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Next-generation sequencing and large genome 
assemblies

Genome assembly continues to be one of the cen-
tral problems of bioinformatics. This is owing, in 
large part, to the continuing development of the 
sequencing technology that provides ‘reads’ of 
short sequences of DNA, from which the genome 
is inferred. Larger sets of data, and changes in 
the properties of reads such as length and errors, 
bring with them new challenges for assembly. For 
the earliest sequencing efforts using the whole-
genome shotgun (WGS) approach, in which 
reads are generated from random locations across 
the entire genome, assembly could be dealt with 
by arranging print-outs of the reads by hand. 
Through the next three decades, Sanger capillary 
sequencing gained substantially in throughput, 
and WGS became practical for increasingly large 
and complex genomes, from tens of kilobases 
in the early 1980s to gigabases by 2001 [1]. In 
line with this, assembly went on to use not only 
increasingly powerful computational means, 
but also increasingly time and memory-efficient 
assemblers.

A further revolution in sequencing began 
around 2005, when second-generation sequenc-
ing (SGS) technologies began to produce mas-
sive throughput at far lower costs than Sanger 
sequencing, enabling a mammalian genome to 
be sequenced in a matter of days [2]. De novo 
assemblies of the Panda [3] and Turkey [4] 
genomes have now been made using SGS data 
alone, and several human resequencing projects 
have been completed [5–7]. The disadvantages of 
the new technologies lie primarily in the short 
lengths of reads and, in some cases, higher error 

rate. So-called third-generation sequencing tech-
nology is now available, and promises similar 
throughput, lower costs and longer read lengths, 
as well as novel read types. These innovations 
promise to change the game once more.

Assembly is not at all a trivial task. Repeated 
sequences of DNA make it difficult to infer the 
relative positions in the genome correspond-
ing to reads, and they occur far more often in 
real genomes than they would in a sequence 
of independently randomly generated bases. 
Overcoming this problem, as well as correcting 
for errors in reads and taking heterozygosity into 
account, all while staying within the bounds of 
practical computability, make assembly a com-
plex and difficult challenge, which is often quali-
tatively altered by advances in technology. In 
particular, many assemblers designed to handle 
Sanger reads were found to be impractical when 
dealing with next-generation sequencing (NGS) 
data. In response to this, several new assemblers 
have been developed, employing qualitatively 
new approaches, and the field continues to 
develop rapidly. It is thus of interest at this time 
to ask whether the resulting de novo assemblies 
are of good enough quality to replace assemblies 
based on more expensive techniques, at least for 
certain purposes. It is also of use to compare the 
strengths and weaknesses of existing methods.

In the field of pharmacogenomics, data 
from DNA sequencing are used to find genetic 
variations associated with drug efficacy and 
toxicity. The area has been pushed forward by 
the rapid development of NGS technologies. 

The next-generation sequencing (NGS) revolution has drastically reduced time and cost requirements for 
sequencing of large genomes, and also qualitatively changed the problem of assembly. This article reviews 
the state of the art in de novo genome assembly, paying particular attention to mammalian-sized genomes. 
The strengths and weaknesses of the main sequencing platforms are highlighted, leading to a discussion 
of assembly and the new challenges associated with NGS data. Current approaches to assembly are outlined 
and the various software packages available are introduced and compared. The question of whether 
quality assemblies can be produced using short-read NGS data alone, or whether it must be combined 
with more expensive sequencing techniques, is considered. Prospects for future assemblers and tests of 
assembly performance are also discussed.
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parallel pyrosequencing system, which relies on 
fixing nebulized and adapter-ligated DNA frag-
ments to small DNA-capture beads in a water-
in-oil emulsion. The DNA fixed to these beads 
is then amplified by PCR. The very latest 454 
GS FLX Titanium XL+ claims an average read 
length of 700 bp with some reads up to 1000 bp 
in length [101]. With an advantage in sequenc-
ing length, it enables a variety of applications 
including de novo whole-genome sequencing, 
re-sequencing of whole genomes and target 
DNA regions, metagenomics and RNA analy-
sis. Characteristic errors include exact num-
ber in homopolymer lengths, an error that is 
a type of indel specific to the 454 sequencing 
method [19].

The release of Illumina’s (CA, USA) Genome 
Analyzer in 2007 marked a true revolution 
for genome sequencing, in which short reads 
became significant to genomic applications. The 
technology is based on reversible dye termina-
tors. DNA molecules are first attached to prim-
ers on a slide and amplified so that local clonal 
colonies are formed (bridge amplification). 
Four types of reversible terminator (RT)-bases 
are added, and non incorporated nucleotides are 
washed away. Unlike pyrosequencing, the DNA 
can only be extended one nucleotide at a time, 
similar to Sanger sequencing. Read length and 
throughput have undergone rapid changes in 
the last few years, from 35 bp length reads with 
1 Gb throughput using the Genome Analyzer 
to protocols now available yeilding 100 bp reads 
with 600 Gb using HiSeq 2000. These proto-
cols generate read pairs (see below) [102]. Base 
substitutions are the most common error type 
for this platform [20]. Owing to its high accuracy 
(base error rate of raw sequencing data <1%) and 
relatively low costs, these platforms have been 
widely used for applications in resequencing 
[21,22], de novo assembly and RNA-seq analysis 
[23,24] among others.

Life Technologies’ (CA, USA) SOLiD™ 
technology employs sequencing by ligation. 
Here, a pool of all possible oligonucleotides 
of a fixed length are labeled according to the 
sequenced position. Oligonucleotides are 
annealed and ligated; the preferential ligation 
by DNA ligase for matching sequences results 
in a signal informative of the nucleotide at that 
position. SOLiD generally has more reads than 
its competitors, but with a shorter read length 
[103]. Most importantly, the use of color spaces 
rather than sequence bases in the earlier versions 
of platforms hampered its applications in de novo 
assemblies.

Reference-guided alignment methods can 
detect SNPs and short indel variants. However, 
the SNPs identified to date have been found 
to account for only 30–50% of the observed 
variations in drug response [8]. The copy num-
ber variation (CNV), another major form 
of human genetic variation, and its signifi-
cance in pharmaco genomics, needs to be fully 
investigated. It is known that CNVs involve 
some known metabolizing enzymes, such as 
CYP2D6, GSTM1 and potential drug targets 
such as CCL3L1, and can influence the pheno-
type through alteration in gene dosage, structure 
and expression [9]. However, the identification of 
CNVs using NGS data poses significant chal-
lenges, particularly for large insertion sequences. 
Despite this, the first analysis of structural varia-
tion detection by whole-genome de novo assem-
bly was recently reported [10]. The findings dem-
onstrate that whole-genome de novo assembly is 
a feasible approach to deriving more comprehen-
sive maps of genetic variation. More recently, 
a graph-based assembly method, which uses a 
human reference as well as homology among 
individual samples, was developed to detect 
different forms of variation from a population 
[11]. There are several earlier reviews on assem-
bly using NGS data [12–14]. Reviews concerning 
particular applications of these methods are also 
available, including finding genetic variations in 
plants [15] and the study of cancer [16,17].

NGS technologies & platforms
DNA sequencing is a fast-moving area with 
technologies and platforms being updated at a 
blistering pace. The hallmark of NGS has been 
a massive increase in throughput and decrease 
in price as compared with previous technolo-
gies: SGS sequencing can now be 10,000-times 
cheaper per base than typical Sanger capillary 
sequencing. As far as assembly is concerned, the 
available platforms are distinguished by possible 
read length, biases in coverage and error profile. 
Below, we outline the characteristic features 
of the most commonly used NGS platforms. 
While exact specifications are likely to change 
rapidly, Glenn gives details of state of the art as 
of May 2011 [18]; an update is planned for May 
2012. Some of those figures are given in Table 1 
along with updated information from other 
sources cited below including, where noted, the 
 instrument manufacturers.

The first next-generation DNA sequencing 
machine, the GS20, was introduced to the mar-
ket by 454 Life Sciences (Basel, Switzerland) in 
2005. The technology is based on a large-scale 
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So-called ‘third-generation’ technologies 
directly sequence individual DNA molecules 
rather than relying on amplification prior to 
sequencing. The recently released PacBio RS sys-
tem can produce 35–45 megabases of data per 
SMRT® cell with an average read length of 1500 
bp. The latest C2 chemistry can produce reads 
with an average read length of 2700 bp [104]. The 
method used is sequencing by synthesis, which 
has a high base error rate of ~13–15% in raw 
data. However, the high base error rate can be 
traded in for read length, basically by reading the 
same sequence more than once and/or by means 
of computational processes. As well as reads of 
the usual type, ‘strobe reads’ can be produced, 
which cover larger ranges in the genome but 
contain several unsequenced gaps whose size is 
approximately known.

The Ion Torrent™ Personal Genome 
Machine™ (PGM™) is another third-generation 
platform that uses standard sequencing chemistry, 
but with a novel, semiconductor based detection 
system [25]. The method of sequencing is based on 
the detection of hydrogen ions that are released 
during the polymerisation of DNA. This technol-
ogy already claims read lengths of approximately 
200 bp with high accuracy, and the latest PGM 318 
chip can produce 1.0 Gb of data in a 2-h run [105].

With low machine costs, short sequencing 
time and reasonable amount of throughput, 
desktop sequencers such as Ion Torrent PGM, 
and its second-generation technology competi-
tors, Illumina’s MiSeq® and 454 GS Junior, 
offer exciting prospects for diagnostic sequenc-
ing in future medical care. With the 318 chip, 
IonTorrent competes with MiSeq on through-
put and cost, and MiSeq’s read length is a little 
shorter at 150 bp. The 454 GS Junior achieves 
longer reads, with a mean length of 400 bp, at 
the penalty of lower throughput and, as a result, 
higher cost per Gb.

Most NGS platforms require that template 
DNA is short, typically 200–1000 bp (short 
insert size) and that each template contains for-
ward and reverse primer-binding sites. Libraries 
can be constructed so that the sequencing 
machine reads the DNA starting from both 
ends of the template fragment, producing two 
reads that overlap or are separated by a short gap 
of approximately known length. This process 
is called paired-end sequencing for short insert 
sizes. ‘Mate-pair’ libraries, prepared using more 
complex techniques, provide for larger separa-
tions between pairs of reads. The insert size in 
mate pair libraries varies from 2 to 40 Kb [26,27]. 
Using Bacterial Artificial Chromosome (BAC) Ta
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techniques, inserts of 150 Kb can be produced, 
but at higher cost. The mate-pair type of data 
is essential for establishing long-range continu-
ity in de novo assemblies, especially with short 
reads where other long-range information is 
lacking. Errors, however, are common for long 
insert sizes. A large proportion of read pairs can 
be ‘chimeric’ (from random, unrelated places 
in the genome). Duplicates of read pairs are 
often found, reducing true coverage. Thirdly, 
for some protocols employing DNA fragment 
circularization, it can happen that two reads are 
made unexpectedly close to each other and with 
the wrong orientation (‘cross-biotin’ pairs). The 
variance of the insert size also affects the useful-
ness of pair information, as does any departure 
of the distribution of insert size from the nor-
mal distribution, which can be pronounced with 
many common protocols.

Overview of assembly methods
Assembly would be an easy task, if it could be 
determined whether (and by how much) given 
reads correspond to overlapping positions on 
the genome. Reads are said to ‘overlap’ if there 
is a match between the sequence at the begin-
ning of one read and the end of the other that is 
long enough to be reliably distinguished from a 
random event. This is the case if they are from 
overlapping locations on the genome, but the 
converse is not true: the reads may have arisen 
from two different copies of the same sequence. 
This complicates assembly. Consider a genome 
that contains the concatenation of the three 
sequences A, X and B, and elsewhere contains 
the concatenation of the sequences C, X and 
D. If the sequence X is longer than the longest 
read, overlap information alone cannot be used 
to rule out possibility that the genome contains 
the sequence A, X, D, which may not in fact be 
part of the genome. For this reason, assembled 
sequences must end at the boundaries of such 
repeats.

Figure 1 shows how this problem affects the 
best attainable quality of assemblies for four 
genomes: human (Homo sapiens), mouse (Mus 
musculus), fruit fly (Drosophila melanogaster) and 
the malaria parasite (Plasmodium falciparum). 
It shows a statistic summarising the lengths of 
sequences from the genome that could be success-
fully reconstructed, if the only factor obstruct-
ing assembly was ambiguity caused by repeats 
(as opposed to sequencing errors, errors caused 
by heuristic computing methods and so on). 
For each position in the reference genome, we 
first calculated the uniqueness of the following 

sequence of length y in both strands (forward 
and reverse complement) and then marked 
those unique positions over the whole genome. 
Continuous intervals of marked positions were 
treated as assembled sequences; in other words, 
these contiguous sequences end at the boundar-
ies of repeats in the genome that are longer than 
y bases. The lengths of the resulting pieces are 
summarized using the N50 statistic. The N50 
of a set of sequences is the maximum length for 
which a subset of longer or equal sequences can 
be found whose combined length is over half of 
the total length of all sequences. The result is an 
upper bound on the N50 of assemblies produced 
from WGS data with reads of length y.

Here we see the gains in ideal assembly qual-
ity that can be made with longer read length: 
for the human genome the possible N50 ranges 
from approximately 3–32 Kb as we increase 
read length of single-end reads from 50 to 100. 
Similarly, using reads of length 1000, an N50 of 
8978 Kb is ideally achievable. It is also evident 
that repeat structure varies considerably even 
in mammals. Realistically, assembly quality is 
further limited by read errors and suboptimal 
assembly algorithms.

Early assemblers for viral genomes used a 
simple ‘greedy’ algorithm; however, larger and 
more repetitive genomes called for a more cau-
tious approach, in which two sequences are not 
merged if either one of the sequences can be 
extended in conflicting ways. This stage results 
in a number of separate sequences or ‘unitigs’ 
that terminate at the boundaries of repeats, or 
more generally a set of contiguous sequences 
from the genome called ‘contigs’ [28]. Read errors 
can also be corrected during assembly by com-
paring overlapping sequences and choosing the 
most likely version of any difference by various 
means. A ‘scaffolding’ stage follows, in which 
read-pair data is used to find the approximate 
distances between nonrepetitive contigs in the 
genome, producing a sequence with ‘gaps’ of 
undetermined bases. Repeats are retained and 
can be inserted back into the sequence when the 
order of the contigs bordering each copy is no 
longer ambiguous, and then overlaps between 
remaining reads are used in attempts to close any 
remaining gaps. Repeat contigs can be identified, 
up to some error, by the relatively high density of 
reads mapping to them, and in principle by the 
multiple ways of extending the contig by overlap 
and/or multiple conflicting contigs connected to 
them by read pairs. The process can be expressed 
using an ‘overlap graph’ in which the reads are 
nodes and the (directed) edges represent overlaps 
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(Figure 2a & 2b). The genome corresponds to one 
of the paths through the graph. The division 
into stages of assembly (including error correc-
tion), scaffolding and gap closure has remained 
in place up to the present.

New problems arose in the new era of high-
throughput sequencing. Assembly is confounded 
by locations in which there are not enough over-
laps to extend the sequence with confidence, 
and shorter read lengths imply a larger expected 
number of these coverage gaps when the aver-
age coverage is held constant. For Sanger reads, 
models show that, ideally, it is sufficient for each 
base in a mammalian sized-genome to be cov-
ered by at least three reads on average (written 
as 3× coverage) [29]; however, for the new short 
reads, this figure rises to around 30×. Correction 
of the larger error rate also requires a higher cov-
erage. In practice assemblies of large genomes 
used coverage of between 7× and 10× in the 
previous sequencing era, and have begun to use 
50× coverage, 100× coverage or even higher with 
NGS technology. Furthermore, no amount of 
coverage will make repeats disappear, and with 
shorter reads, less repeats can be resolved with-
out turning to read-pair data, introducing a new 
problem for generating long contigs. While it 
quickly became possible to produce such data-
sets cheaply in the laboratory, even for large 
genomes, assembling them proved impossible 
for most of the previously existing tools.

This problem led to the wide adoption of 
de Bruijn graph methods [30]. In this approach, 
instead of storing information about reads and 
overlaps explicitly, the nodes of the graph are 
sequences of a fixed length k or ‘k-mers’. All such 
k-mers that appear in some read are included, 
and an edge is placed between all pairs of k-mers 
that appear consecutively in some read. Again, 
the genome corresponds to a path in this graph. 
This structure is sketched in Figure 2C. A read 
whose (k+1)-mers are all contained in other 
reads adds nothing to the graph, and so mem-
ory requirements scale well with coverage. The 
same is true for processing time: constructing 
the de Bruijn graph only requires recording the 
k-mers in the read, rather than explicitly con-
structing scored overlaps for each pair of reads. 
Unambiguous contigs are now represented by 
nonbranching paths, while the ambiguities at 
the boundaries of repeats are explicitly repre-
sented in the graph as branch nodes. Most 
popular assemblers merge nonbranching paths 
of k-mers into one node, thereby saving further 
space. Scaffolding and gap closure can proceed 
after these u nambiguous contigs are found.

Read errors pose a problem for this improved 
scaling behaviour. A single-base error in the mid-
dle of a read changes k of its k-mers to ones which 
are likely to be uncommon in the other reads. 
Many assemblers make use of this very property 
to find such errors [31], although genuine k-mers 
can be lost without further conditions. Using 
the topology of the graph to find errors improves 
this and is now widely implemented [32,33]. For 
example, errors at the end of reads (which are 
common in, e.g., Illumina reads) correspond to 
short chains of k-mers that only connect to the 
rest of the graph at one end ‘tips’, while errors 
in the middle of reads give two paths starting 
and ending at nearby locations with similar 
sequence. A complication here is that, for diploid 
or polyploid genomes, sequences that should be 
mapped to the same position in the genome may 
have genuine discrepancies. Most pipelines do 
not attempt to explicitly construct the alterna-
tive alelles for regions of sequence variation when 
building contigs, instead producing one repre-
sentative haplotype. Because of this, when there 
is sequence variation assemblers must either con-
struct two contigs or treat the differences as error 
and merge the contigs. The former can lead to 
misassembly errors, and so generally efforts are 
made to avoid this occurrence.
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Figure 1. An upper bound on assembly N50 against read length y. For a set 
of sequences, the N50 is the number of bases in the longest sequence such that 
50% of the total bases are contained in this sequence or longer sequences. Here, 
the N50 is given for the set of contiguous sequences of bases in each genome that 
are covered by a unique segment of sequence at a given length y. Owing to the 
ambiguities in ordering caused by nonunique sequences, this provides an upper 
bound on the N50 that is possible for whole-genome sequencing assembly when 
using reads below this length, and gives an indication of the advantages to be 
gained from longer read length in some cases.
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One drawback of the de Bruijn graph approach 
is the loss of information from reads. Repeats 
longer than a k-mer cannot be resolved using 
only the de Bruijn graph described above, even if 
reads bridge the repeat (in assembly terminology, 
the approach is not ‘read consistent’). This is a 
problem that some de Bruijn assemblers remedy 
by adding information on reads’ paths through 
the graph, at the cost of more c omputational 
resources.

The choice of k involves a number of trade-
offs. The longer the k-mers are, the fewer edges 
are needed, decreasing computational require-
ments. But with greater length, more bits are 
required to store individual k-mers. On balance, 
it is generally true that the use of large k-mers 
requires more memory for the same assembler. 
The main advantage of larger k is the retention of 
more information about short repeats; however, 

only read overlaps of more than k-1 bases are 
reflected in the graph, and so, as well as greater 
memory requirements, larger k means that more 
coverage is needed to find enough overlaps. This 
is not a problem when read lengths are as small 
as 25 bp; however, typical values of k used in 
studies have not stayed approximately the same 
as read lengths as they have approached 100 bp. 
The alternative is to use smaller k, which either 
means losing read information on short repeats 
(which is the main reason for preferring longer 
read lengths in the first place) or retaining even 
more information from reads.

The string graph, represented in Figure 2D, is 
another way to compress read and overlap data 
[34]. Here, the overlaps of all pairs of reads must 
be calculated. Unlike the overlap graph, however, 
the edges in the graph carry the sequence infor-
mation and the nodes represent the beginning or 
ends of overlaps. First, reads that are contained in 
other reads can be discarded as they add nothing 
to the set of possible genomic sequences (neglect-
ing error correction). These sequences can be 
represented as concatenations of the ‘overhangs’ 
of overlaps, where an overhang is the part of one 
overlapping read not covered by the other. The 
string graph has nodes corresponding to the start 
and end point of each read (i.e., the boundaries 
of the overhangs) and edges corresponding to 
the overhangs running between them labeled 
by the corresponding sequence. Non-minimal 
overhangs that contain several smaller ones add 
no extra implied sequences and can be discarded, 
saving memory in comparison with the overlap 
graph approach. Algorithms for this stage scale 
linearly in time with the number of edges. After 
this stage, nonbranching paths in the string 
graph can be merged into one edge correspond-
ing to a unitig in the overlap graph approach. A 
common simplifying assumption here (and in 
the de Bruijn approach) is that the genome is the 
shortest nonbranching path through the graph 
that contains all edges (or nodes in the de Bruijn 
graph). This has the advantage of picking out 
a unique order of copies of contigs when that 
path is unique, although it is not obvious how 
close to reality this assumption will typically be. 
Scaffolding and gap closure follow the assembly 
stage as above.

Like the de Bruijn graph, boundaries of 
repeats are branch nodes in the string graph. 
However, the string graph does not lose informa-
tion from reads on short repeats. The disadvan-
tages include the need to calculate all overlaps on 
a pairwise basis rather than comparing k-mers in 
each read to the set of previously found k-mers, 

Reads  
1 A C C T G A T C        
2   C T G A T C A A      
3    T G A T C A A T     
4  A G C G A T C A       
5    C G A T C A A T     
6     G A T C A A T G    
7       T C A A T G T G  
8        C A A T G T G A 
 

de Bruijn graph  

 
 

String graph  

 

Overlap graph  
 

 

1 2

4 5

6 7 8

1 2

4 5

6 7 8

3
AC C

C
AG

GA

T

T

3

Figure 2. Graph structures for assembly. (A) Eight aligned reads are shown. 
(B) The corresponding overlap graph, in which nodes correspond to reads and 
edges to overlaps, in this case overlaps of five or more bases (transitive edges, 
meaning overlaps that are covered by a set of shorter overlaps, are shown as curved 
arrows). (C) The de Bruijn graph, in which nodes are k-mers and edges indicate 
that some read contains both k-mers consecutively. Note that reads such as two 
add nothing to the de Bruijn graph. The basic idea of the string graph is illustrated 
under (D). Here, the graph topology is the same as in (A) with transitive edges 
removed; however, but nodes correspond to the beginnings of reads, and edges 
are labeled by the string between these two points in the case that those reads 
overlap, rather than the whole read being associated to each node. All sequences 
supported by reads and overlaps can be recovered from this labeling (along with 
terminal reads such as read 8 in the example given in this figure): following the 
graph backwards adds the sequence necessary to complete the previous read. Both 
the de Bruijn and string graphs can be further simplified by merging linear 
subgraphs. Treatment of reverse complement sequences has been neglected here 
for clarity.
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although efficient new algorithms massively 
reduce time and memory requirements for this.

The other stages of assembly also change with 
NGS data. As with assembly, simple greedy algo-
rithms for scaffolding can fail because of repeats, 
and more sophisticated approaches make use of 
the graph of connections between contigs in one 
way or another. Beyond this general point, the 
situation is different from read assembly. The 
main problem is a result of the error-prone nature 
of NGS mate pair libraries: distinguishing the 
genuine relationship between contigs implied 
by good mate pairs from spurious connections 
caused by errors.

Third-generation sequencing promises to 
cheaply generate data with higher read lengths; 
however, with a larger volume of data needing to 
be dealt with quickly, the possibility of cheaply 
generating more coverage to suppress errors, and 
recent algorithmic innovations, this will not 
simply mean a return to earlier methods. With 
significantly longer reads, string-graph methods 
would become more attractive compared with de 
Bruijn-graph methods.

Next-generation assemblers
When the implications of NGS technology 
became apparent, several assemblers were 
designed to deal with the new problems. The 
Euler assembler [30] was the first to employ 
de Bruijn graphs for WGS assembly, and proved 
capable of assembling bacterial genomes. Velvet 
[32] and ALLPATHS [35] improved assembly 
in terms of speed, contig and scaffold length 
and avoidance of misassembly. Both imple-
ment graph topology-based error correction 
and, instead of storing the paths of reads, these 
assemblers employ short read-pair data to resolve 
short repeats, finding long contigs that are joined 
by several reads pairs and then extending them 
along available paths towards each other when 
this can be done uniquely, using different algo-
rithms. This allowed assemblies of bacterial-
sized genomes and BACs from short-read data.

ABySS followed the innovations with de 
Bruijn methods, but also introduced a distrib-
uted representation of the graph, allowing mes-
sage passing interface parallelization [36]. Greater 
exploitation of computational resources enabled 
ABySS to assemble a human genome from short 
read data for the first time. SOAPdenovo is 
another assembler using a similar overall strategy 
that is also able to assemble large genomes [37].

The CABOG [38] and variant MSR-CA pipe-
lines are updates of the Celera overlap-based 
assembler designed for a combination of read 

types, which showed some success with short-
read data for genomes in the 100 Mb range. 
CABOG has now been used to assemble the 
Tasmanian devil genome using a combination 
of Illumina and 454 reads [39]. The CABOG 
pipeline will also attempt to construct multiple 
alelles for regions of sequence variation after 
contig assembly [40]. MSR-CA uses a de Bruijn 
graph to combine reads that map on to the same 
nodes and edges into ‘super-reads’, reducing the 
number of reads to be dealt with by Celera by a 
factor of 50 or more.

The String Graph Assembler (SGA) is the first 
to make assembly of mammalian-sized genomes 
practical using the string graph approach [31]. 
The problem of computing the whole set of over-
laps is solved by making use of the Ferragina–
Manzini index data structure, which allows 
overlaps to be quickly calculated while greatly 
reducing storage requirements for the reads [41]. 
In principle SGA can assemble a human genome 
using only one machine, although in practice 
using a cluster will reduce time requirements. 
This assembler also implements particularly 
successful routines to correct single-base errors, 
mainly by finding bases in reads that are not 
covered by frequently occuring k-mers.

Following on from the Phusion long-read 
assembly pipeline [42], the Phusion2 assembler 
uses a strategy of read clustering and ‘local 
assembly’ followed by a merging step [43]. In 
clustering, reads are divided into sets that are 
expected to be close to each other in the assem-
bly. Using a table of k-mers found in the reads, a 
relation matrix is built up that records, for each 
pair of reads, the number of shared k-mers. If 
reads are considered as nodes, and pairs with 
more than some minimum threshold of shared 
k-mers are considered connected by an edge, 
clusters are connected components in this graph. 
After obtaining small-read clusters with a con-
trollable size (~100,000 reads), SOAPdenovo 
and ABySS are run separately on each cluster to 
obtain a combined assembly. Reads are aligned 
back to the draft assembly and the Gap5 tool is 
used to generate the final  consensus sequences 
[44].

Improvements and additions to these tools 
continue to raise the quality of results for short-
read assemblers. For example, ALLPATHS-LG 
uses shared-memory parallelization and can 
assemble mammalian genomes [45], and a recent 
update enables ‘patching’ contigs with long reads 
(similar to scaffolding with mate pairs) from 
454 or PacBio sequencing. Similarly, Velvet1.1 
includes mutlithreaded assembly and new 
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algorithms for scaffolding using mate pairs and 
long reads [46]. Some data on the performance 
and requirements of each large genome assem-
bler are collated in Table 2.

Of these assemblers, almost all will accept any 
read-pair libraries, although results will be much 
improved by supplying a range of different insert 
sizes from overlapping pairs to inserts of several 
tens of Kb. One study indicates that, at least 
for particular bacterial-size genomes, ABySS 
and SGA gain most from the use of multiple 
short-insert libraries rather than the inclusion 
of 3 Kb-insert size data (although this could be 
due to the quality of the 3 Kb library used), 
whereas most other assemblers benefit more 
from the latter [47]. ALLPATHS-LG differs, in 
that it will not run without at least one overlap-
ping read pair library and at least one longer 
insert library. Because of the current prevalence 
of Illumina short-read data, most assemblers 
are optimised for this data type. Use of other 
short-read platforms is not ruled out by this, but 
most short-read assemblers exclude the use of 
454 reads because there is no support for their 
larger rate of indel errors. Euler-SR will accept 
454 data and CABOG was designed to accept 
Applied Biosystems, 454 and Sanger reads. As 
noted above, ALLPATHS-LG will now also 
accept PacBio reads [102], while SGA is still at 
an experimental stage and is likely to be devel-
oped to handle third-generation long reads [105].

Major NGS-oriented assemblers generally 
include their own routines for error correction, 
scaffolding and gap closure that are designed and 
tuned to work well with the other parts of the 
pipeline. There also exist a number of standalone 
software packages for these tasks. Error correc-
tion tools include Quake [48,106] and HiTEC 
[49,107]. For scaffolding with NGS data, there 
are SSPACE [50], SOPRA [51], Bambus [52] and 
the recently released MIP scaffolder [53]. There 
is little in the literature at present to suggest that 
any scaffolder greatly excels over all others in 
terms of scaffold length or accuracy. 

Assessing performance
It is important to ask to what extent NGS tech-
nology trades off costs with assembly quality. 
While many projects have set out to sequence 
large numbers of species and individuals for 
studies of evolution and disease, some researchers 
have suggested that inherent limitations in using 
short reads preclude assemblies of the quality 
necessary for these ends, and have recommended 
a combination of NGS with other techniques. 
Alternatively, it may be that improvements in 

read pair data and its use in assembly turn out to 
be more useful than combining NGS data with 
expensive long reads.

It is also interesting to establish how 
results vary among the various available tools. 
Judgements here depend on the uses to which 
the assembly will be put. When structural varia-
tion detection is the aim, one would prefer an 
assembler with high local accuracy, particularly 
in coding regions of the genome, whereas for 
de novo projects seeking a draft assembly of a 
new species this is less of a consideration than 
finding long contigs and scaffolds. Some impor-
tant questions are: which NGS assembly tools 
perform best on different parameters; what 
read pair libraries to prepare and what settings 
to use for the best assembly; what results can be 
expected in terms of contig and scaffold size, 
errors and coverage of the genome.

To assess these, various metrics are used. Of 
course, errors can only be assessed to the extent 
that there exists a reference, meaning that the 
target genome, or some part of it is known. 
Without this only length of contigs and scaf-
folds can be assessed. The N50, defined previ-
ously, provides a summary statistic for contig 
and scaffold lengths; if the genome length has 
been estimated, this can be substituted for the 
total length of all contigs in the definition to cal-
culate the ‘NG50’ (and similarly for scaffolds). 
Contigs or scaffolds can be broken at locations 
where the match to a reference changes or fails, 
and the N50 of the resulting blocks gives a more 
telling estimation of assembly quality. The cor-
rect contiguity (CC)50 gives a measure of the 
long-range continuity of the assembly that is tol-
erant of small errors. Leaving aside some details, 
the CC50 is the median separation between 
pairs of bases that can be considered aligned to 
approximately the correct relative locations in 
the reference [54].

A number of recent studies have set out to 
address these questions. Alkan et al. compared 
NGS assemblies of two human genomes to the 
human reference genome and assemblies using 
older technologies [55]. As might be expected with 
short reads, the study found major problems with 
repeats. It is estimated that 99.4% of all true pair-
wise segmental duplications are absent, resulting 
in the loss of 16% of the genome (compared with 
around 8% when using Sanger-type sequencing) 
and significantly affecting the coding regions of 
the genome. Segmental duplications are also rel-
evant to studies of disease and evolution, creat-
ing problems for the end use of assemblies. The 
authors conclude that using purely NGS data 
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to sequence large genomes may not be viable. 
Other studies also emphasize the creation of 
false segmental duplications in assemblies, which 
sometimes occur when heterozygous sequences 
from two haplotypes are assembled into separate 
contigs and are scaffolded adjacent to each other 
rather than being merged [56]. However, new 
results from ALLPATHS-LG show that 40% of 
true segmental duplications are covered by their 
short-read assemblies of the mouse and human 
genomes [45]. This approaches what is possible 
with Sanger reads, and other assembly perfor-
mance statistics are even closer to ideal levels. 
There are also indications from Velvet’s new scaf-
folding tools that, in some cases at least, good use 
of mate-pair reads may be more useful than add-
ing a small number of long reads to NGS data [46].

Other studies have compared different assem-
bly techniques. Some previous studies, while 
focusing on assemblers capable of assembling 
only short sequences, do provide some interesting 
results. For example, measuring assemblies using 
simulated reads from a number of sequences 
including two human chromosomes, they indi-
cate that SOAPdenovo achieved a better N50 
than ABySS whereas ABySS excelled on accuracy. 
The study also points out that assembly quality 
is sensitive to the number of base-call errors only 
when the coverage is low (i.e., before the cover-
age is so high that increasing it further does not 
significantly increase assembly quality) [57,58].

The Assemblathon takes the form of a com-
petition in which organizers and outside groups 
attempt to assemble a given set of reads [54]. To 
allow a better comparison to the ‘reference’, 
a simulated genome and read set were used, 
produced by subjecting a sequence of human 
DNA to simulated evolution. Significantly, the 
resulting genome contained only around half 
the number of 100-base repeats as the original 
human DNA. Because of this, the competition 
does little to answer the questions raised above 
on duplications. The total length was also cho-
sen to be fairly small, at 112.5 Mb. Contigs and 
scaffolds were then aligned back to the reference 
and various metrics were used to find assem-
bly quality. For length, ‘paths’ from contigs 
and scaffolds representing a correct assembly 
(including combinations of sequence from the 
two haplotypes, which were exactly known here) 
were considered, and the ‘contig path N50’, rep-
resenting the N50 after breaking at points of 
misassembly, was used as a summary statistic 
(and similarly for scaffolds).

The three most successful assemblies overall 
were deemed to be those produced by the Broad 

Institute (MA, USA; using ALPATHS-LG), 
Beijing Genomics Institute (BGI; using 
SOAPdenovo), and Wellcome Trust Sanger 
Institute (using SGA). None of these dominated 
on all measures. While BGI’s SOAPdenovo 
produced the largest contig path N50 of 8.25 
× 104, closely followed by the Broad Institute’s 
ALLPATHS-LG assembly, the scaffold path 
N50 of the Welcome Turust Sanger Institute 
(WTSI) SGA assembly was more than double 
that achieved in the other two at 4.95 × 105, and 
similarly the Broad Institute’s CC50 was more 
than double that of the nearest competitor of these 
three at 2.66 × 106.

While several other assemblies were com-
parable with the top three on some metrics, 
these achieved the best size and lack of errors 
overall, with some tradeoff apparent between 
major structural errors (such as joins between 
sequences mapping to distant locations on the 
genome) and contig size. It is interesting to note 
that the proportion of base substitution errors 
to genome size varied hugely. The WTSI SGA 
assembly achieved a result of 1.3 × 10-7, while the 
Broad Institute and BGI assemblies contained 
many more such errors, by a factor of approxi-
mately 22 and 92, respectively. The SGA assem-
bly contained only one structural error while 
others varied from 3 to 20.

Overall results were good, and there was no 
one assembly that was clearly far ahead of the 
rest, apart from on substitution errors. However, 
conclusions based on the Assemblathon must 
be limited as they may not apply to larger and 
more realistic datasets (which will in any case 
vary amongst themselves), especially those with 
a more challenging repeat structure.

The recent Genome Assembly Gold-standard 
Evaluations (GAGE) project differed in that it 
used real data and only assemblies constructed by 
the organisers using openly available protocols [47]. 
Real data could give results that are more compa-
rable to typical assembly, but on the other hand 
parameter choices for assemblers can make a large 
difference to performance; they may well be less 
well optimized in the GAGE methodology than 
in the Assemblathon, where each assembler is run 
by teams that are highly familiar with it (e.g., in 
the GAGE project, Velvet was run with a k-mer 
length of 31, which would normally be much 
lower than optimal with reads of length 100).

Two bacteria with good finished reference 
genomes of size 2–5 Mb, as well as a human 
chromosome 14 and a bee genome of size 250 Mb 
(which had no available reference) were used. 
ALLPATHS-LG, SOAPdenovo, ABySS, Velvet 
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and SGA were tested alongside overlap assemblers 
like CABOG. For both bacteria, ALLPATHS-LG 
again was more successful than its nearest com-
petitors in terms of N50 of contigs and scaffolds 
broken at misassembly points, its nearest competi-
tors here being Bambus2 and MSR-CA, while the 
other assemblers designed for large genomes lagged 
behind. For the human data, CABOG was mar-
ginally more successful on (error- broken) contigs 
than ALLPATHS-LG, but again ALLPATHS-LG 
was superior on scaffold length, and the best of the 
large-genome assemblers overall. Results on the 
bee genome were best for SOAPdenovo; however, 
in this case the overlapping read pairs required 
by ALLPATHS-LG were absent, and errors were 
not accounted for. It may be the case that the 
stricter and less-detailed contig-breaking used in 
the GAGE project is a disadvantage for less locally 
accurate assemblers. While SOAPdenovo man-
aged a much larger N50 than others, after contig 
breaking the advantage disappeared; however, 
results from the Assemblathon showed that this 
assembler performed well on the small error-tol-
erant CC50 metric. The weakness here seems to 
be that SOAPdenovo produces some short ‘indels’ 
(erroneously inserted or deleted sequences) during 
gap closure. This tool may still be a better choice 
for draft de novo assembly.

While these results are useful, most of the 
recent technical advances have been in handling 
large eukaryotic genomes. Assembly pipelines 
should be expected to perform very differently 
when running on the type of data for which 
they were primarily designed, while some other 
assemblers will not be able to run at all on large 
genomes. Because of this, more wide-ranging and 
comprehensive comparative studies focused on 
large genomes will have to be carried out to reach 
more solid conclusions about the pros and cons 
of each assembler when they are applied to such 
datasets. Fortunately, further comparison stud-
ies are planned that should substantially improve 
matters. The dnGasp project is another collabora-
tive effort based on a large, simulated genome [108], 
while the Assemblathon 2 project will use real, 
large genomes, from species of snake, bird and fish 
[109]. Both studies are now closed to new entries, 
and results will soon be available to compare to 
those above, providing significant tests of current 
tools against large and repeat-rich genomes.

Conclusion
WGS genome assembly remains an active area 
of innovation, which has been greatly affected 
by the introduction of NGS sequencing, even 
if its fundamental problems remain largely the 

same. Assemblies built from NGS reads alone 
are far from perfect, exhibiting, in particular, 
many errors involving counts of segmental 
duplications. Early on, it was suggested that 
such short-read technology may not be viable for 
de novo assembly of large genomes without some 
help from more expensive sequencing methods. 
However, with the rapid development of assem-
bly techniques, the quality of NGS assemblies is 
beginning to approach that which is possible by 
other means. Some assemblers can achieve much 
better results on local errors than others (and 
without apparent costs elsewhere for some types 
of errors), showing that improvements are possi-
ble. New assembly analysis studies are set to show 
how much of a gap still exists between the quality 
of NGS assemblies and finished sequence.

We have also seen a number of apparent trade-
offs. When choosing how to create reads, longer 
read length often implies more errors, especially 
when using the new PacBio technology. Most 
interestingly when designing a study, assemblers 
that excel on long-range continuity in contigs 
perform badly on suppressing local errors such 
as indels (such as SOAPdenovo) or vice versa 
(such as SGA). The choice made here in differ-
ent genomic studies will vary depending on the 
intended use of the assembly.

Future perspective
This observation on the current tradeoff 
between accuracy and continuity suggests ave-
nues for future improvements in assembly. The 
best results might be achieved by using accu-
rate assemblies to correct errors in long-scaffold 
assemblies, or by developing special tools built 
on similar principles to correct errors after the 
scaffolding and gap closure stages. There is room 
for other improvements at the scaffolding stage, 
where, as has happened at the assembly stage, we 
are seeing a move from naive, greedy algorithms 
to more subtle graph-based techniques.

Another developing area is the explicit con-
struction of haplotypes from reads, to the extent 
that this is possible. At present, producing one 
representative haplotype is normally taken as 
the aim of assembly, and alternative alleles are 
merged when identified. As we have seen, differ-
ences between alleles are normally treated in the 
same way as errors, and they are often scaffolded 
sequentially when not identified, causing mis-
assemblies. Routines to explicitly identify alter-
natives during contig construction would help 
to reduce such errors as well as providing extra 
genetic information to end users. Pipelines such 
as CABOG do attempt to identify alleles after the 
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main assembly steps [40]; however, exploiting vari-
ance information optimally for error a voidance 
during assembly is still an open problem.

In the future, as well as improvements in 
assemblers themselves, there are likely to be 
improvements in sequencing. Of particular 
importance are improvements in the production 
of mate-pair libraries, in terms of accuracy of 
insert-size estimation and suppression of errors. 
All this suggests that the way forward may lie 
with exploiting NGS technologies with improved 
mate-pair libraries to guide long-range assembly 
accuracy.

Second- and third-generation technology 
may soon dramatically improve. This would 
change assembly methods and greatly improve 
results. With the release of Illumina’s HiSeq 
2500, a platform that aims for a ‘genome in 
a day’, users can expect 2x150bp reads in late 
2012 [110]. Life Technologies’ Ion Torrent plans 
to launch 2 × 200 bp paired-end reads and 400-
base single ends. With two Ion Proton™ chips 
on the way, the Proton I chip will be targeting 
exome sequencing, while the Proton II chip, to 
be released in early 2013, is intended for whole-
genome applications. For the latter, it claims the 

ability to sequence a human genome at about 
20× to 30× coverage for US$1000 in total, 
including sample preparation, chip and reagent 
costs [111]. The biggest potential player, Oxford 
Nanopore® (Oxford, UK), could enter the mar-
ket with two low-cost DNA strand sequencing 
instruments: a higher-throughput version, 
named GridIon and a disposable MinIon sys-
tem. The latter instrument is in the size of a 
USB memory stick and costs less than US$900. 
The GridIon system, scalable like a computer 
cluster, takes disposable reagent cartridges that 
contain the nanopores. Running 20 GridIon 
instruments each with 8000 pores in parallel 
will enable users to sequence a human genome at 
15-fold coverage in 15 min for less than US$10 
per Gb [112]. Both released systems are expected 
to produce read length of up to 100 Kb with 
a reasonable level of base accuracy. A 48-Kb 
phage l genome has been sequenced as a single 
contiguous read and the error rate was reported 
to be approximately 4.0%. These advances will 
undoubtedly change the landscape of genom-
ics and its applications, pharmacogenomics 
included. The genomics community could find 
itself in a situation in which data is produced in 

Executive summary

Next-generation sequencing technologies & platforms
 � Next-generation sequencing (NGS) platforms offer massive increases in sequencing time–effectiveness and cost–effectiveness, but 
produce shorter and/or less accurate reads than more expensive techniques.

 � The read lengths achievable with 454 sequencing approaches that for Sanger sequencing, while Illumina platforms still lead in terms of 
cost, and third-generation sequencing offers longer reads with new error characteristics.

 � Rapid improvements in existing technologies and new platforms are to be expected.

Overview of assembly methods
 � Repeating sequences of DNA confound naive approaches to de novo genome assembly, a problem exacerbated by short read length.

 � Previous assembly methods, which relied on calculating overlaps between all reads, were found to be impractical for NGS data, and it 
has proved more effective to consider relationships between consecutive fixed-length subsequences of reads (the de Bruijn graph).

 � The string graph is an efficient way to store overlap data, which may gain an advantage over De Bruijn methods as read lengths 
increase again.

Next-generation assemblers
 � Assemblers such as Euler and Velvet applied the de Bruijn method to bacterial genomes.

 � ABySS, ALLPATHS-LG and SOAPdenovo can assemble a human genome from NGS data using de Bruijn graph methods, while SGA 
employs the string graph.

 � NGS assemblers differ in input requirements, with some allowing the inclusion of long reads for ‘patching’.

Assessing performance
 � Some applications will favor local accuracy over long-range continuity in assemblies, and some the converse.

 � Large-genome assemblies using short reads show relative deficiencies, such as failing to reproduce most segmental duplications in the 
human genome, although ALLPATHS-LG now claims results approaching those achieved with long reads.

 � It has been suggested that expensive longer reads must be included to achieve assemblies of sufficient quality for common 
applications; improved quality and better use of mate pair libraries could instead offer a cheaper way to improve long-range properties 
of NGS assemblies.

 � Assessments of the state-of-the-art in assembly show that no tool is superior overall, but some assemblers (e.g., SOAPdenovo) lead in 
long-range continuity while others (such as SGA) are much more locally accurate.

 � Studies available this year will compare the performance of NGS assemblers on large genomes for the first time.
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matter of hours, but it takes days or even weeks 
to assemble a human genome using the fast-
est assembler. For de novo sequencing on new 
species or assembly-assisted variation detection, 
the efficiency of assembly process may be the 
bottleneck, and new algorithms are ultimately 
needed to speed up the process as well as cope 
with the new data.

Finally, the suppression of local errors in 
assemblies, well as improving the assembly for 
end-use purposes, has other effects. Segmental 
duplications will differ in a few of their bases, and 
we see, unsurprisingly, that more copy-number 
errors are reported for duplications with a lower 
proportion of differing bases. With fewer local 
assembly errors it may be possible to increase 

sensitivity to differences here, going some way 
to solving a major outstanding  problem with 
c urrent (and past) assembly techniques.
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