
Reference-assisted chromosome assembly
Jaebum Kima,b,1, Denis M. Larkinc,1, Qingle Caid, Asand, Yongfen Zhangd, Ri-Li Gee,2, Loretta Auvilf,g, Boris Capitanuf,g,
Guojie Zhangd, Harris A. Lewina,h,2, and Jian Maa,i,2

aInstitute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; bDepartment of Animal Biotechnology, Konkuk University,
Seoul 143-701, Korea; cInstitute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DA, United
Kingdom; dBeijing Genomics Institute, Shenzhen 518083, China; eKey Laboratory for High Altitude Medicine, Ministry of Chinese Education and Research
Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810001, China; fNational Center for Supercomputing Applications, University of Illinois
at Urbana–Champaign, Urbana, IL 61801; gIllinois Informatics Institute, University of Illinois at Urbana–Champaign, Urbana, IL 61802; hDepartment of
Evolution and Ecology, University of California, Davis, CA 95616; and iDepartment of Bioengineering, University of Illinois at Urbana–Champaign, Urbana,
IL 61801

Contributed by Harris A. Lewin, November 29, 2012 (sent for review August 15, 2012)

One of the most difficult problems in modern genomics is the
assembly of full-length chromosomes using next generation se-
quencing (NGS) data. To address this problem, we developed “ref-
erence-assisted chromosome assembly” (RACA), an algorithm to
reliably order and orient sequence scaffolds generated by NGS
and assemblers into longer chromosomal fragments using compar-
ative genome information and paired-end reads. Evaluation of
results using simulated and real genome assemblies indicates that
our approach can substantially improve genomes generated by
a wide variety of de novo assemblers if a good reference assembly
of a closely related species and outgroup genomes are available.We
used RACA to reconstruct 60 Tibetan antelope (Pantholops hodgso-
nii) chromosome fragments from 1,434 SOAPdenovo sequence scaf-
folds, of which 16 chromosome fragments were homologous to
complete cattle chromosomes. Experimental validation by PCR
showed that predictions made by RACA are highly accurate. Our
results indicate that RACA will significantly facilitate the study of
chromosome evolution and genome rearrangements for the large
number of genomes being sequenced by NGS that do not have
a genetic or physical map.
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Whole genome sequencing of vertebrate species has greatly
advanced comparative genomics and provided novel

insights into animal biology (1–3). One of the most important
advantages of having whole genome sequences is the capacity to
understand the evolutionary history of genome organization and
structural variation caused by chromosome rearrangements (4–7).
However, the number of animal genomes sequenced by next
generation sequencing (NGS) is rapidly outpacing the number of
genomes with physical or genetic maps for anchoring the assem-
blies to chromosomes, which is necessary for elucidating the bi-
ological consequences of chromosome rearrangements and for
shedding new light on themolecular signatures of human variation
and disease mechanisms (8–10). More large-scale genome se-
quencing projects are planned using NGS technologies, including
the Genome 10K (G10K) and the 5K Insect Genome (i5K) ini-
tiatives (11, 12). Thus, improved methods are required for the
assembly of chromosome-scale DNA fragments from NGS data.
Since the emergence of NGS technology, several groups have

developed de novo assemblers based on NGS data, such as ABySS
(13), ALLPATH-LG (14), SOAPdenovo (15), and Velvet (16).
However, the limitation of NGS read length makes it extremely
difficult to assemble the reads into chromosomes for large
genomes. This problem becomes evenmore challenging in the case
ofmammalian genomes, which contain a high fraction of repetitive
elements (17). In general, the procedures of de novo assembly
from the short reads that are generated by NGS can be described
as follows (reviewed in ref. 18). First, the reads are grouped into
contigs based on their overlaps. The most widely used approaches
are based on either (i) the overlap graph, in which nodes represent

the reads, and edges connect overlapping reads, or (ii) the de
Bruijn graph (19), in which nodes are fixed-length sequences (k-
mers), and edges indicate the predecessor and successor rela-
tionships of the k-mers. These contigs are further assembled into
scaffolds by using paired-end reads, i.e., pairs of sequence reads
from the two ends of inserts contained in a library of cloned genomic
fragments. Many scaffolding tools have been developed, such as
SSPACE (20) as well as scaffolding modules in de novo assemblers
such as SGA (21). It is noteworthy that the paired-end reads can also
be used in the contig production step (e.g., in Velvet) to correctly
extend contigs through repetitive regions. The larger paired-end li-
braries or longer sequence reads are more beneficial for correctly
assembling repetitive regions. The final output of the assembly
algorithms are sequence scaffolds, and the further assembly of
the scaffolds to generate chromosome sequences is usually done
by integrating with genetic or physical maps (10, 22, 23). The lack
of genetic or physical maps for most of the newly sequenced
species makes the correct ordering of scaffolds along chromo-
somes an extremely pressing challenge. As a result, most genomes
generated by large-scale projects such as G10K and i5K will lack
chromosome assemblies and will be unsuitable to study chro-
mosome evolution (10).
There are now representative genome assemblies of most of the

major phylogenetic clades of vertebrates. These assemblies pres-
ent a powerful resource to address the problem of chromosome
assembly of newly sequenced species that do not have a physical
map. Herein, we describe a method, called reference-assisted
chromosome assembly (RACA), which can be used to further
assemble de novo assembled sequence scaffolds into longer
chromosomal fragments. This method will be valuable for large-
scale genome assembly projects and will greatly facilitate better
understanding of the mechanisms and consequences of chromo-
some rearrangements during evolution.

Results
Algorithm Overview. The reconstruction of chromosome frag-
ments using RACA uses an alignment of the target, reference,
and outgroup genomes as input (Fig. 1A) produced with a pair-
wise alignment program such as LASTZ (24). The RACA
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algorithm merges colinear alignments into syntenic fragments
(SFs), and keeps the SFs of length greater than a given threshold
(Fig. 1B). For each pair of SFs, the adjacency score that repre-
sents how likely the two SFs are adjacent in the target genome is
calculated by combining (i) the posterior probability of the ad-
jacency in the target genome given its adjacencies in a reference
and outgroup genomes together with the phylogenetic relation-
ship among input genomes (Methods and SI Appendix), and (ii)
the amount of paired-end reads that support the adjacency, which
may not be effectively used to join or split sequence contigs
produced by other assembly algorithms (Fig. 1C).
Once the computation of the adjacency scores is completed, the

SF graph is constructed, which consists of head and tail vertices
that represent the head and tail of each SF, and their undirected
edges (Fig. 1D). In the SF graph, different edges have different
weights (the adjacency scores), and the head and tail vertices from
the same SF are always connected with a maximum weight. Here,
the distinction between the head and tail of a SF is essential be-
cause each SF can be connected to either the head or tail of an-
other SF. The RACA is a greedy algorithm in that it constructs the
chains of SFs by merging two adjacent SFs with the highest edge

weight first at each step (Fig. 1E). By using the order and orien-
tation of SFs that are inferred from the chains of SFs, RACA finally
concatenates the scaffolds of the de novo target assembly that the
SFs belong to (seeMethods for the details of theRACAalgorithm).

Evaluation of the RACA Algorithm Using Simulated Genome Assemblies.
To evaluate RACA we simulated genome sequences using Evolver
(25). From an ancestral genome that consists of 69 mbp of human
genome sequence (chromosomes HSA21 and HSA22), Evolver
simulated the evolution of the input genome sequences according
to a given phylogeny (Fig. 2A) by applying all possible small-scale
as well as large-scale mutations. The results of the simulation
produced 12 derived genomes, R and D0–D10, (SI Appendix). In
this evaluation, the paired-end read data were not used and the
main focus was to evaluate the adjacency reconstructions by using
the posterior probabilities of SF adjacencies (Discussion). For each
target dataset D0–D9, the dataset R was used as a reference ge-
nome, and more divergent datasets than the chosen target from R
were used as outgroup genomes (SI Appendix, Table S1 for sta-
tistics of the simulated datasets). The dataset D10 was used only
as an outgroup genome. To produce a comparable number of
breakpoints that would be found in real genome data we used 5
kbp as a minimum SF size (SI Appendix).
The simulated datasets D0–D9 were partitioned into multiple

sequence fragments based on the down-scaled length distribution
of scaffolds (SI Appendix) that was estimated from a real de novo
assembly, and randomly chosen fragments were combined pair-
wise to simulate chimeric scaffolds (SI Appendix). The fragmen-
tation was repeated five times to produce five different sets of
sequence fragments for each dataset. We predicted the order and
orientation of the sequence fragments and compared them with
the true order and orientation that were known from the frag-
mentation step, in terms of (i) recall, which is the fraction of the
true order and orientation of sequence fragments that was found
in the predicted sequence fragments, and (ii) precision, which is
the fraction of the predicted order and orientation of sequence
fragments that agree with the true order and orientation (Fig.
2B). We ran RACA using different simulated outgroup datasets
to measure their effect on accuracy. However, the observed dif-
ference was marginal (less than 0.5%), and therefore the results
with the one closest outgroup dataset were reported here. The
recall and precision of our method with the datasets D0 and D1
were about 98% and 94%, respectively. Even with the dataset D5,
which roughly corresponds to the divergence between human and
rhesus (SI Appendix, Table S2), RACA produced almost 80%
recall and precision. In this evaluation, 96–99% of total sequen-
ces in each dataset were aligned and used for the reconstruction
(SI Appendix, Table S1). There was significant negative correlation
between the accuracy and the number of breakpoints in the data-
sets (P value <1e-08 for both recall and precision; Pearson’s
correlation test).

Evaluation of the RACA Algorithm Using Real Genome Assemblies. To
examine the potential for improving real genome assemblies pro-
duced by various genome assemblers, we applied RACA to seven
different assemblies of human chromosome 14 produced from
paired-end reads used as part of the Genome Assembly Gold-
Standard Evaluations (GAGE) competition (26): ALLPATHS-LG,
Bambus2, CABOG, MSR-CA, SGA, SOAPdenovo, and Velvet.
Using different resolutions of SF sizes (100, 50, 10, and 1 kbp) and
two independent reference species (orangutan and mouse) with
cattle as an outgroup, we compared the original and RACA as-
semblies in terms of total number of scaffolds, the N50 statistic, the
number of adjacency errors, and coverage (Methods).
When using orangutan as the reference genome and cattle as an

outgroup (Fig. 3; SI Appendix, Table S3), RACA further assembled
many of the original scaffolds, resulting in substantial improvement
in N50 and dramatically reducing the number of adjacency errors
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Fig. 1. Overview of the RACA algorithm. (A) RACA takes a reference, a de
novo sequenced target (as scaffolds), and one or more outgroup genomes as
input data. (B) Syntenic fragments (SFs) delimited by vertical dashed lines are
constructed by first aligning reference and target genome sequences and
next merging colinear alignments. The outgroup is not always aligned to SFs
(e.g., sf2) and may contain rearrangements compared with one SF (e.g., sf10).
Pluses and minuses represent the orientations of the target and outgroup on
the reference, and three groups of SFs represent three reference chromo-
somes. (C) For each pair of SFs, the adjacency scores (edge weights) that
combine (i) the posterior probability [PostProb(i,j)] of the adjacency and (ii)
the coverage of paired-end reads [Link(i,j)] are calculated. Only a portion of
the edge weight matrix is shown on the Left, and this matrix can represent
all four adjacency cases: (i, j), (−i, j), (i, −j), and (−i, −j), where i and j are the
indexes of two SFs sfi and sfj, respectively. (D) The SF graph is built by con-
necting SFs whose edge weight in C is higher than a certain threshold (0.1
was used in the case of Tibetan antelope). Head (closed circle) and tail (open
circle) vertices from the same SF are always connected with a maximum
weight (dashed edge). (E) Constructed chains of SFs that are extracted by the
RACA algorithm.

1786 | www.pnas.org/cgi/doi/10.1073/pnas.1220349110 Kim et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220349110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220349110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220349110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220349110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220349110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220349110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220349110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220349110/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220349110/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1220349110


in almost all cases. For example, in the case of the SGA assembly,
RACA increased the N50 >900-fold while reducing the adjacency
errors >170-fold (orangutan used as a reference; 10 kbp resolution
of SFs; SI Appendix, Table S3). Increase in the N50 of predicted
chromosome fragments (PCFs) produced by RACA compared with
the ALLPATHS-LG assembly was not as pronounced compared
with the other assemblers because of the high N50 of the original
assembly of human chromosome 14 data used in GAGE. These
results for HSA14 were attributed to the sequencing strategy that
was specifically designed for ALLPATHS-LG (26) to maximize
scaffold size. Despite this inherent advantage for ALLPATHS-LG,
at most resolution thresholds, RACA performed equally or better
to ALLPATHS-LG. The genome coverage of the original GAGE
and RACA assemblies was very similar. When using mouse as
a reference, which is ten times more divergent from human than the
orangutan reference based on the neutral substitution rate, we ob-
served similar patterns as with the orangutan reference (Fig. 3; SI
Appendix, Table S4;Discussion). However, the orangutan reference
was more effective in increasing N50 of sequence scaffolds and
decreasing adjacency errors.
The novelty of the RACA algorithm is that it uses both paired-

end read mapping and comparative genome information to cre-
ate chromosome-scale assemblies. An outgroup species, which
provides more information in the context of evolution, can be
used to resolve ambiguity in determining the location of evolu-
tionary breakpoints in chromosomes. Therefore, we also evalu-
ated the effect of the outgroup species on adjacency errors. When
we used GAGE HSA14 data as the target, orangutan as the
reference, and cattle as the outgroup species, reduced adjacency
errors were found in most cases (SI Appendix, Table S5). In ad-
dition, as the SF resolution was increased from 100 kbp to 1 kbp,
the outgroup information was helpful in reducing adjacency errors.
This is because with higher resolution, there are more ambiguous
cases due to the alignment uncertainty. When mouse was used as
the reference, we observed an even clearer pattern of the benefit
of outgroup information (SI Appendix, Table S6). Finally, when
we evaluated RACA without using paired-end mapping in-
formation, we observed similar performance with only a minor
increase of errors, indicating that the comparative genome in-
formation was critical for producing robust results with RACA
(SI Appendix, Fig. S1 and Tables S7 and S8).

Reconstruction of Tibetan Antelope PCFs. We applied RACA to
reconstruct the PCFs of the recently sequenced and assembled
Tibetan antelope (Pantholops hodgsonii; 2N = 60) genome (SI
Appendix). We used a cattle genome assembly (University of
Maryland, UMD3.0) as a reference and a human genome as-
sembly (National Center for Biotechnology Information,
NCBI36/hg18) as an outgroup. Selecting a minimum SF size of
150 kbp, 1,434 Tibetan antelope scaffolds of 15,996 (96% cov-
erage) were used and 1,597 SFs were identified. These SFs cover
95% of the assembled Tibetan antelope genome sequence, all 29
cattle autosomes and the X chromosome (SI Appendix, Table S9).
Our method predicted 1,537 SF adjacencies, of which 73 were
recovered only by RACA and not from direct mapping of scaf-
folds to the cattle genome. The RACA algorithm reconstructed
60 Tibetan antelope PCFs, of which 16 were homologous to
complete cattle chromosomes (2, 3, 6, 8, 9, 11, 12, 15, 18–20, 23–
25, 28, and 29) (Table 1 and SI Appendix, Fig. S2). The N50 of
PCFs is 87 mbp (Table 1), with the size of the longest PCF being
193 mbp and consisting of 111 Tibetan antelope scaffolds. If we
were more conservative in reconstructing SF adjacencies by re-
quiring them to have paired-end read support (1,046 adjacen-
cies), we were able to reconstruct 512 PCFs (N50 = 9.5 mbp) (SI
Appendix, Table S10 and S11). We visualized the reconstructed
Tibetan antelope PCFs with mapped cattle, Tibetan antelope,
and human genome assemblies (see mapping results in Datasets
S1, S2, S3, S4, and S5) using the Evolution Highway comparative
chromosome browser (5) (http://eh-demo.ncsa.uiuc.edu/TA).
The accuracy of this reconstruction can be estimated by first

computing the number of breakpoints between cattle and Tibetan
antelope and then interpolating the accuracy (Fig. 2B) on the
basis of the number of breakpoints in the simulated datasets.
However, the accurate computation of the number of evolu-
tionary chromosome breakpoints between cattle and Tibetan
antelope is not possible because the assembly of Tibetan antelope
is highly fragmented. Therefore, as an alternative measure, we
calculated the ratio of the number of SFs to the number of
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Fig. 3. Evaluating RACA improvement of the GAGE assemblies. RACA im-
proved the original assemblies created by seven genome assemblers in the
GAGE datasets. The final RACA assemblies were compared with the original
assemblies in terms of N50 and the number of adjacency errors. Heat maps
show the log ratio of RACA N50 to the N50 of the original assembly (Upper
horizontal block), and the log ratio of RACA adjacency errors to the errors of
the original assembly (Lower horizontal block), with orangutan genome as
a reference (vertical block on the Left) as well as mouse genome as a refer-
ence (vertical block on the Right). Four different resolutions of SF size were
used: 100, 50, 10, and 1 kbp; gray blocks represent the results where there
were no N50 data due to low coverage at certain resolutions. For the com-
plete dataset, see SI Appendix, Tables S3 and S4.
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Tibetan antelope scaffolds and compared it to the same ratio
derived from the sequence fragments of the simulated datasets
(SI Appendix, Table S12). This measure can be used to directly
compare two sets of sequence fragments in terms of the difficulty
of chromosome reconstruction because a higher ratio means that
more scaffolds have multiple SFs, which could make the chro-
mosome reconstruction more challenging. We found significant
negative correlation between the accuracy (Fig. 2B) and the
above ratio of the datasets (P value <1e-10 for both recall and
precision; Pearson’s correlation test), which confirms the effi-
ciency of the measure. The ratio of the number of SFs to the
number of scaffolds in the Tibetan antelope assembly was 1.1137,
which is larger than the ratio of the dataset D0 (recall and pre-
cision ∼99%) but smaller than the same ratio of dataset D1
(recall and precision ∼95%) (Fig. 2B; SI Appendix, Table S12).
Therefore, the reconstruction of the Tibetan antelope PCFs may
have recall and precision higher than 95%.
We performed PCR to validate the predicted adjacencies and

misassemblies. Of 14 primer pairs used to test predicted adja-
cencies between Tibetan antelope scaffolds, 11 pairs (11/14 =
79%) produced single products, of which 4 (36.4%) were very
similar to the expected gap size in the cattle genome as de-
termined by the alignment of the Tibetan antelope scaffolds to
the cattle genome sequence (Dataset S6); the rest of the PCR
products were larger than expected, indicating insertions in the
Tibetan antelope genome relative to the cattle genome at these
coordinates. In the same way, we confirmed misassemblies in two
Tibetan antelope scaffolds (63 and 358) that were marked as
chimeric (misjoins) by RACA (SI Appendix).

Analysis of Evolutionary Breakpoint Regions in Cattle and Tibetan
Antelope Chromosomes. We mapped the cattle and human ge-
nomes to the reconstructed PCFs and found 64 cattle-specific and

411 other evolutionary breakpoint regions (EBRs) (Table 1; see an
example in SI Appendix, Fig. S2). Of 64 cattle-specific EBRs, there
were two interchromosomal EBRs that join two pairs of cattle
chromosomes (7, 10 and 21, 27, respectively) in Tibetan antelope
PCFs (SI Appendix, Fig. S2). We note that the actual number of
EBRs could be larger than what is reported here due to the
fragmented nature of the Tibetan antelope assembly. We next
analyzed how many Tibetan antelope scaffolds span known EBRs
that were discovered in the cattle genome (27) (SI Appendix). Of
73 known cattle-specific EBRs, at least 46 were spanned by the
Tibetan antelope scaffolds, indicating that these are ancestral
bovid- or ruminant-specific (in cattle and Tibetan antelope, but
not in pig) EBRs (SI Appendix, Table S13). We also found that
35% (6/17) of known cetartiodactyl-specific EBRs were spanned
by the Tibetan antelope scaffolds (SI Appendix, Table S13).

Discussion
Chromosome-anchored assemblies of mammalian genomes have
facilitated the discovery of important features of chromosome
evolution (10). A critical limiting factor in gaining even greater
insight into the biology of genome evolution is that the genome
assemblies produced from NGS are highly fragmented. Recent
improvements in NGS strategies, such as sequencing of paired
ends from large insert libraries, and the development of new as-
sembly algorithms have produced scaffold assemblies with larger
N50, which in turn increases the likelihood that such assemblies
will span EBRs. However, a reliable method for reconstructing
chromosome-scale fragments from NGS assemblies has remained
a critical limitation of the current technology. The RACA algo-
rithm can further assemble sequence scaffolds into chromosome-
scale assemblies. Our method uses comparative evolutionary
inference together with support from paired-end reads in de
novo-generated scaffolds to reconstruct chromosomal architec-
ture with high accuracy. The framework is generic enough to
accommodate other available information, such as known EBRs
and partial genetic mapping data.
Evaluation of RACA using 10 synthetic genomes with different

simulated divergence times from the reference genome demon-
strated that our approach generates chromosome blocks with 65–
98% accuracy of adjacency given that the reference and target
genomes can be aligned with ∼95% coverage of both genomes
within SFs, and when the ratio of SFs to the total number of
scaffolds in the de novo assembled genome is between 1.79 and
1.09, respectively. Therefore, the accuracy of RACA can be ad-
justed by either selecting a reference genome(s) that is phyloge-
netically closer to the de novo assembled species or by increasing
the scaffold size in the de novo assembly. We evaluated how well
our method reconstructs the original genomes from the sequence
scaffolds by considering only the posterior probabilities of SF
adjacencies. The potential drawback of this evaluation is that the
paired-end reads were not simulated and their effect on prediction
was not measured. However, we did merge 6% of simulated
scaffolds randomly to analyze effects resulting from errors in the
assembly. An important feature of our framework is that it pro-
vides a reliability score of all SF adjacencies in the de novo assembly
as a natural consequence of their posterior probabilities (based on
the reference and outgroup genomes) and the number of paired-
end reads that support each adjacency. In addition, our approach
uses the number of paired-end reads to distinguish between true
and chimeric adjacencies in the scaffolds that contain multiple
SFs. Therefore, the accuracy of our algorithm is likely to be higher
than the evaluation results that considered only the posterior
probabilities.
In comparison with the GAGE datasets, our results show that

the original N50 has an impact on the final RACA result. If the
N50 of an assembly was very small then the genome coverage
obtained using RACA was also limited when low RACA reso-
lution (e.g., 100 kbp SFs) was used. This is because scaffolds

Table 1. Statistics of Tibetan antelope predicted chromosome
fragments

Category Value

No. PCFs 60
No. PCFs that are homologous to

complete cattle chromosomes*
16

No. PCFs without outgroup
(human) matches†

1

Total length of PCFs 2.601 gbp
Maximum length of PCFs 193 mbp
Minimum length of PCFs 251 kbp
PCF N50 87 mbp
Maximum no. Tibetan antelope

scaffolds in PCFs
111

Minimim no. Tibetan antelope
scaffolds in PCFs

1

No. cattle EBRs 64
No. other EBRs 411
No. Tibetan antelope scaffolds that

have more than one SF
130 (9%)‡

No. Tibetan antelope scaffolds predicted
as chimeric

84 (6%)§

EBRs, evolutionary breakpoint regions; PCFs, predicted chromosome frag-
ments; SFs, syntenic fragments.
*These correspond to entire cattle chromosomes 2, 3, 6, 8, 9, 11, 12, 15, 18,
19, 20, 23, 24, 25, 28, and 29.
†There was no mapped human genome fragment to these PCFs.
‡Percentage of the total number of aligned Tibetan antelope scaffolds.
§Among 84 scaffolds, 6 were mapped to three different PCFs, 69 were map-
ped to two different PCFs, and the remaining 9 were mapped to the same
PCF at different and nonadjacent locations.
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smaller than the user-defined SF resolution are not included in
the analysis. However, as long as the original N50 was reasonable
(e.g., greater than 80 kbp), RACA always significantly improved
N50 scaffold size and the number of adjacency errors was reduced
(unless the original N50 was already very high, such as with
ALLPATHS-LG). However, it is noteworthy that RACA still has
advantage over ALLPATHS-LG, although the HSA14 data used
in GAGE may not reflect that because ALLPATHS-LG is spe-
cifically tuned to the Broad Institute genome sequencing pipeline,
which was the source of the HSA14 data used for the GAGE
comparison (26). For example, in genomes with larger repetitive
regions, we expect such regions will have an effect on ALLPATHS-
LG performance if the insert sizes of the paired-end libraries are
significantly lower than the size of large repetitive regions in the
target genome. By comparison, RACA has the ability to use
comparative information from other species in the context of
evolution to further predict scaffold orders so that the chromo-
some organization of the assembled sequence scaffolds of the
target species can be resolved. In this evaluation, we can improve
the results from various assemblers when we used both the
orangutan as a reference and the more divergent mouse as
a reference. This demonstrates that if we have a good outgroup,
RACA can still greatly improve the original assembly even
though the reference has a relatively long evolutionary distance
(e.g., 80 MYA divergence time) from the target genome.
The utility and effectiveness of RACA was demonstrated by

the reconstruction of Tibetan antelope chromosomes from the
scaffold assembly produced by SOAPdenovo (Table 1). Sixteen
Tibetan antelope PCFs were homologous to full-length cattle
autosomes, whereas the remaining 27 PCFs covered the re-
maining 13 cattle autosomes, and 17 PCFs were aligned to the
cattle X chromosome BTAX. Fragmentation of the Tibetan an-
telope X chromosome into many PCFs is likely due to problems
in the assembly of BTAX (28), resulting in many unsupported
adjacencies. The vast majority (79%) of adjacencies in the Ti-
betan antelope genome predicted by RACA and tested by PCR
were confirmed by a single PCR product, providing strong ex-
perimental support for the method. The few unconfirmed adja-
cencies were supported by paired-end read data and so the
multiple bands obtained by PCR likely represent true adjacencies.
Furthermore, on the basis of alignments of scaffolds to multiple
chromosomes, or different sites in the same chromosome, we
predicted 6% of scaffolds to be chimeric, of which adjacencies in
two were also not confirmed by PCR. These results show that
RACA can also be used to flag problematic parts of an assembly,
and to properly align components of chimeric scaffolds to their
proper location on the target genome chromosomes. We also
demonstrated that RACA is useful in resolving lineage- and
clade-specific chromosomal rearrangements. At least half of what
were previously believed to be cattle-specific EBRs (27) were
found to have occurred before the divergence of cattle and
Tibetan antelope from a common ancestor of bovids ∼26 MYA.
With the availability of RACA results for other artiodactyls
(11), it will now be possible to address questions about the rates
of chromosomal rearrangements and other features of chromo-
some evolution within this clade, which exhibits many exquisite
adaptations.
In the present study, we demonstrated that when the reference

and target genomes have evolutionary distance (in terms of
number of EBRs) similar to cattle and Tibetan antelope, we can
reach high accuracy for both precision and recall of the PCFs as-
sembled by RACA. Also, in our analysis based on the GAGE
dataset, we used mouse as a reference (in addition to orangutan),
which has about 80 MYA divergence with human. Our results
show that RACA can significantly improve the results obtained
with different de novo assemblers (both N50 and adjacency errors)
when they are used in tandem. One important aspect to consider
when picking a reference genome is the alignability of the target

and reference sequences. As our results indicate, the more closely
related the target and reference are, the better the results with
RACA will be.
A pressing challenge for genomes assembled using NGS tech-

nologies is that the assemblies are highly fragmented due to lim-
ited length of sequence reads. As we have shown, RACA permits
the prediction of chromosome organization of SFs on a genome-
wide basis in a de novo sequenced species without the aid of
a genetic or physical map. Simulation studies and comparison with
the GAGE data support our conclusion that RACA will be ex-
tremely useful for large-scale sequencing projects now underway
(11, 12). Proper identification, classification, and characterization
of EBRs within and between the major taxa will allow detailed
studies of genome evolution and a better understanding of the
unique adaptations that have occurred in different lineages (10).

Methods
RACA. SF graph. Given a set of SFs B, the SF graph is an undirected graph G =
(V, E), where V = {bh, btjb ∈ B} is the set of vertices that represents the head
bh and tail bt of a SF b, and E is the set of undirected edges. The idea is
analogous to the breakpoint graph that was used in genome rearrangement
analysis (29, 30). The edge between two SFs can be created by connecting
either the head or tail vertices of each SF, which represents both the order
and orientation of SFs. Each edge has a weight in the range of 0–1 that
indicates how confident the connection is. The head and tail vertices from the
same SF are always connected with a maximumweight, and other vertices are
connected only when their weights are greater than 0 (see SI Appendix, Fig.
S3A for an example).
Edge weight. Each edge has a weight that represents the confidence of an
adjacency between two SFs. We defined the edge weight by considering two
sources of information: (i) the posterior probability of an adjacency in terms
of the evolution of a SF configuration and (ii) the support from the paired-
end read mapping. For each pair of two SFs, bi and bj, there exist four dif-
ferent types of edges to connect them: (i) edge between bh

i and bh
j , repre-

sented as (−i, j) or (−j, i); (ii) edge between bh
i and bt

j , represented as (−i, −j)
or (j, i); (iii) edge between bt

i and bh
j , represented as (i, j) or (−j, i); and (iv)

edge between bt
i and bt

j , represented as (i, −j) or (j, −i). In other words, the i
and j are the indexes of SFs, and the positive and negative signs indicate the
relative orientations of SFs. For example, the two solid edges in SI Appendix,
Fig. S3A can be represented as (1, −2) or (2, −1), and (−2, 3) or (−3, 2). The
weight w(i, j) of an edge (i, j) is defined as:

wði; jÞ ¼
�

1
α ·Probði; jÞþ ð1− αÞ · Linkði; jÞ

i ¼ − j
otherwise

The head and tail vertices from the same SF are always connected with
a weight 1 (Eq. 1). An edge weightw(i, j) between two different SFs (Eq. 2) is
computed by merging (i) the posterior probability of the adjacency between
two SFs bi and bj [Prob(i, j); SI Appendix] and (ii) the support from paired-
end reads that link them [Link(i, j); SI Appendix]. The parameter α controls
the relative contribution of the two scores (SI Appendix).
SF ordering algorithm.We defined the SF ordering problem as: given a SF graph
G, find a set of connected components with the degree of each vertex at most
two and without a cycle that maximizes the sum of edge weights. The degree
and cycle constraints ensure that each connected component is actually
a chain of SFs (without cycle), and each SF is adjacent with only one SF. The SF
ordering problem is analogous to the minimum path cover problem and it is
known as NP-hard (30). Therefore, we developed a greedy algorithm as an
approximate solution to solve the SF ordering problem, which constructs the
chains of SFs by merging two adjacent SFs with the highest edge weight first
at each step (SI Appendix).

Evaluation of RACA Using the GAGE Datasets. The paired-end reads and as-
sembly results for human chromosome 14 produced by seven genome
assemblers, ALLPATHS-LG, Bambus2, CABOG,MSR-CA, SGA, SOAPdenovo, and
Velvet, were downloaded from theGAGEwebsite (http://gage.cbcb.umd.edu).
To construct the paired-end read mapping information, we aligned the
paired-end reads against assembly sequences by using the BWA (v 0.5.9)
program (31) with default parameters except for “-t 10 -q 15”. Paired-end
reads that were not mapped uniquely were discarded. RACA was tested on
two different datasets: one with an orangutan (ponAbe2 assembly) reference
and the other with a mouse (mm9 assembly) reference, both with the cattle
(umd3 assembly) genome as an outgroup. SFs were constructed at four
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different resolutions, 100, 50, 10, and 1 kbp. Then RACA was applied to each
dataset to further assemble the original assemblies. The performance of RACA
was mainly examined by measuring the fraction of N50 increase and the
number of adjacency errors that were computed by using the GAGE evalua-
tion pipeline. We defined two evaluation measures: misjoin and unjoin errors.
The misjoin errors occur when two adjacent contigs in the predicted assembly
are not actually adjacent in the human genome assembly. The unjoin errors
occur when two contigs are actually adjacent in the human genome assembly,
but they are in separate scaffolds in the predicted assembly. We considered
the sum of the misjoin and unjoin errors as the final adjacency errors (see SI
Appendix for details).

Analysis of Known Evolutionary Breakpoint Regions. We obtained the coor-
dinates (bosTau4 assembly) of 135 cow- and cetartiodactyl-specific EBRs from
Elsik et al. (27). A lineage-specific EBR is definedas an interval between the two
boundaries of a lineage-specific breakpoint inferred from cross-species se-
quence comparison. After removing 12 EBRs that could result from assembly
errors, we converted the coordinates (5, 32) to the UMD 3.0 assembly by using

the liftOver program in the UCSC Genome Browser (33). This produced 90
coordinates that were successfully mapped to the UMD 3.0 assembly. A Ti-
betan antelope scaffold was determined to span a known EBR only when
the distances from its two boundaries to the known EBR were greater than
100 kbp. This threshold was set to minimize the possibility of artifacts in
sequence alignment.
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