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Abstract 
 
Background: Clone-by-clone sequencing, as a means of achieving high quality 

assemblies for large and complex genomes, continues to be of great relevance in the 

era of high throughput sequencing. However, assemblies obtained using current whole 

genome assemblers are often fragmented and sometimes have issues of genome 

completeness owing to different data characteristics introduced by multiplexed 

sequencing, such as ultra high and uneven read coverage.   

 

Results: We report the development of a clone assembly tool: iCAS. Instead of using 

base quality trimming, the data filtering process is based on a novel kmer frequency 

algorithm, resulting in near perfect pre-assembly reads. Contigs are generated using 

different assembly algorithms and then merged together to achieve longer continuity. 

Re-aligning all the reads back to the draft contigs and recalibrating each sequence 

base achieve a final consensus. Using finished clones for quality control, the pipeline 

is able to obtain assemblies with contig coverage of 99.7% and consensus base quality 

of Q39. It also provides data visualization of placed reads on contigs with multiple 

sequence gapped alignments for further manual inspection. 

 

Conclusions: iCAS is an assembly tool suitable for pooled clones or small targeted 

regions using Illumina multiplexed data. In comparison, it outperforms all the tested 

individual assemblers in terms of contig continuity as well as base level accuracy.  

 

 

Keywords: Genome assembly; Illumina multiplexed sequencing; Data filtering; 

Genome coverage; Contig merge; Data visualization. 

 

 

Background 

Application of clone-by-clone strategies using high throughput next generation 

sequencing (NGS) data is a plausible and practical option for many genome projects. 

In the endeavour of genome finishing, clone contigs could be produced from NGS 

data in a much more cost-effective way than that using traditional capillary 

sequencing technology. Clone-by-clone sequencing may be combined with whole 

genome shotgun data to enhance the de novo assembly for plant genomes, which are 

often large, complex and polyploid [1-2]. With protocols in current NGS platforms, 

multiplex library preparation facilitates highly parallel sequencing of a large number 

of samples (96 and more). Pooled clones were indexed with sequence tags and reads 

from individual clones were extracted and assembled separately, with a goal to 

produce high quality local assemblies at a faster speed and under more affordable 

costs. A number of assembly packages are freely available, including Velvet [3], 
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ABySS [4], ALLPATHS-LG [5], CABOG [6], SOAPdenovo [7], SGA [8] and more 

recently Fermi [9].  However, no single assembly tool produces clone assemblies of 

sufficient quality. Unlike whole genome sequencing, a common occurrence in NGS 

multiplexed sequencing is the massive pile up of reads in a small area and unevenness 

of read coverage occurs frequently across the sequenced regions. The read coverage 

for clone sequencing can be over a thousand fold even with 96 samples per 

sequencing lane and this often complicates the assembly process. Directly using raw 

reads, current NGS assemblers cannot effectively deal with the unevenly distributed 

data at ultra high sequence coverage. As a result, this leads to fragmented contigs and 

also a lower degree of completeness for the final assembly. With a number of on-

going projects aiming for reference quality in sequencing large plant genomes, such 

as wheat and barley, there is a need in the community to develop effective tools, 

capable of producing high quality clone level assemblies. 

 

We present a clone assembly system – iCAS, particularly suitable for Illumina data 

from multiplexed sequencing. Paired reads are processed to screen out contaminants 

as well as erroneous data. Contigs are generated using different assembly algorithms 

and then merged together to achieve longer continuity. Re-aligning all the reads back 

to the draft contigs and recalibrating each consensus base achieves a high quality 

consensus. Finally a visualization database is provided for further manual inspection. 

 

Implementation 
 

Assembly for each clone is composed of a number of steps as described below in 

detail (see Figure 1). The iCAS pipeline is simple to use. It takes the raw reads (in 

sam/bam/fastq format) as input and outputs the assembly as a fasta file with Gap5 

database files [14]. First of all, the package checks if the input data is complete and 

then processes the clones pooled in a sequencing lane separately.  

 

Data screening 

The iCAS assembly pipeline starts by processing the sam/bam file, assigning reads to 

individual clones using the tag information (the code is not included in the pipeline, 

but can be provided upon request). The extracted reads are stored in a fastq file format 

for further data processing. The next stage involves the removal of common 
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contaminants. Reads are aligned against a small database containing sequencing 

adapters and E. Coli sequences. Read pairs that match are removed. When this is 

finished, the pipeline goes to the data screen stage- an algorithm which removes low 

quality reads by looking at the kmer frequency distribution. Here, unique and low 

frequency k-mers in the set of all reads are identified, and for each read, the number of 

such k-mers is counted. Reads with a score above a certain threshold (zero is used for 

clone data) are discarded. With the very high coverage (>500x) typical in such 

studies, unique k-mers of this sort are almost always the result of a sequencing error. 

High initial coverage also allows many reads to be discarded while maintaining good 

coverage. The aim here is to produce near-perfect reads before assembly. 

 

Figure 2 shows the kmer frequency distributions before and after data filtering. In the 

NGS data, unique or low copy kmer words are associated with the reads containing 

base calling errors. It is seen that the number of unique kmer words in the read set has 

been dramatically reduced from a very large number (1,400,808) to a small number 

(1,327).  This suggests that most reads containing erroneous sequencing bases have 

been removed, while the kmer coverage has been slightly reduced from 51 to 43. It 

should be noted that the cleaning process consumes computational resources, but at an 

acceptable level. The direct benefit from data screen is a speed-up in downstream 

steps as well as an improvement in the stability of SOAPdenovo runs. The effect of 

read filtering on assembly metrics will be discussed later in the results section. The 

standalone software package, named Unikalow can be downloaded with supporting 

documents from  

ftp://ftp.sanger.ac.uk/pub/users/zn1/unikalow/ 

 

Assembly merge 

When the implications of NGS technology became apparent, several assemblers were 

designed to deal with the assembly applications. Henson et al. [11] discussed three 

different assembly algorithms, namely (i) Overlap graph, (ii) de Bruijn graph and (iii) 

String graph and current popular assemblers in the community. Advantages and 

disadvantages of these assemblers on NGS data applications were also outlined. 

Recent efforts on genome assembly evaluations [12-14] suggest that no assembler 

overwhelmingly performs better than the others. However, differences in performance 

do exist with different assemblers on some particular metrics such as scaffold 

ftp://ftp.sanger.ac.uk/pub/users/zn1/unikalow/
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continuity and contig accuracy. In our application, the decision was taken to combine 

two individual assemblers together, rather than just make one choice. Two assembly 

algorithms, SOAPdenovo and AbySS, are independently performed, followed by an 

assembly merge to obtain the draft contigs. In our own study, SOAPdenovo seems to 

produce better scaffold continuity, while ABySS delivers better base accuracy on 

contigs, particularly with a smaller number of short deletion/insertion errors when 

compared to the finished sequences. The scaffold merge starts first with the 

SOAPdenovo assembly as a reference (longer scaffolds normally) using ABySS 

sequences as a “target assembly” (with more accurate contigs). During the merge 

process of SOAPdenovo-ABySS, all scaffolds from one assembly are aligned to all 

scaffolds from the other. Analogous to read assembly, unambiguously overlapping 

scaffolds are merged. Then, for all aligned sequences, the reference scaffolds 

(SOAPdenovo) are discarded and only connection information is used to construct the 

new scaffolds, where all the sequences are from the target assembly (ABySS), shown 

in Figure 3(a). The next step is to merge the contigs. Within a scaffold structure of the 

target assembly, the gap sequences are filled with the segments from the reference 

contigs, once exact breakpoints can be identified. Outside the scaffold, contigs are not 

joined, but simply ordered to avoid mis-assembly errors. The contig merge is shown 

in Figure 3(b). The algorithms for merging assemblies have been implemented in the 

iCAS pipeline. The standalone code for pair-wise assembly merging can be 

downloaded from ftp://ftp.sanger.ac.uk/pub/users/zn1/merge/ 

 

Refining consensus bases and visualization 

Small local assembly errors exist for any draft assemblies, such as single base 

substitutions and short insertions and deletions. For de novo assemblies from large 

and complex genomes, this might be accepted. However, for clone assemblies to be 

used as a reference, these errors will be less desirable features and have significant 

implications for downstream analysis. To refine the final assembly bases, we align all 

the reads back to the draft assembly and use Gap5 [15] to re-calculate the consensus 

bases. As a result, this will significantly increase the accuracy at the contig level and 

details will be discussed in the results section. Also using Gap5 as a visualization tool, 

it allows finishers to manually examine the pileup of reads, Figure 4(a) and display 

template information Figure 4(b), or data integration from different sequencing 

platforms, shown in Figure 4(c).  
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Results and discussions 

 

To quantify the performance of the assembly pipeline, we used 5 finished BAC clones 

and 3 fosmids, with a total number of 950k sequence bases. These pig BACs and 

fosmids are part of the International Swine Genome Sequencing Consortium 

(http://piggenome.org/), and were sequenced and finished at the Wellcome Trust Sanger 

Institute. Sequencing reads of 2x100bp were produced from Illumina HiSeq with 

500bp insert size. Using 95 samples per sequencing lane (one for QC control), reads 

belonging to individual clones were extracted based on the barcode tag information 

and assembly was performed in a sequential order. Table 1 shows the comparisons of 

8 assemblies from three different assemblers using the same datasets with low kmer 

frequency filtering, described previously. It can be seen that iCAS outperforms both 

SOAPdenovo and AbySS in terms of contig continuity (N50) and base level accuracy 

(numbers of substitutions, indels). The pipeline iCAS has produced 16 substitution 

errors and 22 indel errors (116 bases). With a total number of 949,571 bases 

examined, there are 132 bases wrongly assembled, leading to an error rate of 0.00014, 

or a consensus quality value of Q39. For AbySS, the number of indel errors is slightly 

higher than that of iCAS, but the number of substitution errors is much higher ( 16 vs. 

44), as iCAS has a function to recalculate consensus by read re-alignment. For 

SOAPdenovo, the errors for both substitutions and indels are much higher. As for 

genome completeness, iCAS has 2889 bases uncovered and this gives a contig 

coverage of 0.997.  

 

Even with multiplexed sequencing, the raw read coverage is still huge, ranging from 

642x to 13720x, shown in Table 2, where the assembly results of SOAPdenovo and 

ABySS using reads without data filtering are also outlined. Compared with Table 1, 

the assemblies are much more fragmented, except for BAC bE217O4, where raw 

sequencing coverage is relatively low at 642x. However, mis-assembly errors for both 

assemblies were discovered. In SOAPdenovo, there was a segment of E. coli 

sequence inserted into a pig contig, while a global mis-join error was found in the 

ABySS assembly. In terms of scaffold continuity in our tested cases, it can be seen 

that ABySS assemblies are much better than the SOAPdenovo assemblies. The main 

http://piggenome.org/
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reason is that ABySS employs a pre-assembly data filtering, while no such process 

exists for SOAPdenovo.  

 

In the absence of mate pair data, most scaffolds are actually contigs and this can be 

seen in Table 3. Short insert data combined with mate pair reads could be a good 

option for clone sequencing and undoubtedly this will improve scaffold statistics. 

However, this will sharply increase the sequencing costs. Adding other types of data 

with longer read length can help to sequence through tandem repetitive regions. 

However, this will present new challenges in the assembly process, an issue which is 

beyond the scope of this paper and details will not be discussed here. The global 

completeness of an assembly can be illustrated by plotting contigs against the finished 

sequences. Figure 5 shows the dotter plots of assembled scaffolds from 5 BAC clones 

and 3 fosmids against the finished sequences. It should be noted that features of the 

reverse complement shown in Figure 5(b), (c), (d) and (e) are not errors as each plot 

shows the scaffolds compared to the finished sequence. For all 8 examined clones, 

there are no global mis-join errors and overall excellent coverage has been achieved. 

 

The base accuracy using 8 finished clones is illustrated in Table 1. Overall, the 

accuracy of assembly consensus bases is very high, at Q39. However, there are still 

some substitution errors as well as indel errors. These errors are described here in 

detail. BAC bE352A13 is used for this explanation, which has 73 error bases (8 

substitution errors and 14 indel errors with 65 inserted or deleted bases).  Figure 6 

shows a real indel error from our assembly: an 8 base insertion with dinucleotide 

repeats (CA)n, shown in Figure 6(a) . This can be visualized in Figure 6(b), where 

multiple aligned reads in the region are not consistent, indicating an error. Figure 7 

shows a case with a single base deletion from our assembly in a region of 

mononucleotide repeat. Viewed in the Gap5 contig editor, this deletion seems to be 

allele specific.  At this particular site, some reads present a “T”, while some reads 

show pads (“*”), indicating a gap in the pileup region. This clearly suggests an allele 

specific site. Among 14 indel errors, there are 6 single base indels which all seem to 

be allele specific, using Gap5 manual inspection. 

 

All the 8 substitution errors occur at a location close to the contig end, with 6 error 

bases shown in Figure 8(a). From the image of the Gap5 contig editor, Figure 8(b), we 
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cannot reach a definite conclusion. This could be allele specific: a tag of 

“GACAAAAAAGAC” is contained in one read, although the vast majority of the 

reads do not show this. However, it is also possible that the Illumina sequencing 

technology might not be effectively reporting the correct bases in extremely low 

complexity regions. Finished sequences were done using the Sanger sequencing 

method, which could be more reliable. 

 

The selection of suitable assemblers for iCAS is vitally important to deliver the best 

performance, whilst striking a balance between contig continuity and consensus base 

accuracy. Velvet, a very popular assembler with applications on bacterial genomes, 

was not chosen for iCAS due to the ineffective way it handles tandem repeats. It is 

possible that more assemblers or alternative assemblers can be integrated into iCAS in 

the future. Many sets of data have been tested using Fermi [9], a string graph based 

algorithm, which seems to produce the highest level of accuracy on contigs. However, 

its scaffolds were not as long as those of SOAPdenovo or ABySS.  

 

Conclusion 

 

In this paper we have presented a software package iCAS suitable for clone level 

assembly using Illumina multiplexed sequencing data. In order to cope with extremely 

high coverage reads, we designed a data filtering algorithm to remove erroneous reads. 

The method is based on a novel kmer frequency algorithm, resulting in near perfect 

pre-assembly reads. Contigs are generated using different assembly algorithms and 

then merged together to achieve longer continuity. When the draft assembly is ready, 

we re-align all the reads back to the contigs and then recalibrate each sequence base to 

achieve a final consensus. Compared with existing popular assemblers, iCAS 

produces assemblies with longer contigs and higher base level accuracy. Using 

finished clones for quality control, the pipeline is able to obtain assemblies with 

contig coverage of 99.7% and consensus base quality of Q39. Finally, it provides a 

means of data visualization on contig placed reads with multiple sequence gapped 

alignments for further manual inspection. 
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Availability and requirements 

Project Name: iCAS 

Project home page: ftp://ftp.sanger.ac.uk/pub/badger/aw7/installicas061_auth.sh 

Operating system(s): Platform independent 

Programming language: C, Perl (v5.0 or later) 

Other requirements: a machine with >= 4Gb RAM 

License: GNU GPL 

Any restrictions to use by non-academic users: None 

Additional files 

All the sequencing reads and finished clones can be downloaded for further analysis 

from: ftp://ftp.sanger.ac.uk/pub/users/zn1/icas.  

 

We have provided a version with shell scripts for easy installation: 

 

ftp://ftp.sanger.ac.uk/pub/badger/aw7/installicas061_auth.sh 

 

bash installicas061_auth.sh 

ICAS v0.6.1 

Usage: icas [-outdir dir -workingdir dir -screen file.fa -kmer_abyss num -kmer_soap 

num -use_number_reads num -mapping num -insert insert_size] [-bam file | -fq1 file -

fq2 file] -clone clone_name 

 

outdir – directory of the final results; 

workingdir – directory for intermediate results (only in use if you want check details);  

screen – a file contains sequences of contamination (provided, but you can use your 

own); 

kmer_abyss – kmer length for ABySS (k=61); 

kmer_soap – kmer length for SOAPdenovo (k=61); 

use_number_reads – number of paired reads used for assembly (500000); 

mapping – smith-waterman score for alignment on the screen file (40); 

insert – insert size (300bp); 

fg1 – read 1 file; 

fg2 – read 2 file; 

ftp://ftp.sanger.ac.uk/pub/users/zn1/icas
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clone – clone name for the final assembly. 

 

The maximum ram memory for clone assemblies should be less than 4Gb and it 

normally takes 30-60 minutes for a typical BAC clone. 
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Figure Legends 

 

Figure 1: Flowchart of the iCAS assembly pipeline.  

 

Figure 2: Kmer frequence distributions before and after data filtering. The two sets of 

reads have different peak points and for cleaned dataset, the kmer occurrence is 

reduced since reads with base errors have been removed. It can also be seen that the 

number of unique or low copy kmer words have been significantly reduced, indicating 

the removal of reads with base errors. 
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Figure 3: Assembly merging process: (a) scaffold merge: there is only one scaffold in 

the reference assembly (red colour bar) and two scaffolds in the target assembly 

shown in green and orange colour respectively. In the final merged assembly, contigs 

are still target contigs, but two scaffolds are merged into one, shown in grey colour. 

(b) contig merge in the iCAS pipeline: similar to scaffold merge, the backbone contigs 

are from the target assembly. Breakpoints of gap sequences are identified and 

sequences from the reference assembly are used to fill the gaps. 

 

Figure 4: Visualization of assembly using Gap5: (a) contig editor; (b) template 

display (c) coping with different types of data. 

 

Figure 5: Global completeness of 5 BAC clones and 3 fosmids.  

 

Figure 6: A true indel error in bE352A13 is confirmed using Gap5.  

 

Figure 7: An allele specific indel in bE352A13 is illustrated using Gap5.  

 

 

Figure 8: True substitution error, allele specific site, or sequencing failure? Longer 

reads are needed. The short sequence tag of “GACAAAAAAGAC” contained in the 

reference is not supported by the vast majority of the reads. It is possible that Illumina 

sequencing technology might not be effectively reporting the correct bases in 

extremely low complexity regions. 

 

Figures 

See appended figures. 

 

Tables 

Table 1 
Table 1: Assembly comparisons of 5 BAC clones and 3 fosmids using different 

assemblers  
 

Clone+ Length 

 

SOAP 

 

ABySS 

 

iCAS 

 

  

N50* Sub|Indel N50* Sub|Indel N50* Sub|Indel Uncover++ 

bE217O4 186945 59863 11|10 109235 0|2 109235 0|2 (2)** 12 

bT237K12 130462 13717 57|32 23386 8|4 47205 8|4 (19)** 626 

bE352A13 153875 31247 41|23 93010 8|15 132592 8|14 (65)** 23 

bE367M14 154288 105083 40|9 31405 1|1 107394 0|1 (20)** 1487 

bE378K21 207850 173047 11|10 54240 23|5 187396 0|1 (10)** 741 

fSS328I2 42036 42087 3|5 12628 1|0 42047 0|0 0 

fSS404B14 32829 19543 0|3 29098 3|1 32832 0|0 0 

fSY5K10 41286 41352 0|3 41296 0|0 41296 0|0 0 

         *N50 shown here is the scaffold value, for further details; **- total number of inserted or deleted bases; +clone name used 

internally at the Wellcome Trust Sanger Institute; ++number of clone bases not covered by the iCAS assembly. 
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Table 2:  

 

Table 2: Assembly statistics without data filtering 

 

Clone
+
 Coverage* Run accession SOAP  ABySS 

   N50 N_scaffolds N50 N_scaffolds 

bE217O4 642 ERR103988    179079 9 139053 2 

bT237K12 2308 ERR103980    5343 65 18116 16 

bE352A13 3370 ERR135096    738 2300 6601 138 

bE367M14 1269 ERR103627    3640 92 42570 11 

bE378K21 1364 ERR103628    8729 187 53291 16 

fSS328I2 9286 ERR135114    777 103 12550 19 

fSS404B14 13720 ERR135115    361 698 8988 15 

fSY5K10 11165 ERR135143    917 297 1702 24 

 

*raw read sequencing coverage over the finished clone; 
+
clone name used internally at 

the Wellcome Trust Sanger Institute. 

Table 3 

 

Table 3: Scaffold and contig numbers for clone assemblies using iCAS 
 

Clone Length Scaff N50 N_scaffolds  Contig N50 N_contigs 

bE217O4 186945 109235 2 109235 2 

bT237K12 130462 47205 6 23620 8 

bE352A13 153875 132592 3 132592 3 

bE367M14 154288 107394 4 107394 6 

bE378K21 207850 187396 3 187396 3 

fSS328I2 42036 42047 1 42047 1 

fSS404B14 32829 32832 1 32832 1 

fSY5K10 41286 41296 2 41296 3 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 7 
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Figure 8 

 

 

 

 

 

 
 

(a) 

 

 

 
      

(b) 

 


