: Fast and accurate detection of genomic polymorphism is increasingly under demand, 

fuelled by many large genome projects. This paper presents a software package which can detect 

homozygous SNPs and insertion/deletion events on a eukaryotic genome scale from millions of 

shotgun reads. Matching seeds of a few kmer words are found to locate the position of the read on the 

genome. Full sequence alignment is then performed to detect base variations. Quality values of both 

variation bases and neighbouring bases are checked to exclude possible sequence base errors. To 

increase the accuracy of detection in some cases,  it requires that the same mutation event is mapped 

by two or more shotgun reads. 

Results: To demonstrate the accuracy of the system, we present variation results compared with 

finished sequences. Flexibility of the tool in processing different data types is shown by comparing 

two different strains of Streptococcus suis, one sequenced by traditional ABI machines, and the other 

by 454 technology. The effect of read coverage on SNP/indel accuracy has also been examined. To 

illustrate the scalability of the package in handling large eukaryotic genomes, we present results from 

the zebrafish sequencing project at the Sanger Institute with 20 million WGS reads against the draft 

WGS assembly as well as 1.6 million flow sorting reads against human chromosome 6.  

Conclusions: The ssahaSNP package is ideal for large genome projects, particularly in cases where 

read coverage is not high and draft genome assembly is not in a good shape.

________________________________________________________________________________________
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Background 

Identification of genetic differences among individuals or species has applications in many fields, 

such as clinical diagnostics of cancer related diseases, evolutionary history (phylogeny) of species, 

and even heterozygosity analysis in genome sequencing.  Fast and accurate detection of genomic 

polymorphism is increasingly under demand, particularly now that the human and mouse genome 

reference sequences are finished or near completion.  In the past few years,  a number of systems 

have been developed with different methods of mining genomic polymorphisms,  such as Gap4 [1], 

POLYBASES [2], POLYPHRED [3], PTA [4], TGICL [5], autoSNP [6], miraEST [7], and SeqDoC 

[8]. Some of them provide visual comparison of sequence traces in local BAC regions, while some 

systems assemble ESTs first and then detect SNPs in the resulting alignments. For large scale SNP 

mining projects,  recent studies were reported using reduced representation shotgun  (RRS) [9], and 

whole genome alignment by placing a randomly shotgun read to the genome [10-11]. However, the 

efforts coordinated by The SNP Consortium (TSC) were mainly focused on single nucleotide 

polymorphisms (SNP). There is a need for systematic studies on point, local and structured 

polymorphisms. A study on insertions/deletions (indels) was recently reported [12], where BL2Seq, 

one of the BLAST family programs, was used as the alignment tool. Apart from read alignment, the 

whole pipeline system developed by Devine and colleagues requires significant efforts in data 

processing, such as repeat masking, quality value assignment/tracking, and further processing for

indels with a length >16 bps. Within the biomedical communities, mutation detection tools with good 

accuracy and multiple functions are in high demand. In this paper, we outline a package ssahaSNP 

which quickly detects both SNPs and indels without any sequence repeat masking.        

In SNP/indel discovery using genomic alignment, the most reliable method would be multiple 

sequence alignment of all the traces, compared to the reference sequence in a local region.  The trace 

DNA can be from a single source or mixed populations. If read coverage is low, say <4x, this method

will not work very well, not to mention intensive computation for large projects.  In sequence 

assembly, where the source DNA and reference are normally the same, consensus is generated from 

multiple read alignment. In this case, if we align every read to the consensus sequence, multiple read 

alignment can be reconstructed from individual alignments as aligned positions of each base for each 

read are based on a common reference (consensus). When homology between source and reference is 

relatively high, we may use the same idea for SNP/indel detection. SNP/indel candidates are 

identified from individual read alignment against the reference. After all the alignment is done,  

candidates which share the same locus are assembled together to confirm a valid SNP/indel, as shown 

in Figure 1. At a high level of read coverage, SNPs/indels are mapped a number of times with high 
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accuracy, while polymorphism detection can still be carried out with a reduced level of accuracy at 

low read coverage.

Figure 1.  SNP/indel re-assembly after individual variations detected from read alignment. The 

SNP/indel indicated here is mapped by m reads.  

Implementation

SSAHA2 and ssahaSNP

SSAHA2 [13] is a sequence alignment package developed at The Wellcome Trust Sanger Institute, 

which combines SSAHA [14] with phrap/cross_match [15]. SSAHA achieves its fast search speed by 

converting sequence information into a “hash table” data structure, which can then be searched very 

rapidly for matches. A few exactly matched kmer words, the matching seeds, are detected from the 

database by the SSAHA algorithm. When the location information of matching seeds is obtained, we 

then cut off both query and subject sequences and pass the two sequences to cross_match for full 

alignment. A given edge length is added to both query and subject to extend the alignment length, 

shown in Figure 2. In terms of software implementation, alignment functions from cross_match have

been imbedded into the SSAHA system.   

Figure 2. Extra sequences with a given edge length are used to extend the length of alignment.

As a fast tool capable of efficient processing of large data sets, ssahaSNP was used in the SNP 

detection by the international SNP consortium [10]. In the early version of ssahaSNP, there was an 

alignment module in the package. However, the alignment quality was not good enough to handle

middle sized indels, say > 10 bps. Also SNP calling was carried out for every piece of alignment on 
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the genome and it then relied on the parsing code to exclude those SNP candidates which are mapped 

multiple times.  In the new version of ssahaSNP, we use SSAHA2 as the alignment tool to place 

genomic reads on finished or draft assembly sequences. Highly repetitive elements are filtered out by 

ignoring kmer words with high occurrence. We place less repetitive or non-repetitive reads uniquely 

on the reference genome sequence and find the best alignment according to the pair-wise alignment 

score if there are multiple seeded regions. If a read has more than one piece of alignment and the 

same best alignment score is shared by more than one hit , this read is regarded as repetitive and is 

therefore ignored by ssahaSNP from further data processing. 

Memory usage and speed

Detailed descriptions of our hashing algorithm can be found in [14]. For each base in the query 

sequence, we use one character to store DNA base pairs and one character for quality scores. For the 

subject sequence, one character is used to store the DNA sequence of every base pair. In the hash 

table, we store two elements as integers - one for sequence index; one for offset of the kmer words on 

the sequence.  To run the system, the memory required is 

matchcross
k

ssq MNkNNM _
22*4/*8*2  (1)

where k = kmer word size (mostly 12 by default); 

Nq = number of query bases;

Ns = number of subject bases;

Mcross_macth = memory assigned for running cross_match (200 MB).

To search reads against the human genome NCBI35 (~3.43Gbps), the minimum memory requirement 

for this task would be ~6.0 GBs of RAM memory in the machine. In cases where there are memory 

restrictions, the analysis can still be done by splitting the subject sequence in smaller chunks. But this 

requires an extra phase to find the best alignment in the genome, rather than in each subject file.

In the new version of ssahaSNP, the alignment quality has been significantly improved. Applications 

are extended from SNP calling only in near exactly matched sequences to indel detections where 

match identity can be as low as 80%. Due to the cross_match implementation, however, the speed of 

the new system is much slower than the old version, which can process reads at a rate of 180 per 

second against the human genome[14]. Using a SGI Altix 3000 (1.5 GHz, Itanium 2), the new 

ssahaSNP’s speed is about 10 reads per second against the human genome. Another difference is in 

repeat handling which also slows down the system. In the old version, if any kmer words occur more 
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than 7 times, they are ignored in further data processing. This effectively filters out almost all the 

repetitive sequences. In the new version, this threshold number is increased to 50000 by default. To 

reduce detection errors while increasing search sensitivity, we have introduced a number of new 

features, such as best alignment selection, read pair constrains and location of mutation event 

mapping by multiple reads.

Neighborhood quality standard (NQS)

From the best alignment, SNP candidates are screened, taking into account the quality value (Q 

value) of the base with the variation as well as the quality values in the neighbouring bases, using 

neighborhood quality standard (NQS) [9-11]. The standard can be described as three attached 

conditions:  (a) The quality value of the SNP base should be >= 23; (b) The Q value for the 5 bases 

on either side the SNP should be >=15; (c) Only one mismatch is allowed in the flanking ten bases.

As an international standard, NQS has been widely used, particularly in the human SNP project 

coordinated by The SNP Consortium (TCS). However, this standard has a number of limitations. 

Even in the comparison of two individual human beings, where the match identity is very high and 

SNPs are very sparse, NQS consequently excludes most of the doublets and all the triplets. While 

searching SNPs between two less homologous genomes or two different strains, a significant portion 

of SNPs will be missed. Very recently, sequencing machines produced by 454 Life Sciences [16][17]

offer a rapid way to sequence an entire bacterial genome in one or a few runs. The massively parallel 

system developed by Rothberg and colleagues [16] is capable of sequencing 25 million bases in a 

four-hour run – about 100 times faster than the current Sanger sequencing platform. The 454 reads 

have an average length of ~100 bps and the quality value assigned to each base is not directly 

correlated to its neighbors if the two base pairs are different.  Unlike traditional ABI reads, low 

quality bases in the 454 reads are not normally located at the two ends of a read.  Instead, they are

distributed equally across the read. Therefore it is not possible to remove those low quality bases by 

quality trimming. Also quite often,  base pairs in the 454 reads with a very low Q value or even with a

zero score are still correct bases, partly because 454 software tools are still in the early stages under 

development. Under these circumstances, direct use of NQS would not work well for this new type of 

reads. In ssahaSNP, we have introduced a number of flag options such as “-454 1”, “-NQS 0” and “-

quality 20” for selection. The effect of  these flags on 454 reads will be discussed in the next section.      

For insertions/deletions, there is no widely accepted quality standard. In ssahaSNP, we still use NQS 

for single base deletions to the reference sequence. For other indels with a length greater than one 

base, we don’t check quality values. To ensure the indels are detected with high confidence, a 
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conservative method is adopted; we only report the cases in which exactly the same indel is mapped 

by two or more shotgun reads, or indels with a length >= 10 bps are mapped by single reads.

SNP/indel parser

For most genome projects, the read coverage is normally more than one, i.e. the genome is covered by

the shotgun reads more than once. When read coverage is larger than 1.0 X, we need to make sure 

that the detected SNPs/indels are counted once. The ssahaSNP output file contains the location, 

sequence variation, and length information of the SNPs or indels found in the best alignment. To 

visualize the variations, query and subject are aligned in a way that 20 bases are on the left side and 

20 bases on right side while SNP/indel bases are in the middle. The format of output files produced 

by ssahaSNP is shown in Figure 3, while information for each SNP is followed by “ssaha:SNP”, each 

indel is followed by “ssaha:indel”. Users are encouraged to develop their own parsers to process the

ssahaSNP output file for their specific applications. Together with the release of the main code, we 

also provide two programs, parse_SNP and parse_indel.  

Figure 3 Format of ssahaSNP output file, while both query and subject sequences are aligned to show 

the variation.
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The parsing code first examines the number of SNPs or indels for each read. If the number is higher 

than the threshold value (defined by “-copy” option and by default, 30 set for SNP and 5 for indel), 

this read will not be used for further data processing. For SNP/indel discovery on a genome scale, 

repetitive elements in the genome are a major problem. Wrongly placed reads can results in many 

false positive SNPs/indels. Sequence alignment alone cannot solve near-exact repeats. In the parsing 

code, we use read pair information to exclude those reads which are repetitive and have been placed 

in a wrong location.  For the two pair end reads, we check if the insert size and alignment direction 

are in line with the pair condition, i.e. the calculated insert size has to be less than the given insert 

size and alignment direction has to be one forward and one reverse complement. By default, the given 

insert size is set to 180000, but users can set the value by using the flag “-insert” based on their own 

data. Figure 4 shows the calculation of insert size, under the circumstances that the two paired reads

are mapped to the same contig or to different contigs.  The parsing code ignores all the mis-paired 

reads and therefore, SNPs/indels in those reads are not included in the final results. The read pair 

formats accepted by the current code are (p, q), (x, y), (x, z), (y, z) and (b, g). For instance, aaa.p1k 

and aaa.q1k, or aaa.b1 and aaa.g1 will be treated as read pairs. SNPs/indels mapped by unpaired

reads are treated as those mapped by paired reads. The users can also switch off the read pair flag by 

the use of “-pair 0”, under which every read will be processed. The formats of output files for SNPs  

and indels are shown in Figure 5 and Figure 6 respectively. For each SNP or indel reported, location, 

mapping number, variation base(s) and mapping reads are all listed for further analysis. 
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Figure 4. Insert size calculation of two reads under various cases: (1) two paired reads on the same 

contig (a); (2) two paired reads on different contigs, where insert_size = i_size1 + i_size2 ( b, c, d and 

e).    

Figure 5 Format of parse_SNP output file.



9

Figure 6 Format of parse_indel output file.

Results and discussions

Data validation:

Accuracy is crucial for any mutation detection tools. The likelihood of true polymorphism for the 

detected candidates of SNP/indel should be high enough and false positive rate should be kept at a 

minimum level.  High accuracy, however, can be achieved by setting a higher level of quality 

standard, which leads to a smaller number of SNPs/indels and this consequently increases the costs of 

the project.  It was reported by The International SNP Map Working Group that the accuracy for SNP 

candidates can be as high as 95% using NQS, while examining 24 random examples, using the old 

version of ssahaSNP [14]. In this paper, we have reduced threshold quality value for the mutation 

locus as well as for the neighboring bases. Most importantly, quality score profiles in the 454 reads 

are significantly different from traditional ABI reads. We therefore need to have a detailed 

examination on how this will affect SNP calling as well as indel detections.

The first test dataset is on some clone data from the NOD (Non-Obese Diabetic) mouse relevant to 

type 1 diabetes against C57B6/J mouse reference genome sequence NCBI_m34 

(http://www.sanger.ac.uk/Projects/M_musculus-NOD/). The regions of the NOD mouse were 
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sequenced to about 10x shotgun coverage and the clone contigs were then finished for further 

analysis and manual annotation.  A few clones were selected to assess the accuracy of mutation 

detection. We first align the finished clone contigs against the reference sequence. For a given region 

or a contig, numbers of SNPs or indels as well as locations can be calculated from the alignment. The 

results may be refereed as reference dataset. We then use ssahaSNP package to process NOD mouse 

clone reads against the reference sequence to call SNPs and indels. By comparing the ssahaSNP 

dataset with the reference dataset, information such as true positives and false positives can therefore 

be obtained. Table 1 shows the true positive and false positive rates at various levels of read coverage 

for SNP detection as well as for indels. It is seen that even under 2x coverage, all the indels were 

captured by the detection system. For SNP calling at 4x and 6x, there was one SNP which was not 

found in the reference dataset. It should be noted that those SNPs detected by ssahaSNP but not in the 

reference dataset might not necessarily be the errors. It seemed that there was a degree of

heterozygosity in the reads and base variations mapped by two different reads could be heterozygous 

SNPs as the mapping number used was 2. Table 2 shows the SNP and indel detection for clone contig 

bQ276O13. Again, we had a few false positive indels by comparing to the reference dataset, which 

could be heterozygous indels as well. 

Table 1: NOD mouse clone bQ276O13 against NCBI_M34 chr03 – 4 SNPs and 8 indels 

Coverage True Positive False Positive (SNP)  True Positive False Positive (indel)   

2x 1 (25.0 %)    0 (0.0 %) 8 (100.0 %)      0 (0.0 %)

4x 4 (100.0 %)    1 (25.0 %) 8 (100.0 %)      0 (0.0 %)

6x 4 (100.0 %)    1 (25.0 %) 8 (100.0 %)      0 (0.0 %)

8x 3 (75.0 %)    0 (0.0 %) 8 (100.0 %)      0 (0.0 %)

10x 4 (100.0 %)    0 (0.0 %) 8 (100.0 %)      0 (0.0 %)

Table 2: NOD mouse clone bQ97M20 against NCBI_M34 chr11 – 17 SNPs* and 33 indels# 

Coverage True Positive False Positive (SNP)  True Positive False Positive (indel)   

2x 11 (64.71 %)    0 (0.0 %) 19 (57.58 %)      2 (6.06 %)

4x 16 (94.12 %)    0 (0.0 %) 30 (90.91 %)      7 (21.21 %)

6x 16 (94.12 %)    0 (0.0 %) 30 (90.91 %)      2 (6.06 %)

8x 17 (100.0 %)    0 (0.0 %) 32 (96.97 %)      4 (12.12 %)

10x 17 (100.0 %)    0 (0.0 %) 32 (96.97 %)      4 (12.12 %)
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*Looking at the alignment, there were 23 SNPs in the reference dataset. However, there are 6 SNPs at the end of 

contig which were believed to be false positive, or finishing errors by manual examination in the local region. 

They were excluded from the reference dataset. 

#One indel in the reference dataset with 27 bps was believed to be a finishing error and excluded from the 

reference dataset by manual examination. Two indels in the ssahaSNP dataset were single mapping indels with 

10 bps. The false positive rate of indels would be dropped significantly if they were excluded from calculation.

  

The second test dataset is Streptococcus suis with a genome size of ~2.0 Mbps. One strain P1/7 had 

been sequenced and finished by the Wellcome Trust Sanger Institute 

(http://www.sanger.ac.uk/Projects/S_suis/). The other strain S. suis 89-1591 was sequenced by the 

JGI (http://genome.jgi-psf.org/draft_microbes/strsu/strsu.home.html). We downloaded the draft 

assembly from the JGI website and WGS reads from Ensembl trace repository 

(ftp://ftp.ensembl.org/pub/traces/streptococcus_suis_89_1591/). Using the same method as for the 

mouse data, we aligned the draft assembly S. suis 89-1591 against the Sanger finished sequence to get 

the reference dataset of SNPs and indels. All the JGI reads were searched against the Sanger finished 

sequence to get the ssahaSNP dataset. Table 3 shows the effect of read coverage on mutation 

detection in a region with 571 SNPs and 12 indels. This region is the longest alignment between the 

two strains with a length of 25135 bps. At a coverage of 4x, for example, the SNP true positive rate 

can be as high as 97%, while the false positive rate is less than 1.0%.  For most genomes, the 

sequence coverage from contigs at this read coverage is normally 60-70%. This means that if an 

assembly produced from 4x reads is used to detect mutations, the true positive rate will be 60-70%, 

much lower than the rate of ssahaSNP. When read coverage is further reduced to 2x, the results from 

ssahaSNP should be even better as it would be very difficult to build up an assembly at this coverage.

Recently, in order to test the newly acquired 454 sequencing machine, the P1/7 strain was re-

sequenced using 454 technology. We used a single machine run’s data of 270,741 short reads, 

estimated to cover the genome 13 times,  to test our code. The results with two regions are shown in 

Table 4, where effect of read coverage is also illustrated. In region_1, the true positive rate is not very 

high, this is because there are a few areas with high SNP density where 454 reads cannot be placed 

on the genome. Using a 100 bps window to scan region_1, the maximum number of base variation 

within the window is 27.  There are a few windows in other areas with more than 20 base variations. 

As 454 reads are about 100 bps on average, SNPs at high density areas will be missed. Alternatively, 

we selected another region, region_2 with 294 SNPs and 7 indels. The length of this region is 8782 

bps and the average SNP density is even higher than that of region_1. However, the maximum 

number of base variation within a 100 base window is 13, much lower than that in region_1.  The true
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positive rate, shown in Table 4, is higher than that for region_1 at every level of read coverage. As 

expected, short reads have been aligned to those areas with relatively high SNP density. One distinct 

feature of 454 reads is the high error rate of insertion and deletion, mostly in areas where single bases 

are constantly repeated. The indel error rate is estimated at about 3.3% [16][17], i.e, there are 3-4 

indels in each 454 read, when aligned to the finished sequence.  As a result, the false positive rate for 

indels is very high. In region_2, there are 7 indels, of which  4 are single base indels. However, using 

ssahaSNP with “-NQS 1” flag, we detected 94 single base indels and if we don’t check quality values 

for the neighboring bases (“-NQS  0”), the number of single base indels found was 249.  It also 

should be noted that indels with a relatively long length, say >15 bps, are most likely to be missed as 

the read length would be too short to form an alignment. From these tests, we may conclude that

ssahaSNP is not suitable for indel detection using 454 reads.    

Table 3: JGI ABI reads against Sanger finished sequence – region_1: 571 SNPs and 12 indels 

Coverage True Positive False Positive (SNP)  True Positive False Positive (indel)   

2x 514 (90.0%)    4 (0.70%) 9 (75%)      0 (0.0%)

4x 553 (96.85%)    5 (0.88%) 12 (100%)      0 (0.0%)

6x 556 (97.37%)    0 (0.0%) 12 (100%)      0 (0.0%)

8x 564 (98.77%)    1 (0.18%) 12 (100%)      0 (0.0%)

10x 569 (99.65%)    2 (0.35%) 12(100%)      0 (0.0%)

Table 4: 454 reads against JGI draft assembly – region_1 (571 SNPs) and region_2 (294 SNPs)

Coverage True Positive False Positive (region_1)  True Positive False Positive (region_2)   

2x 145 (25.39 %)    5 (0.88 %) 149 (50.68 %)    0 (0.0 %)

4x 315 (55.17 %)    10 (1.75 %) 215 (73.13 %)    11 (3.74 %)

6x 299 (52.36 %)    2 (0.35 %) 261 (88.78 %)    18 (6.12 %)

8x 360 (63.04 %)    2 (0.35 %) 270 (91.84 %)    14 (4.76 %)

10x 397 (69.53 %)    3 (0.53 %) 289 (98.30 %)    16 (5.44 %)

13x 435 (76.18 %)    5 (0.88 %) 293 (99.66 %)    16 (5.44 %)

Variation Detections for Larger Eukaryotic Genomes 

A whole genome shotgun (WGS) assembly is generated as part of the zebrafish genome project at the 

Sanger Institute. In the initial phase of WGS reads production, the DNA samples were extracted from 

more than 1000 five-day-old embryos (http://www.sanger.ac.uk/project/D_rerio). Multiple DNA 
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sources lead to a very high polymorphism level in the dataset and consequently leave tremendous 

technical challenges in sequence assembling. On the other hand, this polymorphic dataset also offers 

opportunities for genomic variation studies.
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Figure 7. Distribution of the indel length.

We used the ssahaSNP package to detect indels from 20 million WGS reads against the draft 

WGS assembly as well as the finished clone contigs of 800 Mbps. The total number of detected 

indels is 663,660. Given the genome size of 1.65 GB, this indicates that the average indel density is at 

about one indel every 2.48 kilobases.  Distribution of indel length over the number of detected indels 

is shown in Figure 7, where the data of Human Chromosome 6 is superimposed for comparison. In 

the human dataset, we processed 1.61 millions reads whose DNA samples were from three cell lines.  

With a total number of 47,692 detected indels, this gives the average indel density at about one indel 

per 3.58 kilobases.  It is seen from the figure that for both datasets the majority of the indels are short, 

with a length N50 = 2 (half of the indels are less or equal to 2 bps).    

In the zebrafish dataset, the shotgun coverage is about 7x and for human Chr6 the coverage is 

about 6x. Even with multiple haplotypes, it is likely the same indels would be mapped more than two 

times by the shotgun reads.  Figure 8 shows variations of indel number against indel mapping 

frequency. For the zebrafish dataset, there is a long tail in the figure that extends beyond 100. This is 

because the WGS assembly is only a draft and many repetitive or long duplicated regions are still not 

represented in the assembly.  For the reads belonging to these gap regions, the correct location does 

not exist, thus the code maps reads to similar regions to levels that are much higher than the average 
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shotgun coverage.  For the finished Chr6 sequence, the situation is much better, with only a very 

small percentage mapping more often than expected. Human SNPs detected by ssahaSNP can be 

found in http://www.glovar.org/.
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Figure 8. Distribution of indel mapping frequency.

Conclusions

Whole genome alignment provides a fast and effective way for mutation detection. To validate the 

accuracy of the method, we have carried out tests for various data types. The tool works very well for 

the case in which there is a high level of homology between the query source DNA and the reference 

genome, like NOD mouse reads against C57B6/J reference sequence. Good results have also been 

found when two strains of pathogen sequences are searched against each other. False positive rate is 

found to be very high for indel detection using 454 reads, especially for single base indels. However, 

results of SNP detection for 454 reads are acceptable at relative high read coverage. We recommend 

the package for use in large genome projects, particularly in cases where read coverage is not high 

and draft assembly is not in a good shape. 

Availability and requirements

Project name: ssahaSNP;

Project home page: http://www.sanger.ac.uk/Software/analysis/SSAHA2/

Operational systems: Platform independent;

Programming language: C and Perl;
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Other requirements: None;

Licence: No licence for binary codes;

Any restrictions to use by non-academics: binary code only.

List of abbreviations

SSAHA Sequence Search and Alignment by the Hash Algorithm, SNP single nucleotide

polymorphism, indel insertion and deletion, WGS whole genome shotgun, NQS Neighborhood 

quality standard, ABI Applied Biosystems Incorporation, NOD Non-Obese Diabetic.
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