Genome Assembly and Structural Variation Detection from MinION Nanopore Data

Base Calling of Nanopore

- Hidden Markov model
- Only four options per transition
- Pore type = distinct kmer length

- Form probabilistic path through measured states currents and transitions
	- e.g. Viterbi algorithm

Basecalling currently is performed at Amazon

a CGTAAGAGTACGTCCAGCATCGG-5 ATGGTA AGAGTGATA $+29 +25$ $n = 0$ рA $\mathbf b$ Ш 36 $2s$ 32 pA 28 24 $2C$ 30 Time (arbitrary units)
TTCTT
TTATT TCTTT
TATTT TTTTC TTTTT $CTTTT$ TTTTT **TTTCT** TITTE **ATTTT TTTAT** TTTTA TTTTT

1D and 2D Base Calling

The 1D vs 2D barcoding refers to whether the complementary strand is used to improve basecalled data. Basically – it gives two shots when examining the same loci. The advantage being that the complementary strand will have a different kmer profile.

Read Length Distribution – Ecoli and Yeast

Ecoli by UCSC: [http://www.ebi.ac.uk/ena/data/view/ERS715551-ERS715552/](http://www.ebi.ac.uk/ena/data/view/ERS715551-ERS715552) Yeast by CSH : <http://labshare.cshl.edu/shares/schatzlab/www-data/nanocorr/>

Assembly Method

Sequencing reads:

1. Overlap graph

 ACCTG \rightarrow CCTGA \rightarrow CTGAT \rightarrow TGATC

 $\begin{array}{l} \text{AGCGA} \textcolor{red}{\blacktriangleright} \text{GGGAT} \textcolor{red}{\blacktriangleright} \text{CGAT} \end{array}$

 $\bigl\text{\rm GATCA}\bigl\rightarrow \text{\rm ATCAA}\bigl\rightarrow \text{\rm TCAAT}\bigl\rightarrow \text{\rm CAATG}\bigl\rightarrow \text{\rm AATGT}\bigl\rightarrow \text{\rm TGTGA}$

 $G\Delta$

 $C \times 6$

2. de Bruijn graph

3. String graph

The Classic Overlap, Layout and Consensus Method

2) Layout

3) Consensus

CCTATG-TAGTCAGTCG

ATGCTAGTCAG

GCTAGTCGGTCGATCTACC

CAGTCGATCTGCCGGT

GTCAGTC-ATCTAC-GGTTAGCATTGC

CCTATGCTAGTCAGTCGATCTACCGGTTAGCATTGC **Consensus**

The Greedy Graph Based Method

The greedy algorithms are implicit graph algorithms. They drastically simplify the graph by considering only the high-scoring edges. As an optimization, they may actually instantiate just one overlap for each read end they examine.

One Contig for The Ecoli Genome

Missing Homoplymers Recovered by Nanopolish from the Event Data

Assembly of Ecoli from Different Methods

- **(i) Assemblies of 1,2,3 were obtained from ONT data only, while assembly 4 used both ONT and MiSeq reads;**
- **(ii) Assemblies of 1 and 2 were obtained after using nanopolish;**
- **(iii) * - in Assembly 3, the indel information is the number, rather the bases;**
- **(iv) ^Loman NJ, Quick J, Simpson JT: A complete bacterial genome assembled** *de novo* **using only nanopore sequencing data.** *Nat Methods.* **2015; 12(8): 733–735.**

Single Molecular Integrated Scaffolding (SMIS)

SMIS: http://sourceforge.net/projects/phusion2/files/smis/

Fake Mate Pairs from ONT Reads

ONT Assisted Scaffolding

http://sourceforge.net/projects/phusion2/files/smis/

Mate pair data is used to scaffold contigs. Contigs, and pairs of contigs connected by pairs, define a bidirectional graph:

Using expected insert size, a estimate of the gap size can be given for each contig.

Saccharomyces cerevisiae complete genome

Scaffold N50 858Kb ; Contig N50 330Kb

Yeast W303 Assembly from PacBio Data using PBcB

Data:

[http://datasets.pacb.com.s3.amazonaws.com/2013/](http://datasets.pacb.com.s3.amazonaws.com/2013/Yeast/) [Yeast/](http://datasets.pacb.com.s3.amazonaws.com/2013/Yeast/)

- **33 contigs and N50 = 777023**
- **12 out of 17 chromosomes are covered with a single contig**
- **99.95 % identity compared with assembly from Miseq**
- **No major homoplymer problems!**

Table 3 CSHL W303 Yeast Illumina Reads Used for Assembly⁺

+The dataset was downloaded from <http://labshare.cshl.edu/shares/schatzlab/www-data/nanocorr/>

Table 4 W303 Yeast Assembly Stats

SOAPdenovo - reads were processed and base errors corrected using our own tools;*

SMIS-Merge+ - Scaffolding was performed using SMIS on the merged assembly and contigs were processed using our own tools.

Methods of Structural Variation Detection

Split Reads – Identifying Breakpoints

Parsing the alignment CIGAR strings and looking for common breakpoints with hard or soft clipping "H" or "S"

Normalising Insert Variation Factor

There are N mate pairs of sequences which can be mapped to a reference chromosome. To quantify the likelihood of structural variation for a given pair, we define a normalised insert size variation factor:

$$
p_i = 1 - \left[\frac{c_i - c_{i-1}}{D_i}\right]^{0.3} \qquad 0 \le i < N \text{ and } 0 \le \frac{c_i - c_{i-1}}{D_i} \le 1
$$

where C_i - Mapping coordinate of the i^{th} pair on the chromosome; D_i - Insert size difference between the shredding distance and the value estimated from alignment;

It is seen from the above figures that the noise level of insert size variation was significantly reduced and this makes the detection much easier.

CNVs in Yeast Chr8 Comparison – SC288C vs W303

Summary:

- **Missing homoplymers is the major issue for de novo assembly;**
- **PacBio shows advantages in genome assembly, so far;**
- **Detection of structural variations is still a challenging task, while Oxford MinION data offers exciting chances.**

Acknowledgements:

- *Richard Durbin*
- *Louise Aigrain*
- *Francesca Giordano*
- *German Tischler*
- *Hannes Ponstingl*
- *James Bonfield*
- *Rob Davies*
- *Thomas Kean*
- *David Jackson*
- *Tony Cox*
- *ONT Ecoli reads – UCSC Miseq Ecoli data – CSHL ONT Yeast data – CSHL Miseq Yeast reads - CSHL PacBio yeast data - PacBio*

